• 검색 결과가 없습니다.

Engineering Mathematics2

N/A
N/A
Protected

Academic year: 2022

Share "Engineering Mathematics2"

Copied!
50
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

2008_Vector Calculus(4)

Naval Architecture & Ocean Enginee ring

Engineering Mathematics 2

Prof. Kyu-Yeul Lee

Department of Naval Architecture and Ocean Engineering, Seoul National University of College of Engineering

[2008][07-1]

October, 2008

(2)

2008_Vector Calculus(4)

Naval Architecture & Ocean Enginee ring

Vector Calculus (4) : Green’s, Stokes’and

Divergence Theorem

Green’s, Theorem

Stokes’ Theorem

Divergence Theorem

(3)

2008_Vector Calculus(4)

Green’s Theorem

Green’s Theorem in the Plane

Suppose that C is piecewise smooth simple closed curve bounding a region R.

If are continuous on R, then Theorem 9.13

x Q y

P Q

P , ,  /  , and  / 



 

R

C

dA

y P x

Qdy Q Pdx

Positive direction

C

Negative direction

C

R R

(4)

2008_Vector Calculus(4)

Green’s Theorem

Green’s Theorem in the Plane

Suppose that C is piecewise smooth simple closed curve bounding a region R.

If are continuous on R, then Theorem 9.13

x Q y

P Q

P , ,  /  , and  / 



 

R

C

dA

y P x

Qdy Q Pdx

Proof)

R

)

2(x g y

)

1(x g y

a b x

y

b x a x

g y x

g

R :

1

( )  

2

( ),  

 



 

 

 

C

b a b

a b a

b a

x g

x g R

dx y x P

dx x

g x P dx

x g x P

dx x

g x P x

g x P

y dydx dA P

y P

) , (

)) ( , ( ))

( , (

))]

( , ( ))

( , ( [

2 1

1 2

) (

) (

2

1

(5)

2008_Vector Calculus(4)

Green’s Theorem

Green’s Theorem in the Plane

Suppose that C is piecewise smooth simple closed curve bounding a region R.

If are continuous on R, then Theorem 9.13

x Q y

P Q

P , ,  /  , and  / 



 

R

C

dA

y P x

Qdy Q Pdx

R

)

2(x g y

)

1(x h x

b c

x y

)

1(y h xd

d y c y

h x y

h

R :

1

( )  

2

( ),  

 



 

C

d c d

c d c

d c

x h

x h R

dy y x Q

dy y y h Q dy

y y h Q

dy y y h Q y

y h Q

y dxdy dA Q

y Q

) , (

) ), ( ( )

), ( (

)]

), ( ( )

), ( ( [

2 1

1 2

) (

) (

2

1

(6)

2008_Vector Calculus(4)

Green’s Theorem

 Example 1

Using Green’s Theorem

Evaluate

where C consists of the boundary of the region in the first quadrant that is bounded by the graphs of y=x

2

and y=x

3

.

, ) 2

( )

(

2 2

C

x y dx y x dy

420 ) 11

(

) (

) 2 1 (

) 2 1 (

) (

) 2

(

) 2

( )

(

1 0

2 3

4 6

1 0

2 1

0

2 2

2 2

2 3 2

3

 

 

 

 

 





dx x

x x

x

dx y

y

dx dy y dA y

y dA y x

x x y

dy x y dx

y x

x x x

x R R C

Solution)

x y

x

2

y

x

3

y

) 1 , 1 (

R

(7)

2008_Vector Calculus(4)

Green’s Theorem

 Example 2

Using Green’s Theorem

Evaluate

where C is the circle (x-1)

2

+(y-5)

2

=4.

, ) 2

( )

3

(

5 3

C

y

dy e

x dx

y x

Solution)

x y

4 ) 5 ( ) 1

(x 2 y 2

 4 is area R

 4

) 3 2 (

) 3 (

) 2

(

) 2

( )

3 (

5 5

3

3

 

 

 

 







R R R

y C

y

dA

dA

y dA y x

x e x

dy e

x dx

y

x

(8)

2008_Vector Calculus(4)

Green’s Theorem

 Example 3

Work Done by a Force

Find the work done by the force

acting along the simple closed curve C shown in Figure below.

j i

F  (  16 y  sin x

2

)  ( 4 e

y

 3 x

2

)

Solution)





 

 

 

 

R R

y C

y C

dA x

y dA x y

x x e

dy x

e dx

x y

d W

) 16 6

(

) sin 16

( )

3 4

(

) 3 4

( )

sin 16

(

2 2

2 2

r F

4 3 , 4

1 0

: r

R

4 )

8 cos

2 (

) 8 cos

2 (

) 16 cos

6 (

4 / 3

4 /

4 / 3

4 /

1 0 2 3

4 / 3

4 /

1 0

 

d

d r

r

d rdr r

W x

y

x y C

1

: 

1 :

2 2

2

xy

C

x y

C

3

:  

(9)

2008_Vector Calculus(4)

Green’s Theorem

 Example 4

Green’s Theorem Not Applicable

Let C be the closed curve consisting of the four straight line segments C

1

, C

2

, C

3

, C

4

shown in Figure. Green’s theorem is not applicable to the line integral

C

dy

y x

dx x y x

y

2 2

2 2

x y

2

1

: y   C

R

2

2

: xC

2

3

: yC

2

4

: x  

C

(10)

2008_Vector Calculus(4)

Green’s Theorem

 Example 4

Green’s Theorem Not Applicable

Let C be the closed curve consisting of the four straight line segments C

1

, C

2

, C

3

, C

4

shown in Figure. Green’s theorem is not applicable to the line integral

C

dy

y x

dx x y x

y

2 2

2 2

x y

2

1

: y   C

R

2

2

: xC

2

3

: yC

2

4

: x   C

since P, Q, ∂P/∂y, and ∂Q/∂y are not

continuous at the origin.

(11)

2008_Vector Calculus(4)

Green’s Theorem

Region with Holes







 

 

 

 

 

 

 

 

 

 

 

C

C C

R R

R

Qdy Pdx

Qdy Pdx

Qdy Pdx

y dA P x

dA Q y

P x

dA Q y

P x

Q

2 1

2 1

C

1

C

2

C

1

C

2

R

2

R

1

(C=C

1

∪C

2

)

(12)

2008_Vector Calculus(4)

Green’s Theorem

 Example 5

Region with a Hole in It

Solution) Evaluate

where C=C

1

∪C

2

is the boundary of the shaded region R shown in

Figure

2 ,

2 2

C 2 dy y x dx x y x

y

x y

R

C1

1 : 2 2

2 xy

C

2 2

2

2

, ( , )

) ,

( x y

y x x y Q

x y y

x

P  

 

2 2 2

2 2 2

2 2

2 2

) , (

)

( x y

x y x

Q y

x

x y y

P

 

 

1

2

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2 2 2

0.

( ) ( )

C

C

C

R

y x

dx dy

x y x y

y x

dx dy

x y x y

y x

dx dy

x y x y

y x y x

x y x y dA

 

 

  

 

  

 

   

        



since P, Q, ∂P/∂y, and ∂Q/∂y are

continuous on the region R bounded by C, it follows from the above

discussion that

(13)

2008_Vector Calculus(4)

Green’s Theorem

 Example 6

Example 4 Revisited

Evaluate the line integral in Example 4.

Example 4.

C dy

y x dx x y x

y

2 2 2

2

Solution)

C

C

1

C

2

C

3

C4

x

y

R

C

1 : 2 2

x y C

2 2

2

2

, ( , )

) ,

( x y

y x x y Q

x y y

x

P  

 

2 2 2

2 2 2

2 2

2 2

) , (

)

( x y

x y x

Q y

x

x y y

P

 

 

 

2 2 2 2

2 0

2 2 2

0 2 0

sin ( sin ) cos (cos ) (sin cos )

2

C

y x

dx dy

x y x y

t t t t dt

t t dt

dt

  

 

   

 

 

2 2 2 2

C

y x

dx dy

x y x y

  

 

(14)

2008_Vector Calculus(4)

Stokes’ Theorem

Vector Form of Green’s Theorem

k F

F 

 

 

 

 

y

P x

Q Q

P

z y

x

k j

i

0 curl

) 1 ( )

curl

( 



R C

C

F d r F T ds F k dA

i

j

x

y

z

k

C

R

T

Green’s Theorem in 3-Space

n

( Stokes’ theorem)

Green’s theorem in 3-space relates a line integral around a closed curve C forming the boundary of a surface S with a surface integral over S.

Equation (1) relate a line integral around a closed curve C forming the boundary of a plane region R to a double integral over R.

R

)

2(x g y

)

1(x h x

b c

x y

)

1(y h xd

Green Theorem in 2-D space

Green Theorem in 3-D space

(15)

2008_Vector Calculus(4)

Stokes’ Theorem

Stokes’ Theorem

Let S be a piecewise smooth orientable surface bounded by a piecewise smooth simple closed curve C. Let be a vector filed for which P,Q, and R are continuous and have continuous first partial derivatives in a region of 3-space containing S. if C is traversed in the positive direction, then

Where n is a unit normal to S in the direction of the orientation of S.

Theorem 9.14

k j

i

F ( x , y , z )  P ( x , y , z )  Q ( x , y , z )  R ( x , y , z )



S C

C

F d r ( F T ) ds ( curl F ) n dS

i

j

x

y

z

k

C

R

T n

(16)

2008_Vector Calculus(4)

Stokes’ Theorem

Stokes’ Theorem

Let S be a piecewise smooth orientable surface bounded by a piecewise smooth simple closed curve C. Let be a vector filed for which P,Q, and R are continuous and have continuous first partial derivatives in a region of 3-space containing S. if C is traversed in the positive direction, then

Where n is a unit normal to S in the direction of the orientation of S.

Theorem 9.14

k j

i

F ( x , y , z )  P ( x , y , z )  Q ( x , y , z )  R ( x , y , z )



S C

C

F d r ( F T ) ds ( curl F ) n dS

i

j

x

y

z

k

C

R

T n

See also

Streeter V.L., Fluid Mechanics, McGraw-Hill, 1948,

p47, ‘24. Stokes’ Theorem’

(17)

2008_Vector Calculus(4)

Stokes’ Theorem

Stokes’ Theorem Theorem 9.14



S C

C

F d r ( F T ) ds ( curl F ) n dS

Partial Proof)

k j

i

F 

 

 

 

 

 

 

 

 

 

 

 

y P x

Q x

R z

P z

Q y

curl R

2 2

1 

 

 

 

 

 

 

 

 

y f x

f

y f x

f i j k n

) , ( x y f

z

S is oriented upward and is defined by a function

k j

i

F ( x , y , z )  P ( x , y , z )  Q ( x , y , z )  R ( x , y , z )

i

j

x

y

z

k

C

R

T n

0 ) , ( )

, ,

( x y zzf x yg

If we write

If S is defined by g(x,y,z)=0,

gg

 

||

||

n 1 (R.H.S)

(18)

2008_Vector Calculus(4)

Stokes’ Theorem

Stokes’ Theorem Theorem 9.14



S C

C

F d r ( F T ) ds ( curl F ) n dS

k j

i

F 

 

 

 

 

 

 

 

 

 

 

 

y P x

Q x

R z

P z

Q y

curl R

2

2

1 

 

 

 

 

 

 

 

 

y f x

f

y f x

f i j k n

k j

i

F ( x , y , z )  P ( x , y , z )  Q ( x , y , z )  R ( x , y , z )

i

j

x

y

z

k

C

R

T n



    

R S

y dA P x

Q y

f x R z

P x

f z Q y

dS R n F) curl (

Hence,

(19)

2008_Vector Calculus(4)

Stokes’ Theorem

Stokes’ Theorem Theorem 9.14



S C

C

F d r ( F T ) ds ( curl F ) n dS

k j

i

F ( x , y , z )  P ( x , y , z )  Q ( x , y , z )  R ( x , y , z )

i

j

x

y

z

k

C

R

T n



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C b a C C

x dA R f

y P y

R f x Q

y dy R f Q x dx

R f P

dt dt y y f dt

dx x R f dt

Q dy dt

P dx

Rdz Qdy

Pdx d

xy

r F

Chain rule

Green’s theorem

b t a t

y t x f z t y y t x

x  ( ),  ( ),  ( ( ), ( ))   b

t a t

y y t x

x  ( ),  ( )   :

C

xy

:

C

(Projection of C onto the xy-plane)

(L.H.S)

(20)

2008_Vector Calculus(4)

Stokes’ Theorem

Stokes’ Theorem Theorem 9.14



S C

C

F d r ( F T ) ds ( curl F ) n dS

k j

i

F ( x , y , z )  P ( x , y , z )  Q ( x , y , z )  R ( x , y , z )

i

j

x

y

z

k

C

R

T n

x f y f z R y

f x R y

x R f x f z Q x

Q

x f z R x

R y

f y

x R f x f z Q x

Q

y y f

x f y x R y

x f y x x Q

y R f x Q

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 2

)) , ( , , ( ))

, ( , , (

Chain and Product Rules

Similarly,

y f x f z R x

f y R x

y R f y f z P y

P x

R f

y P

 

 

 

 

 

 

 

 

2

(21)

2008_Vector Calculus(4)

Stokes’ Theorem

Stokes’ Theorem Theorem 9.14



S C

C

F d r ( F T ) ds ( curl F ) n dS

k j

i

F ( x , y , z )  P ( x , y , z )  Q ( x , y , z )  R ( x , y , z )

i

j

x

y

z

k

C

R

T n

x f y f z R y

f x R y

x R f x f z Q x

Q y

R f

x Q

 

 

 

 

 

 

 

 

2

∴ (L.H.S)=(R.H.S)

y f x f z R x

f y R x

y R f y f z P y

P x

R f

y P

 

 

 

 

 

 

 

 

2





 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R R C

y dA P x

Q y

f x R z

P x

f z Q y

R

x dA R f

y P y

R f x Q

dr

F

(22)

2008_Vector Calculus(4)

Stokes’ Theorem

 Example 1

Verifying Stokes’ Theorem

Let S be the part of the cylinder z=1-x

2

for 0≤x≤1, -2≤y≤2.

Verify Stokes’ theorem if F=xyi+yzj+xzk.

Solution) 1) Surface Integral

k

j i

Fxyyzxz

k j i k

j i

F y z x

xz yz

xy

z y

x    

  curl

0 1 )

, ,

( x y zzx

2

  g

1 4

2

2

 

 

x x g

g i k

n

 

2 )

4 (

) 2

(

) 2

(

1 4

) 2 curl

(

1 0

1 0

2 2 2

1 0

2 2

2

 

 







dx x

dx xy xy

dx dy x xy

dA x xy

dS x

x dS xy

R S S

n

F

(23)

2008_Vector Calculus(4)

Stokes’ Theorem

 Example 1

Verifying Stokes’ Theorem

Let S be the part of the cylinder z=1-x

2

for 0≤x≤1, -2≤y≤2.

Verify Stokes’ theorem if F=xyi+yzj+xzk.

Solution) 2) Line Integral

C

C

1

C

2

C

3

C4

0 ,

0 ,

0 ,

1

1

: xzdxdz

C

0 0 )

0 ( ) 0 (

1

C yy dy

xdx dz

dy x

z y

C

2

:  2 ,  1 

2

,  0 ,   2

15 ) 11

2 2

2 (

) 2 )(

1 ( 0 ) 1 ( 2 2

0 1

4 2

2 2

2

dx x x

x

xdx x

x x

C xdx

0 ,

0 ,

1 ,

0

3

: xzdxdz

C

0 0

0 2

3 2

C ydy ydy

xdx dz

dy x

z y

C

4

:   2 ,  1 

2

,  0 ,   2

15 ) 19

2 2

2 (

) 2 )(

1 ( 0 ) 1 ( 2 2

1 0

4 2

2 2

4

dx x x

x

dx x x

x x

C xdx

15 2 0 19 15

011  

xydx yz xzdz

C

d

C

Pdx Qdy Rdz  

F r

(24)

2008_Vector Calculus(4)

Stokes’ Theorem

 Example 2

Using Stokes’ Theorem

Evaluate

where C is the trace of the cylinder x

2

+y

2

=1 in the plane y+z=2.

Orient C counterclockwise as viewed from above. See the Figure below

C

zdx xdy ydz ,

Solution)

k j

i

Fzxy

k j i k j

i

F   

 

y x

z

z y

curl x

0 2 )

, ,

( x y zyz   g

k j

n 2

1 2

1 

 

  g g

 2 2

2 2

2 1 2

) 1 (

 

 

 

 

 







R S

S C

dA dS

dS

d r i j k j k

F

(25)

2008_Vector Calculus(4)

Stokes’ Theorem

Physical Interpretation of Curl

(curl )

r

r

C

S

d dS

  

F r  F n

For a small but fixed value of r,

0 0

0 0

0 0

(curl ( )) ( )

(curl ( )) ( ) (curl ( )) ( )

r

r

r

C

S

S

r

d P P dS

P P dS

P P A

  

 

 

 



F r F n

F n

F n

0 0

0

(curl ( )) ( ) lim 1

Cr

r r

P P d

A

   

F n F r

0 0

(curl ( )) ( ) 1

Cr

r

P P d

  A  

F n F r

P0

Cr

Sr

(P0) n

By Stokes’

theorem,

Cr is Small circle of radius r centered at P0

Because radius of circle Cr is small, then we approximate curl F(P) ≈ curl F(P0),

Roughly then, the curl of F is the circulation of F per unit area.

(26)

2008_Vector Calculus(4)

Stokes’ Theorem

Physical Interpretation of Curl

(curl )

r

r

C

S

d dS

  

F r  F n

For a small but fixed value of r,

0 0

0 0

0 0

(curl ( )) ( )

(curl ( )) ( ) (curl ( )) ( )

r

r

r

C

S

S

r

d P P dS

P P dS

P P A

  

 

 

 



F r F n

F n

F n

0 0

0

(curl ( )) ( ) lim 1

Cr

r r

P P d

A

   

F n F r

0 0

(curl ( )) ( ) 1

Cr

r

P P d

  A  

F n F r

P0

Cr

Sr

(P0) n

By Stokes’

theorem,

Cr is Small circle of radius r centered at P0

Because radius of circle Cr is small, then we approximate curl F(P) ≈ curl F(P0),

Roughly then, the curl of F is the circulation of F per unit area.

See also

Streeter V.L., Fluid Mechanics, McGraw-Hill, 1948,

p49, ‘25. Circulation’

(27)

2008_Vector Calculus(4)

Divergence Theorem of Gauss

(Transformation Between Triple and Surface Integrals) Let T be a closed bounded region in space whose boundary

is a piecewise smooth orientable surface S.

x

z

R y n n

n S2

S1

S3

Fig.Example of a special region

) , , ( x y z F

 

T S

dA dV F n F

div

: a vector function that is continuous and has continuous first partial

derivatives in T (2)

], ,

,

[ F

1

F

2

F

3

F n  [cos  , cos  , cos  ] Using component,







 

 

 

S S T

dxdy F

dzdx F

dydz F

dA F

F F

dxdydz z

F y

F x

F

) (

) cos cos

cos (

) (

3 2

1

3 2

1 3

2

1

  

(2’)

z F y

F x

F

 

 

 

1 2 3

Divergence Theorem* divF

Ref. Divergence Theorem

(28)

2008_Vector Calculus(4)

Divergence Theorem

) (

) cos cos

cos (

) (

3 2

1

3 2

1 2 3

1

dxdy F

dzdx F

dydz F

dA F

F F

dxdydz z

F y

F x

F

S S T

 

 

 







(proof) we can start with (2*)

This equation is true if and only if the integrals of each component on both sides are equal



















 

 

 

S S

T

S S

T

S S

T

dxdy F

dA F

dxdydz z

F

dxdz F

dA F

dxdydz y

F

dydz F

dA F

dxdydz x

F

3 3

3

2 2

2

1 1

1

cos cos cos

(3)

(4)

(5)

(29)

2008_Vector Calculus(4)

Divergence Theorem

(proof continue)

dA F

dxdydz z

F

S

T





3

3

cos

(5)

We first prove (5) for a special region T that is bounded by a piecewise smooth orientable surface S and has the property that any straight line parallel to

any one of the coordinate axes and intersecting T has at most one segment (or a single point)

It implies that T can be represented in the form

) , ( )

,

( x y z h x y

g  

(6)

x

z

R

y n n

n S2

S1

S3

)

, ( :

) , ( :

2 1

y x g S

y

x

h

S

참조

관련 문서

Department of Naval Architecture and Ocean Engineering, Seoul National University of College of Engineering.. 학부 4학년 교과목“창의적

Department of Naval Architecture and Ocean Engineering Department of Naval Architecture and Ocean Engineering Department of Naval Architecture and Ocean Engineering, Department

Department of Naval Architecture and Ocean Engineering, Seoul National University... 2009

Department of Naval Architecture and Ocean Engineering, Seoul National University of College of Engineering.. Ship Motion & Wave Load

Department of Naval Architecture and Ocean Engineering, Seoul National University of College of Engineering@. 서울대학교 조선해양공학과 학부4학년

Department of Naval Architecture and Ocean Engineering, Seoul National University.. Naval Architecture

School of Mechanical and Aerospace Engineering Seoul National University..

School of Mechanical and Aerospace Engineering Seoul National University..