• 검색 결과가 없습니다.

Engineering Mathematics I

N/A
N/A
Protected

Academic year: 2022

Share "Engineering Mathematics I"

Copied!
22
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

Bong-Kee Lee

School of Mechanical Systems Engineering Chonnam National University

Engineering Mathematics I

5. Series Solutions of ODEs. Special Functions

5.1 Power Series Method

 n계 선형상미분방정식

  p

 

x y  p

 

xy p

 

x y r

 

x ynn1 n1  1 ' 0

  a y  ay ay r

 

x

ynn1 n1 1 ' 0

 1 1 0 0

1    

an n a a

n  

 

characteristic equation ex

y

 

x y

 

x y

 

x yhp

general solution of nonhomogeneous ODE

 

x cy cnyn

y1 1 general solution of homogeneous ODE

constant coefficients

(2)

School of Mechanical Systems Engineering Engineering Mathematics I

5.1 Power Series Method

 거듭제곱급수(멱급수, power series) 해법

– 변수계수를 가지는 선형상미분방정식을 풀이하는 표준해 법

• 해의 수치적 값을 계산하거나 특성을 조사하는데 사용됨

• 해에 대한 다른 표현을 유도하는데 사용됨

 거듭제곱급수

– x – x

0

의 거듭제곱을 가지는 무한급수의 형태

– x

0

= 0 인 경우

 



2 0 2 0 1 0 0

0 a a x x a x x

x x a

m

m m

coefficient center



2 2 1 0 0

x a x a a x a

m m m

5.1 Power Series Method

 거듭제곱급수

– 거듭제곱급수의 예: Maclaurin 급수

   

   

 

 

 

 

! 5

! 3

! 1 2 sin 1

! 4

! 1 2

! 2 cos 1

! 3

! 1 2

! 1 1

1

5 3

0

1 2

2 2

0 2

3 2

0

2 0

2 2 1 0 0

x x x m x x

x x m

x x

x x x m e x

x x x x

x a x a a x a

m m m m

m m m

m x

m m m

m m

(3)

School of Mechanical Systems Engineering Engineering Mathematics I

5.1 Power Series Method

 거듭제곱급수 해법의 개념

   

     

 

 

   

m m

m m m

m m

m m m

a

y x q y x p y y y y

x a a x a m m y

x a x a a x ma y

x a x a x a a x a y x q x p

y x q y x p y

obtain

0 '

'' , ' , ''

2 3 2 1

''

&

3 2 '

&

solution

series power

~ ,

0 '

''

3 2 2

2

2 3 2 1 1

1

3 3 2 2 1 0 0

5.1 Power Series Method

 거듭제곱급수 해법의 개념

 

   

2 0 6

4 2 0

0 6 0 4 2 0 0 3 3 2 2 1 0

0 2 6 0 2 4 0 2

2 6 2 4 0 2 5

3 1

3 5 2 4 1 3 0 2 1

4 3 3 2 2 1 0

3 3 2 2 1 0 2

3 2 1

2 3 2 1 1

1 3

3 2 2 1 0 0

! 3

! 1 2

! 3

! 2

!, 3 , 3

! 2 , 2

3, 2, ,

&

0

2 5 , 2 4 , 2 3 , 2 2 , 0

2 2 2 2

2 3

2

3 2 '

2 ' example

x

m m m m

m m

e x a

x x a

a x a x x a a x a x a x a a y

a a a

a a a

a a

a a a a a a a

a a

a a a a a a a a a

x a x a x a x a

x a x a x a a x x

a x a a

x a x a a x ma y x

a x a x a a x a y

xy y



 

    

(4)

School of Mechanical Systems Engineering Engineering Mathematics I

5.1 Power Series Method

 거듭제곱급수 해법의 개념

– 첨수이동(shift of index)

 

 

 2, 3 3 , 1 5 0 , 2 2 2 , 1 3 0 , 2

2 2 2

2 , 0

2 2

2 2

2 ' '

&

0 4 6 3 5 0 2 4 1 3 0 2

2 2

1

0 1 0

1 2 1

0 1 2

1 1

0 1

1 1

1 0

 

 

a a a a a a

a a a a a a

s a a a a s a

x a x

a s a

x a x

ma a x a x x ma

xy y x ma y x a y

s s

s s

s s s s

s s

m m m m

m m m

m m m

m m

m m m m

m m

m – 2 = s m = s

5.1 Power Series Method

 거듭제곱급수 해법의 개념

 

 

      

       

x a x x a

x x x a

a x

x a x a x a x a x a a x a y

a a a

a a a

a a a a

s s s a a a a s s

x a x

a s s x

a x

a m m

x a m m y x ma y x a y

y y

m m m

s s

s s

s s s s

s s m

m m m

m m

m

m m m

m m m

m m

sin

! cos 5

! 3

! 4

! 1 2

!, 5 4 , 5

! 4 3 , 4

! , 3

! 2

, 2 , 1 , 0 1 1 2

2

1 2 1

1 ''

, '

0 '' example

1 0

5 3 1 4

2 0

5 5 4 4 3 3 2 2 1 0 0

1 3 5 0 2 4 1 3 0 2

2 2

0 0

2 0

2

2

2

2 1

1 0



 

   



 

   

 

 

 

 

순환공식, 점화공식 (recursion formula)

(5)

School of Mechanical Systems Engineering Engineering Mathematics I

5.2 Theory of the Power Series Method

 거듭제곱급수 해법의 이론

– 기본 개념

• 거듭제곱급수: 무한급수의 형태

• n-번째까지의 부분합(n-th partial sum)

• 나머지(remainder)

• 수렴 및 발산: x = x1에서 수렴한다

 



2 0 2 0 1 0 0

0 a a x x a x x

x x a

m

m m

     

n

 

n

n x a a x x a x x a x x

s01020 2  0

 

n1

0

n1n2

0

n2

n x a x x a x x

R

       

1

 

1

0

0 1 1

lims x1 s x a x x sn x Rn x

m

m m

n n  

  

수렴값

5.2 Theory of the Power Series Method

 거듭제곱급수 해법의 이론

– 기본 개념

• 수렴

• 세 가지 대표적인 경우

– 경우 1. 무용: x = x0 에서만 유일하게 수렴하는 경우 – 경우 2. 보통: 수렴구간 내에서 수렴하는 경우

– 경우 3. 유용: 모든 구간에서 수렴하는 경우 (수렴구간이 무한대)

 

x s

 

x s

 

x n N Rn 11n 1  for 

R x x0

중점(midpoint) 수렴반지름

m m m m

m m

a a R a R

lim 1

or 1 lim

1

(6)

School of Mechanical Systems Engineering Engineering Mathematics I

5.2 Theory of the Power Series Method

 거듭제곱급수 해법의 이론

 

 

0

as

! 1

!

! 1

6 2 1

! 1

1

3 2 0

 

R

m m m

m a m a a

x x x x m

m m m

m

m

   

1

as 1 1 1

1 1 1

2 1

1

3 2 0

 

R

a m a a

x x x x x x

m m m

m

m

 

 

 

 

R

m m m

m a a a m

x x m e x

m m m

m m x

as 1 0 1

! 1

!

! 1

! 1 2 3 !

1 2

0

   

 

2 8 0

8

8 1 8

8 8

1

512 64 1 8

8 4 1

3 3

1 1

9 6 3

0 3

 

 

x x

R x R

a a a

x x x x

m m

m m m

m

m m

m m

m

5.2 Theory of the Power Series Method

 거듭제곱급수 해법의 이론

– 거듭제곱급수의 연산

• 항별 미분(termwise differentiation)

• 항별 덧셈(termwise addition)

• 항별 곱셈(termwise multiplication)

• 모든 계수가 0이 됨(vanishing of all coefficients)

– 만일 어떤 거듭제곱급수가 양의 수렴반지름을 갖고, 수렴구간 전체 에서 합이 항등적으로 0이라면, 급수의 모든 계수는 0이다.

       

 

1

1 0 0

0 '

m

m m m

m

m x x y x ma x x

a x y

          

  

0

0 0

0 0

0

m

m m m m

m m m

m

m x x b x x a b x x

a x g x f

          

  

0

0 0 1

1 0 0

0 0

0

m

m m

m m m

m m m

m

m x x b x x ab ab a b x x

a x g x

f

(7)

School of Mechanical Systems Engineering Engineering Mathematics I

5.2 Theory of the Power Series Method

 거듭제곱급수 해법의 이론

– 실수 해석함수(real analytic function)

• 실수함수 f(x)가 수렴반지름 R>0을 갖고, x – x0의 거듭제곱급수로 나타내어지면, f(x)는 x = x0에서 해석적이라 한다.

– 거듭제곱급수 해의 존재

 

     

       

 

0.

and~ at

analytic

~ are ' ~

'' ~ in ~ and~

~,

~,

~, if true is same the Hence . 0 e convergenc

of radius with of

powers in series power a by d represente be

can thus and at

analytic is solution every then , at analytic are in

and If

solution series power of existence

0 0

0 0

0

x h x x

x r y x q y x p y x h r q p h R

x x x

x

x x x

r y x q y' x p y'' r p, q,

5.3 Legendre’s Equation. Legendre Polynomials

 Legendre의 방정식

Adrien-Marie Legendre

spherical coordinate system

1x2

y''2xy'n

n1

y0

Legendre function 매개변수(parameter), n

 

1 0 ' 1 1

'' 22 2

 

 y

x n y n x y x

analytic at x = 0

   

2

2 1

1 0

1 ''

, '

m

m m m

m m m

m m

x a m m y x ma y

x a y

 

1

 

1

2 0

1

0 1

1 2

2

2    

m m m m

m m m

m

mx x ma x k a x

a m m x n n k

1 2

1

0



  y nn y dx

x d dx or d

(8)

School of Mechanical Systems Engineering Engineering Mathematics I

5.3 Legendre’s Equation. Legendre Polynomials

 Legendre의 방정식

   

   

    

   

   

   

        

  

  

0,1,2,

1 2

1

0 1 2

1 1

2

0 1 2

2 1 2 3 4 2 :

0 1 2

2 3 1 :

0 1 1

2 0 :

0 2

1 1

2

0 2

1 1

0 2

1 1

2

2

2 2

2 4 2

1 1

3 1

0 2

0

0 1

2 0

2

0 1

2 2

2

0 1

1 2

2 2

 

 

s s a

s s n s a n

a n n s s s a s s

a n n a a a s

x

a n n a a s

x

a n n a s

x

x ka x sa x

a s s x a s s

x ka x ma x

a m m x

a m m

x a k x ma x x a m m x

s s

s s

s s s s

s s s

s s s

s s

m m m m

m m m

m m m

m m

m m m m

m m m

m m

순환공식, 점화공식 (recursion formula)

5.3 Legendre’s Equation. Legendre Polynomials

 Legendre의 방정식

  

    

 

  

    

  

  

    

 

         

    

 

 

 

 

 

 

 

 

 

 

 

 

 

5 1

4 0 3

1 2

0 1

0

5 5 4 4 3 3 2 2 1 0 0

1 3 5

1 3

0 2 4

0 2

2

! 5

4 2 1 3

! 4

3 1 2

! 3

2 1

! 2

1

2 3 4 5

4 2 1 3

4 5

4 3

2 3

2 1

1 2 3 4

3 1 2

3 4

3 2 1 2

1

, 2 , 1 , 0 1

2 1

x n a n n n

x n a n n x n

n a x n

n a x n a a

x a x a x a x a x a a x a x y

n a n n n

n a a n

n a a n

n a n n n

n a a n

n a a n

s s a

s s n s a n

m m m

s s

(9)

School of Mechanical Systems Engineering Engineering Mathematics I

5.3 Legendre’s Equation. Legendre Polynomials

 Legendre의 방정식

        

       

     

        

         

 

 

 

 

 

 



         



       

5 3

2

4 2

1

2 1 1 0

5 3

1

4 2

0

! 5

4 2 1 3

! 3

2 1

! 4

3 1 2

! 2 1 1

! 5

4 2 1 3

! 3

2 1

! 4

3 1 2

! 2 1 1

n x n n x n

n x n

x y

n x n n x n

n x n

y

x y a x y a x y

n x n n x n

n x n

a

n x n n x n

n a n x y

5.3 Legendre’s Equation. Legendre Polynomials

 Legendre 다항식, Pn(x)

1 2

  

1

  

0



  P x nn P x dx

x d dx

d

n n

1 2



1

0

  y nn y dx

x d dx

d Legendre’s equation

Legendre polynomials

 

x a y

 

x ay

 

x y0 11 2

음이 아닌 정수, n = s

  

  

s

s a

s s

s n s a n

1 2

1

2  

 

  

0 m

m mx a x y

   

   

 

:n-th order polynomial 3

2 1 0

3 2 1 0

x P n

x P

n x P

n x

P

n x P

n

(10)

School of Mechanical Systems Engineering Engineering Mathematics I

5.3 Legendre’s Equation. Legendre Polynomials

 Legendre 다항식, Pn(x)

      

:positiveinteger

& 1

! 1 2 5 3 1

! 2

! 2

2    0

n a

n n n

an n n

  

     

    

 

   

   

   

    

    

 

       

  

! 2

!

! 2

! 2 1 2

! 2

! 1 2

! 2 2

! 2 1

! 1 2

! 2 2 1 2 2 1 2 2

1

! 2

! 2 1 2 2

1 1

2 2 : 1

2

2 1

1 2 1

2 1

2 2

2 2

2 2

m n m n m

m a n

n n a n

n n n n n

n n n n

n n n n n n a n

n n a n

n s

n s s a

n s n

s a s

s a s

s n s a n

n m m n n

n

n n n

n

s s

s s

 

 

 

 

 

 

 

 

 

 

 

 

     

   

 

integer : 2 or 1 2

! 2

!

! 2

! 2 1 2

0

2

 

 

n M n

m x n m n m

m x n

P

M

m

m n n

m

n Legendre polynomials

5.3 Legendre’s Equation. Legendre Polynomials

 Legendre 다항식, Pn(x)

   

   

   

   

   

x x x x P

x x x

P

x x x P

x x P

x x P

x P

15 70 863 1

3 30 8 35 1

3 2 5 1

1 23 1 1

3 5 5

2 4 4

3 3

2 2

1 0

 

x P0

 

x

P1

 

x

P2 P3

 

x

 

x

P4

 

x P5

(11)

School of Mechanical Systems Engineering Engineering Mathematics I

5.4 Frobenius Method

 Frobenius 해법

– 해석적이지 않은 계수를 가지는 특수한 2계 상미분방정식 의 해법을 제공

– 정리 1. Frobenius method

Ferdinand Georg Frobenius

   

0 '

'

'  2 y

x x y c x

x y b

   

x,cx :analyticat x0 b

     

number complex or real any :

0 0

2 2 1 0 0

r

a x

a x a a x x a x x

y r

m m m

r     

5.4 Frobenius Method

 Frobenius 해법

– 결정방정식(indicial equation)

       

       

       

          

   

       

   

     

1

0

0 1

1 , for

0

1 1

1

1 1

1 ''

1 '

&

0 '

'' 0 '

''

0 0

0 0 0 0

0 0 0 0

2 2 1 0 2

2 1 0

1 0

2 2 1 0 1

0

1 0

2 0

2

1 0

1 0

1

2 2 1 0 0

2 2 1 0

2 2 1 0

2 2

 



c r b r r

a c r b r r a c ra b a r r x

x a x a a x x c x c c

x a r ra x x b x b b x ra r a r r x

x ra r a r r x x a r m r m x y

x a r ra x x a r m x y

x a x a a x x a x x x y

c x c c x c

x b x b b x b

y x c y x xb y x x y

x y c x

x y b

r

r

r r

r

m

r m m

r

m

r m m

r

m m m r

 

(12)

School of Mechanical Systems Engineering Engineering Mathematics I

5.4 Frobenius Method

 Frobenius 해법

– 정리 2. 해의 기저

• 경우 1. 두 근의 차가 정수가 아닌 서로 다른 근들

• 경우 2. 이중근

• 경우 3. 두 근의 차가 정수인 서로 다른 근들

   

   



2 2 1 0 2

2 2 1 0 1

2 1

x A x A A x x y

x a x a a x x y

r r

integer

2 1r  r

2

1 r

r r 

integer

2 1rr

   

       



0

ln 1 2 2

1 2

2 2 1 0 1

x x

A x A x x x y x y

x a x a a x x y

r r

   

     

0 be may

&

0 ln

2 1

2 2 1 0 1

2

2 2 1 0 1

2 1

k r r

x A x A A x x x ky x y

x a x a a x x y

r r



5.4 Frobenius Method

 Frobenius 해법

     

         

   

    

     

   

   

 

  

   

 

 

 

 

 

 

 

 

 

2 2 1 0 2

2 1 0 1

2 0

2 0

0 1

0 0

1 0

0

1 0

0

2 0

1 0

2

root double : 0 0 0

0 1

0 3

1 1

1 ''

, '

0 at analytic 1 : 1,

1 3

1 0 ' / 1 / 1 '' 3 1 0

' 1 1 1 '' 3

0 ' 1 3 '' 1 example

x a x a a x

a x a a x x y

r r

a r ra a r r x

x a x

a r m x

a r m

x a r m r m x

a r m r m

x a r m r m y x a r m y x a x y

x x x x x c x x b

x y x y x x

x y x

x y y x x x y x

y y x y x x

r r

m r m m m

r m m m

r m m

m

r m m m

r m m

m

r m m m

r m m m

m m r

참조

관련 문서

The eigenvalue problem can be used to identify the limit state of the process, in which the state vector x is reproduced under the multiplication by the.. stochastic matrix

The matrix A show the cost per computer (in thousands of dollars) and B the production figures for the year 2005 (in multiples of 1000 units).. Find a matrix C that

Hooke & Jeeves의 직접 탐사법 Nelder & Mead의 Simplex 방법.. Naval Architecture & Ocean

School of Computer Science & Engineering Seoul

School of Mechanical and Aerospace Engineering Seoul National University..

School of Mechanical and Aerospace Engineering Seoul National University..

Department of Naval Architecture and Ocean Engineering, Seoul National University of College

Department of Naval Architecture and Ocean Engineering, Seoul National University of College of