• 검색 결과가 없습니다.

Fourier Transform with Lenses

N/A
N/A
Protected

Academic year: 2022

Share "Fourier Transform with Lenses"

Copied!
39
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

Fourier transform Fourier transform

{ }

{ }

1

( , ) ( , )exp 2 ( )

( , )

x y x y x y

x y

f x y g f f j xf yf df df

g f f

+∞ π

−∞

= ∫ ∫ +

= F

{ }

{ }

( , ) ( , )exp 2 ( )

( , )

x y x y

g f f f x y j f x f y dxdy

f x y

+∞ π

= −∞ +

=

∫ ∫

F

( , ) ( , )

( , ) ( , )

FT IFT

x y

x y

f x y g f f

f x y g f f

Introduction to Fourier Optics, J. Goodman Fundamentals of Photonics, B. Saleh &M. Teich

(2)

Properties of 1D FT Properties of 1D FT

(3)

Properties of 1D FT Properties of 1D FT

(4)

Some frequently used functions Some frequently used functions

(5)

Some frequently used functions Some frequently used functions

(6)

Time duration and spectral width Time duration and spectral width

The power rms width

(most of the measurement quantities)

The rms width

(Principles of optics 7thEd, 10.8.3, p615)

(7)

Time duration and spectral width Time duration and spectral width

(8)

Widths at 1/e, 3-dB, half-maximum Widths at 1/e, 3-dB, half-maximum

1 f(t)

t

= 2τ.

(9)

2D Fourier transform 2D Fourier transform

Superposition of plane waves

(10)

Properties of 2D FT Properties of 2D FT

(11)

Properties of 2D FT Properties of 2D FT

(12)
(13)

Properties of 2D FT Properties of 2D FT

(14)

Fourier and Inverse Fourier Transform

α α β β

( fx, fy)

(15)

Input placed against lens

Input placed in front of lens

Input placed behind lens

back focal plane

Fourier Transform with Lenses

Fourier Transform with Lenses

(16)

R1>0 (concave) R2<0 (convex)

( )x, y = knΔ( )x, y + k[Δ0 Δ( )x, y ]

φ

( )x y [jk ] [jk(n ) ( )x y ]

tl , = exp Δ0 exp 1 Δ ,

( ) ( ) ( )x y t x y U x y

Ul' , = l , l ,

( )

+

+

+

Δ

=

Δ 2

2 2 2

2 2 1

2 2

1

0 1 1 1 1

, R

y R x

R y R x

y x

A thin lens as a phase transformation A thin lens as a phase transformation

( )

' ,

Ul x y

( , )

Ul x y

Intro. to Fourier Optics, Chapter 5, Goodman.

(17)

The Paraxial Approximation

( )

[ ]

( )

⎟⎟

⎜⎜

+

Δ

=

2 1

2 2

0

1 1

1 2 exp

exp

, R R

y n x

jk jkn

y x tl

( ) ⎟⎟

⎜⎜

2 1

1 1 1

1

R n R

f

concave :

< 0 f

convex :

> 0 f

( ) ( )

+

= 2 2

exp 2

, x y

f j k

y x tl

Æ Phase representation of a thin lens (paraxial approximation) focal length

(18)

Types of Lenses

convex :

> 0 f

concave :

< 0 f

( )

( )

+

= 2 2

exp 2

, x y

f j k y

x tl

(19)

Collimating property of a convex lens Collimating property of a convex lens

Fig. 1.21, Iizuka

zi

Plane wave!

(20)

How can a convex lens perform the FT How can a convex lens perform the FT

fo fo

(21)

Fourier transforming property of a convex lens Fourier transforming property of a convex lens

The input placed directly against the lens

Pupil function ; ( ) 1 in sid e th e len s a p ertu re , 0 o th erw ise

P x y

= ⎨

( ) ( ) ( ) ( )

' 2 2

, , , exp

l l 2

U x y U x y P x y j k x y f

= +

( ) ( )

( ) ( ) ( )

2 2

' 2 2

exp 2 2

, , exp exp

f l 2

j k u

f k

U u U x y j x y j xu y dxdy

j f f f

υ π

υ υ

λ λ

−∞

+

= + +

∫ ∫

( ) ( )

( ) ( ) ( )

2 2

exp 2 2

, , , exp

f l

j k u

U u f U x y P x y j xu y dxdy

j f f

υ π

υ υ

λ λ

−∞

+

= +

∫ ∫

Quadratic phase factor From the Fresnel diffraction formula ( z = f ):

Fourier transform

Ul Ul’

(22)

Fourier transforming property of a convex lens Fourier transforming property of a convex lens

The input placed in front of the lens

( ) ( )

( ) ( )

2 2

exp 1

2 2

, , exp

f l

k d

A j u

f f

U u U x y j xu y dxdy

j f f

υ π

υ υ

λ λ

−∞

+

= +

∫ ∫

If d = f

( ), ( ), exp 2 ( )

f l

U u A U x y j xu y dxdy

j f f

υ π υ

λ λ

−∞

= +

∫ ∫

Exact Fourier transform !

(23)

( ) ( )

d f d

j d u j k A

u U f

λ

υ

υ ⎥⎦

⎢⎣

+

=

2 2

exp 2

, ( ) ( ξ υη) ξ η

λ η π

ξ η

ξ u d d

j d d

f d

P f tA

⎥⎦

⎢⎣ +

×∫ ∫

exp 2 ,

,

Fourier transforming property of a convex lens Fourier transforming property of a convex lens

The input placed behind the lens

Scaleable Fourier transform !

By decreasing d, the scale of the transform is made smaller.

( )ξ η ξ η (ξ η ) ( )ξ,η

exp 2 ,

, 2 2

0 tA

d j k d

f d

P f d U Af

⎥⎦

⎢⎣ +

=

(24)

Invariance of the input location to FT Invariance of the input location to FT

(25)

Imaging property of a convex lens Imaging property of a convex lens

magnification

From an input point S to the output point P ;

Fig. 1.22, Iizuka

(26)

Diffraction-limited imaging of a convex lens Diffraction-limited imaging of a convex lens

From a finite-sized square aperture of dimension a x a to near the output point P ;

(27)

FT in cylindrical (polar) coordinates FT in cylindrical (polar) coordinates

In rectangular coordinate

In cylindrical coordinate ( , )

( , ) x y r θ

( , ) ( , )

x y

f f ρ φ

(28)

FT in cylindrical coordinates FT in cylindrical coordinates

(29)

FT in cylindrical coordinates FT in cylindrical coordinates

(Ex) Circular aperture : for the special case when

(30)
(31)

Special functions in Photonics Special functions in Photonics

(32)

Special functions in Photonics Special functions in Photonics

(33)
(34)

Special functions in Photonics Special functions in Photonics

(35)

Appendix : Linear systems Appendix : Linear systems

(36)

Appendix : Shift-invariant systems Appendix : Shift-invariant systems

(37)

Appendix : Linear shift-invariant causal systems Appendix : Linear shift-invariant causal systems

(38)

p.180

Example : The resonant dielectric medium

Susceptibility of a resonant medium :

Let, Response to harmonic (monochromatic) fields :

(39)

Appendix : Transfer function Appendix : Transfer function

참조

관련 문서

Separate instruction/data memory ports 32-bit ARM &amp; 16-bit THUMB instruction set support. Coprocessor interfaces for FP and DSP

Linear Systems Analysis i th Ti D i III in the Time Domain III.. Transient Response -

 Forget about vectors you are accustomed to, with magnitude and direction, with arrow marks on the top, and with coordi- nates..  They are vectors in the Euclidean space and

 This definition of dimension applies to all spaces with algebraic structure-vector, normed linear, inner product, Banach, Hilbert, and Euclidean spaces.  There are other

 A norm gives length to a vector and, hence, provide the notion of distance for a vector space... These two fields are of

 Linear systems, linear control systems, system applications (com- munication, energy, mechanical, electrical power, signal, ...). 

 A linear system of equations in n unknowns has a unique solution if the coefficient matrix and the augmented matrix have the same rank n, and infinitely many solution if

The Jacobi energy integral is one type of invariant of motion associated with