• 검색 결과가 없습니다.

Hot Coating

N/A
N/A
Protected

Academic year: 2022

Share "Hot Coating"

Copied!
6
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

 Li

2

CO

3

 Hot Coating  

   



 

(2000

Fabrication of High Performance Electrode for PEMFCs Using Pore Former Li

2

CO

3

and Hot Coating Method

Chang-Sun Kong and Tae-Hee Lee

Dept. of Chemical Engineering, Yonsei University, 134 Shinchon-Dong, Sudaemoon-Ku, Seoul 120-749, Korea (Received 13 July 2000; accepted 2 November 2000)

 

 %&'(. !)*% Li2CO3 +,- 350oC ./0 )1 23 !"456 789 : !);&< *

= >5, ?@A B9C DE, FG H'IJ, hot coatingK LM3 PTFE- N0OP +, Q

Pt/C- Nafion MRSIT UV6 %&WITX YZUV M[ FG \(. ]/$  ^_ ;

 `a ]bc >5, 20 wt% Pt/C(0.4 mg Pt/cm2)- Nafion®115 d LM 75oC9C e,D f g, 0.7 V h D9C 517 mA/cm2 ?@A< i\IJ, 0.5 V9C 0.52 W/cm2 jk@A< lm7\(.

Abstract−New fabrication method of gas diffusion electrodes for PEM fuel cells was developed to minimize the effect of polarization that causes the decrease of cell performance. The cell voltage drop in the high current density region was signif- icantly decreased by the influence of the bimodal pore structure of gas diffusion layer which is established through pore former, Li2CO3 and heat treatment at 350oC. Pt/C utilization was improved by using hot coating method for catalyst layer that doesn’t include PTFE and glycerin. In H2/O2 single cell system at 75oC and 1 atm, best performance of 517 mA/cm2 at 0.7 V and 0.52 W/cm2 at 0.5 V has been obtained with Nafion®115 membrane and 20 wt% Pt/C(0.4 mg/cm2) loaded electrode assembly.

Key words: PEMFC, Pore Former, Li2CO3,Hot Coating, Bimodal Pore Structure

E-mail: leeth@trans1.yonsei.ac.kr

1.  

     , , (current collector)

, !" #$, %&  '(), *+ ,- . / 0+12  34 5 6789 :9; < =>?@[1]. A,

 !"5 BCD EF;  "GH !I JKL M

IN, ! - /9 / 5 IO PQQ<, (8R"

8   EF IST, ! #U VW8      X '() Y8G; Z [\ ]^ ?@.

 _`a b @c d 5 ef gh ij k@. l m,  n;< !" op ! q - ? / U8 0 +5 IrK s t (u 5 tKj k@. v(cathode) 

 `W;< - ? / back diffusion;  w P<

c(anode) xyQ IO, w 5z; ISD{L  P3 "

|} ~ €Q ‚Dƒ(Fig. 1),  n(5 / 

‚; 87 „ …† /I "B n; ‡ˆ‰ !" |}

Š‹^ DN I4k water flooding Œ A, Ž [;

< /‘ % ’5h“ ”•89 –9I D t@. /

‘ % —I" ˜<  n;< !" opI –™

^ IrK s t |}…Qš ›œ, v x;< - ? / ‚

 ˜k PQ5 oDK tKj k@. ž,  n "B( I

Ÿ   @Ÿ a a s t ¡u :^ DN, Iu ˜<

 "B ¢"š £v; ~¤ "B " (pore functioning)  n

š EF¦ eI; §¨ PTFEQ  ? s "©¦

ª›yQ«  n;< !" op / 0+ &I ¬­

? =5 ? ® tyN[2-3], water flooding; k ¯

u w" ˜< v;< c1\yQ w Pk / back diffusion |} ’5h“{L, / ‚I SIk " |} channel

(2)

 39 1 2001 2

 _` 12 I ¬,D°@[4-6]. ±k, ( Ÿ: I 

DW<,   / (  ²(12I  (  ; ³´

 [\; µk Z 5 hD t@[7-11]. *4L, ¶”·

 "B(5  n;< /‘ ¸¹º» X   ; ³´ aI ¼oA ½¾‰ t „ ¿>I@. ÀmQ, EFª

5 !; Á3a s t ˜´; UÂ8yQ ÃDK t, 

 •E  \hÄyQ«  ! ˜k ō`W(three phase

zone)I ÆA  DKj k@. ÇÈÉ EF9 ÊÈEF eS$

YG3   …²  o" ˜k Z 5 ËÌD

tc; Í[12-15], EF ÎI !; Á3 Ï

tcI Ði‰ tyN, I4k ÊÈEF Ñ IST  

SGu ˜< gh =ja Ò²Q 8D t@. EF¦ ² (h PTFEš Ó+ÔÕ Ö5a …†, I I EF VW ×{

L(blocking), "B w¶ØÙ(clogging)yQ« EF IST ! # U VW8 ÚhÛ ÜÝ ¶º,  "  ¯h“^

?@. ±k, "B5 ^ ¢{L,  ޜ5 Þ߈ …†;

 "8 ¯fI ’5^ D ‹àI t@. ~<, "8  I †sk  u ¬,› Oh; "8 ¯f YGa s t

 (u  h“" ˜k Y8 ²(12 á âI ãs8I@.

ä   ²(12 ¬­ Pk     \ å8yQ  tyN, Œ; k ‹˜ ¯

u YG" ˜3 @c Þ 5 æà;< 5 sÌD°@.

lmQ, water flooding ŒI ,-a b /‘ ¯fyQ 9k %

ç5 ’5 Ò²à =" ˜3 "B ² Ö5 X . 0+ > P< "B(u ¬­hè @B "©¦ 

(;  hé@. ÀmQ, ‘¯f EF IST Úh“

PTFEš Ó+ÔÕ eS êA ²h“" ˜< hot coating2

ª3 EF¦ ²(ë@. Iš ìI ²(? yQ -

w Kíî+u   ‹˜  ï>ëyN,  

(š ²(12 ¬­I  ; ³´ [\ ðñò@.

2.  

2-1.  

yQ  ? 3¦ (Q IrK‰ tyN, "©¦ n( ôG

š EF¦ ( ; ~¤ ¬­Uu ж" ˜< "©

¦ EF¦; µk "B ²š Ó+ÔÕ Ö5 #õ; ~< ö 5 #  ²(ë@(Table 1). ä ;< ¬,? 

 ²(> ¬:u Fig. 2; |} ­Q L÷n°@. Fig. 3

"B ²Q eSk Li2CO3=> øH Œ³… eËyQ<, ùI5 ú 50µmI ”…I s µm9 Êû Ðü+ ¨I@. ýà

618-720oCQ þyL, ÿ p  /; SDN, Ð; S

D „  IS" ˜3 "B ²Q ‡ë@.

2-1-1. @B "©¦ ²(

§¨(Vulcan XC-72, Cabot Co.) Li2CO3=>(E. Merck Darm- stadt) 7 IPA(Isopropyl alcohol) 8Î$  q c p

";< 5 ph slurryu Ý°@. Ib "©¦ n §

¨ ›$ 5 mg/cm25 #D ë@. =7²Q< PTFE(Poly- tetrafluoroethylene, 60 wt%, Aldrich Chemical Co., Inc.)u 30 wt% J

>k $ ÂQ Ö53 paste¡Q Ý @c ,s0+k carbon cloth

Fig. 1. Schematic of mass transports at the interface between cathode and membrane.

Table 1. Characteristics and fabrication conditions of electrodes

Electrode type Fabrication method

Gas diffusion layer Catalyst layer Type A w/1) pore former w/o2) glycerin

Type B w/ pore former w/ glycerin

Type C w/o pore former w/o glycerin

Type D w/o pore former w/ glycerin

1)w/: with, 2)w/o: without

Fig. 2. Flow diagram for the preparation of electrode using pore former loading and heat treatment for gas diffusion layer and hot coat- ing method for catalyst layer.

(3)

²{" ˜ 70oC, ËB Ÿ;< 1h O  )(hé@. 1 M pS;   30 3 Li2CO3=> ²{, 3-4

 ’Žs;  3 p  K @c 80oC, ËB Ÿ;< 1 hO )(hé@. 350oC, B"˜";< .0+3 PTFE S

Ÿ; Û? p²  ²{  VW =hé@.

2-1-2. EF¦ ²(

2-1-2-1. Ó+ÔÕ Ö52; k EF¦ ²(

Pt/C(20 wt% on Vulcan XC-72R carbon, ElectroChem, Inc. 0.4 mg Pt/

cm2)u Nafion® solution(5 wt%, Aldrich Chemical Co., Inc.) 3 : 1()(

$ ") $ Q 7, SF9 IPAš Ó+ÔÕ(Pt/C : Ó+Ô Õ=1 : 4 $ )  q c p";< ph slurryu Ý

 @c  "©¦ ˜; ^ Ãë@.  , B"

Ÿ;< 10h O )(h“, @h 60oC, ËB Ÿ;< 1h O ) (hè @c, 350oC, sš  7" ˜"(1 : 5 #$

);< – .0+hé@.

2-1-2-2. Hot Coating2; k EF¦ ²(

Pt/C EFu Nafion® solution 3 : 1 $ Q 7, IPAu 8Î

$  q c p";< ph à  5Ë slurryQ Ý @c, SFu É^ ’,h“" ˜< 45oC J>Q 5.D hot plate; >hè "©¦ ˜; silicon bladeu IS3 $ 6

3 brushingë@.  80oC, ËB Ÿ;< 1h O )(hè q, 350oC, sš  7" ˜"(1 : 5 #$ );< –

.0+ë@.

2-2.

 w Î$ õ^5 1,100I ޜ5 127µm9 DuPont e Nafion®115u eSë@. pGs(H2O2) sS p (H2SO4) sS Ÿ;<  1h 9 q ’ŽsQ 2, 3 Ô

ë@. $ Nafion® solution  VW; brushing 80oC B

"˜";< 1hO )(hè @c, Nafion®115 w vx; OJ

^ ²(? 1 cm2W8  Þ 120oC, 3 Metric ton(2,000 psi) š %&yQ 3 hot-pressing3 Kíî+u Ý°@.

2-3.    

Mercury pore sizer(Autopore III, Micromeritics Co.)u IS3 

"©¦ "BÃu ï>ë@. *+, SEM(H-6010, Hitachi Co.) IS3  "©¦ VW(u æë@.

Cyclic voltammetry(CV) PAR M270  K;  monitoring D PAR 273A potentiostatu eS3 ï>D°yN, s !" ¢

W8 IS3  ! #UVW8 ÊÈEF IST ` pë@.

2-4.   

MEA  ï>" ˜3 ‹˜ ï> h#$  

 DC electronic load(6060B, Hewlett Packard)u IS3 Ž µ 

%  %­ &°@. w )(u 1" ˜< !"5

‹˜; BCD" ; € 5z"u P< 5zhé@. 5z"

 ‹˜ @ anodeï cathodeï  10oCš 5oC Ý' þ^ 'ë@. ‹˜ 75oC J> ;< 'ëy N € 5%  „ò@.

3. 

3-1.    

3-1-1. ( (

Fig. 4 "B ² Ö5š .0+ B>; k "©¦ "

BÃ ôGu L÷n "B (=I@. Fig. 4(a);< Ð s t

 ®š ìI, "B ²š .0+ B>; k "B > {

´ „ ") "©¦ "B ”…I 0.1µm I9 *˜;

]Q ÃDK t@. *4L, 350oC;< .0+k "©¦ …†,

”… 0.03-0.06µm *˜ ³h"B(micropores) ÂI ¢^ ’5

ëyN, Li2CO3u Ö5 p0+k "©¦ .0+ >

 P3  ? ³h"B [ ›œ ú 5-20µm *˜ {h"B (macropores) [ "B ÂI ’5ë@. ž, Li2CO3u Ö5k "

©¦ p0+3 Li2CO3u ²{hÄyQ« {h"BI - D°yN, .0+ B> P3 =7²Q eSk PTFE S Ÿ; à Fig. 3. Microscopic image of pore former, Li2CO3.

Fig. 4. Specific (A) and cumulative (B) pore volume distribution of the gas diffusion layer with or without pore former loading and heat treatment: ( ,) without heat treatment and pore former load- ing, ( , ) heat treated without pore former loading, ( , ) heat treated with pore former loading.

(4)

 39 1 2001 2

›DK t+ p²  ’,h“ > P3 ³h"B [

ÂI ’5^ D°c Ð s t@. "B ² 0+5 "B

Ã; ³´ [\ "B ”…; ~¤ "B  ,8Ãu L÷

n Fig. 4(b);< o9a s tƒ, {h"B [;< ,8%­

"-"5 "B ² Ö5;  µ8yQ C.^ ’5

 tc / s t@. ") ²(12yQ ²(? "©¦ "

BÚ 0 / b, ä ;< eSk 2‹` "B > ž,

"B ² 0+š .0+ B> P3 ²(? "©¦ 

"B 8% I ’5 „yL, "©¦ n; IŸ "B

( Ã(bimodal pore size distribution)5  1yQ« @Ÿ( /

 IO…Q5 - D°@ à; ]åa ã:5 t@.

Fig. 5 "B ² Li2CO3 Ö5š .0+ B> P3 "©

¦ n; IŸ "B(u  h“ > 28yQ L÷ â I@. "B ²Q eS? Li2CO3 ¢"š £v; ~ {h"B

¡5 =>D, 350oC;< .0+ > P3 ³h"B [I - D > 3] t@.

Fig. 6 "B ²u Ö5k  "©¦ p0+"  [(a), (b)] q[(c), (d)], *+ 350oC ;< .0+k q[(e), (f)]

"©¦ VW 2,000š 20,000Q oµk SEM eËI@. ä 

;< eSk Li2CO3 => 34 ”…I s-s5 µm *˜6 i a b, "B ²u Ö5k  "©¦ p0+3 "©

¦ n; ) t+ Li2CO35 p; S, ²{1yQ« *  +5 7 ByQ 8^ DK (c)š (e); I ®š ì 5-20µm ” … "BI ZI - ? â Ð s t@. (b)š (d)u 0 / b,

"B ² ²{u ˜ sÌk p0+ > P< "©

¦ VW ³Ô( ôG5 { L÷L „ò@. *4L, .0+ I q; {h"B ¢"š Ã { ôG5 9 W;, (f);<0:

0.1µm I "BI ZI ’5›yQ« ³h"B(5 \? â

o9a s t°@.

3-1-2. "GH8 (

Fig. 7 EF¦ ²(h Ó+ÔÕ Ö5#õ; ~¤  EF I

ST ! #U VW8 0 " ˜3  Ó+ÔÕ Ö52

 hot coating2yQ ²(? (Type Aš B); µ3 ï>k CV (Cyclic Voltammetry) =I@. s !" ;" peak W8

0 W hot coating2;  ²(?  peakW8I < = â

 / s t@. s !" peak W8 IS3[14] ! #U VW 8 EF IST `pk =(Table 2), Ó+ÔÕ Ö5 „ 

 EF IST(57.6%)I Ó+ÔÕ Ö5k (28.1%)@ 2 I

 \D°yN #U !W8 ¢^ ’5ëc o9a s t°

Fig. 5. Schematic diagram of the bimodal pore forming mechanism for gas diffusion layer.

Fig. 6. Scanning electron micrographs of the surface of the gas diffu- sion layer at each preparation steps. (a), (b): before acid treat- ment; (c), (d): after acid treatment; (e), (f): after heat treatment.

Fig. 7. Cyclic voltammograms of electrode fabricated using hot coating method and conventional glycerin method(Type A vs. B).

Table 2. Effective surface area and catalyst utilization of electrodes pre- pared by different methods for catalyst layer from CV results1) Preparation method H2 adsorption peak

area(mC)

Effective surface area(m2/g)

Catalyst utilization(%)

Hot coating method 67.72 62 57.6

Conventional method 32.99 39.3 28.1

1)Assumptions[14], 1. Pt particle mean diameter: 2 nm, 2. density of Pt: 21.4 g/cm2, 3. surface charge of Pt: 210µC/cm2

(5)

@. EF¦ ²(h PTFE ± Ó+ÔÕ =7²Q eS „ …

†, )(>;<  VWI > Ò²àI tyN ±k, 

5 ,- ]: –9I ?@. *4L, PTFE ± Ó+ÔÕ eS a …†, "  I Ú, $yQ Ö5@ b; " IO PQ5 D "B w^ @ ÜÝ ¶º, EF VW ×K !W8

 Úh“^ ?@. ä ;< hot coating2 eS3 EF slurry

Ÿ; Û? SF  "©¦ VW; ®} Oh; ’,hÄ yQ« >A ŒI JKL „òyN,  ! #U VW8

EF ISTI ’5D°c Ð s t°@.

3-2.    !   "

3-2-1. "©¦ ²(12; ~¤ [\

Fig. 8 "B ² Ö5; k "©¦ "B( ôG5 ‹˜

 %­; ³´ [\ ж" ˜3, EF¦ hot coating2; 3 OJ^ ²( "©¦; "B ²u Ö 5k  Ö5 „ (Type Aš C)yQ L,K  ‹˜

u    ï>k =I@. "©¦; "B ²u Ö 5k  ‹˜ %­;< Ž [;< I ¢

^ \D°c Ð s t@. s/p ‹˜ h#$ …†, /

‘ % [;< C.k %ç5 ,- â water flooding

; 3  n;< !" ‘I ²k1yQ« EF !˜

´;< !" B5 Ú âI ]–9IN, I4k Œ

Ž [yQ >s C^ ?@. *4L, "B ² 0+

? "©¦ 5Ë  %­;< Ž [;<

C.k %ç ŒI L÷L „òyN, I water floodingI -

" „cyQ« /‘ %I Úë" bÒ9 âyQ D‹?

@. ~<, "B ²; 3 - ? 5-20µm *˜ {h"BI

 / ‚ & \hè âyQ e ?@. Wilson [16] 3 4”… 30µm "B(u 5Ë carbon paperu eSE b water

flooding ŒI C‰< I ¢^ Ú1 I =u 

W<,  !;  - ? / U8yQ ²{" ˜< ³ h"B (u 5Ë op¦ eS âI 87@ ]Mk ® t

@. kF, Fischer [9] "B ² 0+k thin film catalyst layeru

²(3 EF¦ n; {h"B - hÄyQ« EF IST ’

5h“ 12 ¬,, B"u pG²Q eSk    ¢

^ \hÛ s tc ë@. *4L, pu pG²Q eSk …†;

  ; G ôG5 9°ƒ, I4k = "B ²Q -

? EF¦ {h"BI  water flooding; [\ ]"@ B

"Ÿ   clogging; k ¯u —Iƒ U5 tc

³k@. W;, sš pu !"Q eSk Fig. 8 ¿ó

= "©¦; - ? IŸ "B(5  n water man-

agement; [\ ] tc 3] t@. HyQ s/B" h#

$; µk ¿ó=5 I51yQ«  n;< UÂ8 /

‘ ²K" ˜k "B( _`; ã:k < Z >u & s

0.47 ohm/cm2I°yN, "B ²u Ö5 „  OJk 

;< 0.98 ohm/cm2 % çu L÷n°@.

3-2-2. EF¦ ²(12; ~¤ [\

ä ;< ") EF¦ ²(>;< eSD°+ Ó+ÔÕ

PTFEu Ö5 „, Pt/C EFš Nafion S IPA SF Ÿ;<  7k slurryu hot plate; >DK t "©¦ ˜; $ 6 8yQ ® )(h“ hot coating2 eSëyN, EF¦; Ó +ÔÕI Ö5?  ‹˜  0ë@. Fig. 9(Type Aš

B)š Fig. 10(Type Cš D) Ó+ÔÕ Ö52 hot coating2 IS

3 EF¦ ²(k  %­ X & ôGu 0k =

u L÷ âI@. "©¦; "B ²u Ö5k …†š Ö5

„ …† £Þ hot coating2;  EF¦ ²(k  ‹˜

 I Ó+ÔÕ Ö5k @ < †sëyN, A ¯

Ž [;< ™ G %; k %ç5 Œ¯^ Ú›

o9a s t°@. Iš ì = CV ï>=š J´ â yQ<, Ó+ÔÕ eS ²›yQ« EF ISTI ’5ë"

bÒ;  EF  #U !W8; ¢^ ) ™ G 

%I Úk âyQ -?@.

4.  

‹˜ 'h ¯ –9I D Œ [\ YG

    S   ²(12 ¬,, Fig. 8. Influence of the pore former loading in the gas diffusion layer on

the performance curves for H2/O2, PEM single cells at 75oC, 1 atm with 1 cm2 active electrode area and 20 wt% Pt/C, 0.4 mg Pt/cm2 in the catalyst layer fabricated by hot coating method(Type A vs. C).

Fig. 9. Comparison of polarization curves of electrodes fabricated by different method for catalyst layer with pore former loading;

(,  ): hot coating method, (, ): conventional glycerin method; H2/O2, PEM single cells at 75oC, 1 atm with 1 cm2 active electrode area and 20 wt% Pt/C, 0.4 mg Pt/cm2 in the cat- alyst layer(Type A vs. B).

(6)

 39 1 2001 2

"©¦ "B(š EF¦ ( I     

; ³´ [\ ж" ˜3 ( X "GH8 ( s/p

 ‹˜ ¿ó sÌëyN, @c ì =J &°@.

(1) "B ² Li2CO3 ª 350oC  .0+ 2‹` B>

P3 IŸ "B(u 5Ë "©¦  n;  hé@.

"©¦ IŸ "B( water flooding; k Ž [

;< %çu ¢^ ÚhéyN I {h"BI / ‚PQ

a ›yQ«  / 0+ &I \D°" bÒ9 âyQ e ?@.

(2)  #U !W8 EF IST \h“" ˜< EF¦

(  ²(12 ¬­ë@. Pt/C EF; Nafion S IPAÝ

73 hot coating2yQ EF¦ ²(k  EF IST # U !W8I Ó+ÔÕ Ö5k ;  ’5D°yN, * =

ŸR¯Ž [;<   I ¢^ \D°@.

(3) ä ;< ²(?  yQ  k s/p ‹˜

h#$ Yµ  20 wt% Pt/C(0.4 mg Pt/cm2)š Nafion®115 w

eS 75oC, õ5% ();< 'ë b, 0.7 V K %;<

517 mA/cm2 Žu L÷n°yN, 0.5 V;< Yµ& 0.52 W/cm2 &°@.



1. Ward, C. A. and Garcia, J. A.: J. Power Sources, 66, 83(1997).

2. Passalacqua, E., Lufrano, F., Squadrito, G., Patti, A. and Giorgi, L.:

Electrochimica Acta, 43(24), 3665(1998).

3. Lufrano, F., Passalacqua, E., Squadrito, G., Patti, A. and Giorgi, L.:

J. Applied Electrochemistry, 29, 445(1999).

4. Voss, H. H., Wilkinson, D. P., Pickup, P. G., Johnson, M. C. and Basura, V.: Electrochimica Acta, 40(3), 321(1995).

5. Nguyen, T. V.: J. Electrochem. Soc., 143(5), L103(1996).

6. Wood III, D. L., Yi, J. S. and Nguyen, T. V.: Electrochimica Acta, 43(24), 3795(1998).

7. Giorgi, L., Antolini, E., Pozio, A. and Passalacqua, E.: Electrochim- ica Acta, 43(24), 3675(1998).

8. Shin, C. S., Lee, K. D., Lee, S. J. and Lee, T. H.: HWAHAK KONG- HAK, 36, 387(1998).

9. Fischer, A., Jindra, J. and Wendt, H.: J. Applied Electrochemistry, 28, 277(1998).

10. Paganin, V. A., Ticianelli, E. A. and Gonzalez, E. R.: J. Applied Electro- chemistry, 26, 297(1996).

11. Escribano, S., Aldebert, P. and Pineri, M.: Electrochimica Acta, 43 (14), 2195(1998).

12. Wilson, M. S. and Gottesfeld, S.: J. Electrochem. Soc., 139, L28(1992).

13. Chun, Y. G., Kim, C. S., Peck, D. H. and Shin, D. R.: J. Power Sources, 71, 174(1998).

14. Cheng, X., Yi, B., Han, M., Zhang, J., Qiao, Y. and Yu, J.: J. Power Sources, 79, 75(1999).

15. Kumar, G. S., Raja, M. and Parthasarathy, S.: Electrochimica Acta, 40(3), 285(1995).

16. Wilson, M. S., Valerio, J. A. and Gottesfeld, S.: Electrochimica. Acta, 40(3), 355(1995).

Fig. 10. Comparison of polarization curves of electrodes fabricated by different method for catalyst layer without pore former load- ing; (, ): hot coating method, (, ): conventional glycerin method; H2/O2, PEM single cells at 75oC, 1 atm with 1 cm2 active electrode area and 20 wt% Pt/C, 0.4 mg Pt/cm2 in the catalyst layer(Type C vs. D).

참조

관련 문서

The index is calculated with the latest 5-year auction data of 400 selected Classic, Modern, and Contemporary Chinese painting artists from major auction houses..

There are four major drivers to the cosmetic appearance of your part: the part’s geometry, the choice of material, the design of the mold (or tool), and processing

• 이명의 치료에 대한 매커니즘과 디지털 음향 기술에 대한 상업적으로의 급속한 발전으로 인해 치료 옵션은 증가했 지만, 선택 가이드 라인은 거의 없음.. •

노인에서의 수면 무호흡으로 인한 장기적 합병증이 중년 환자와 비교하여 차이가 있는지 여부는, 노인의 수면 무호 흡을 하나의 특정질환으로 간주할 것인지 아니면 노인의

혼합제를 사용하여도 천식 조 절이 되지 않는 경우 경구 약제인 류코트리엔 조절제 그리 고 (또는) 테오필린을 추가하여 사용한다. 류코트리엔은 효 과 면에서는

12) Maestu I, Gómez-Aldaraví L, Torregrosa MD, Camps C, Llorca C, Bosch C, Gómez J, Giner V, Oltra A, Albert A. Gemcitabine and low dose carboplatin in the treatment of

Levi’s ® jeans were work pants.. Male workers wore them

Current density-Voltage characteristics and performance parameters of a representative DSSC fabricated by using the counter electrode having catalytic layer of platinum