• 검색 결과가 없습니다.

Fourier Transform with Lenses

N/A
N/A
Protected

Academic year: 2022

Share "Fourier Transform with Lenses"

Copied!
40
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

Fourier analysis in linear systems

1

( , ) ( , )exp 2 ( )

( , )

x y x y x y

x y

f x y g f f j xf yf df df

g f f





 

= F

( , ) ( , )exp 2 ( )

( , )

x y x y

g f f f x y j f x f y dxdy

f x y





 

F

( , ) ( , )

( , ) ( , )

FT IFT

x y

x y

f x y g f f

f x y g f f

Introduction to Fourier Optics, J. Goodman Fundamentals of Photonics, B. Saleh &M. Teich

(2)

Properties of 1D FT

(3)

Properties of 1D FT

(4)

Some frequently used functions

(5)

Some frequently used functions

(6)

Time duration and spectral width

The power rms width

(most of the measurement quantities)

The rms width

(Principles of optics 7thEd, 10.8.3, p615)

(7)

Time duration and spectral width

(8)

Widths at 1/e, 3-dB, half-maximum

1 f(t)

t

= 2

(9)

2D Fourier transform

Superposition of plane waves

(10)

Properties of 2D FT

(11)

Properties of 2D FT

(12)
(13)

Properties of 2D FT

(14)

Fourier and Inverse Fourier Transform

( fx, fy)

(15)

Input placed against lens

Input placed in front of lens

Input placed behind lens

back focal plane

Fourier Transform with Lenses

(16)

R1>0 (concave) R2<0 (convex)

 x, y kn x, y k0  x, y

 x y jk jkn   x y

tl , exp 0 exp 1 ,

     x y t x y U x y

Ul' , l , l ,

 

2

2 2 2

2 2 1

2 2

1

0 1 1 1 1

, R

y R x

R y R x

y x

A thin lens as a phase transformation

' ,

Ul x y

,

Ul x y

Intro. to Fourier Optics, Chapter 5, Goodman.

(17)

The Paraxial Approximation

 

 

 





2 1

2 2

0

1 1

1 2 exp

exp

, R R

y n x

jk jkn

y x tl





2 1

1 1 1

1

R n R

f

concave :

0 f

convex :

0 f

   

2 2

exp 2

, x y

f j k

y x tl

 Phase representation of a thin lens (paraxial approximation) focal length

(18)

Types of Lenses

convex :

0 f

concave :

0 f

 

 

2 2

exp 2

, x y

f j k y

x tl

(19)

Collimating property of a convex lens

Fig. 1.21, Iizuka

zi

Plane wave!

(20)

How can a convex lens perform the FT

fo fo

(21)

Fourier transforming property of a convex lens

The input placed directly against the lens

Pupil function ; 1 in sid e th e len s a p ertu re , 0 o th erw ise

P x y

 

 

' 2 2

, , , exp

l l 2

U x y U x y P x y j k x y f

2 2

' 2 2

exp 2 2

, , exp exp

f l 2

j k u

f k

U u U x y j x y j xu y dxdy

j f f f



 

 

2 2

exp 2 2

, , , exp

f l

j k u

U u f U x y P x y j xu y dxdy

j f f



 

Quadratic phase factor From the Fresnel diffraction formula ( z = f ):

Fourier transform

Ul Ul’

(22)

Fourier transforming property of a convex lens

The input placed in front of the lens

 

 

2 2

exp 1

2 2

, , exp

f l

k d

A j u

f f

U u U x y j xu y dxdy

j f f



 

If d = f

 ,  , exp 2

f l

U u A U x y j xu y dxdy

j f f



 

Exact Fourier transform !

(23)

 

d f d

j d u j k A

u U f





2 2

exp 2

,   

u d d

j d d

f d

P f tA





 

exp 2 ,

,

Fourier transforming property of a convex lens

The input placed behind the lens

Scaleable Fourier transform !

By decreasing d, the scale of the transform is made smaller.

   ,

exp 2 ,

, 2 2

0 tA

d j k d

f d

P f d U Af





(24)

Invariance of the input location to FT

(25)

Imaging property of a convex lens

magnification

From an input point S to the output point P ;

Fig. 1.22, Iizuka

(26)

Diffraction-limited imaging of a convex lens

From a finite-sized square aperture of dimension a x a to near the output point P ;

(27)

FT in cylindrical (polar) coordinates

In rectangular coordinate

In cylindrical coordinate ( , )

( , ) x y r

( , ) ( , )

x y

f f

 

(28)

FT in cylindrical coordinates

(29)

FT in cylindrical coordinates

(Ex) Circular aperture : for the special case when

(30)
(31)

Special functions in Photonics

(32)

Special functions in Photonics

(33)
(34)

Special functions in Photonics

(35)

Appendix : Linear systems

(36)

Appendix : Shift-invariant systems

(37)

Appendix : Linear shift-invariant causal systems

(38)

p.180

Example : The resonant dielectric medium

Susceptibility of a resonant medium :

Let, Response to harmonic (monochromatic) fields :

(39)

Appendix : Transfer function

(40)

Homework

Show the FT properties

참조

관련 문서

3.13 Measured grain boundary energies for symmetric tilt boundaries in Al (a) When the rotation axis is parallel to (100), (b) when the rotation axis is parallel to (110).

[r]

The Korean Voluntary Effort to Increase Their Airpower During the Korean War - With Special Reference to the National Fundraising Movement for Aircraft in

‘the special law for digital switchover’ states that is the general planning for vitalization of digital switchover, the program schedule of digital broadcast

 내용: 푸리에 급수의 개념과 기법, 푸리에 적분(Fourier Integrals), 푸리에 변홖(Fourier Transform)..  우리 주변에서 푸리에 급수는

• Seychelles Medical Private Tests (Open 24/7, with special rates for Emirates passengers) – Tel +248 4366999 www.pcrtests.sc/. • Le Chantier Health Services (special

• The periodic signals do not satisfy the Dirichlet conditions so, strictly speaking, they do not have Fourier transform.. • Fourier transform of

• The sequences of Gaussian functions play a special role in connection with transforms in the limit.. • The properties which make the Gaussian functions