• 검색 결과가 없습니다.

:0á#øn”>Ì#Ó ¥#«I##

N/A
N/A
Protected

Academic year: 2022

Share ":0á#øn”>Ì#Ó ¥#«I##"

Copied!
6
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

Demo

1. #g«#

JV⇠J^(thermoplastic polyurethane: TPU)– Óއ

R þ‡Ê n®B æ/~ e ZærÞ® ÖÞ, WÛ òb e ºB G® rÆ& Êÿnê V²WÎ JV⇠‡ g® ®î Ê:. TPUê FÖ(soft segment)– Ö(hard segment)V ¦V² Fr ÒÛ® segmented block copolymer²r FÖê J‚² Â

‡n6 Öê jÊâ2šzÊ– Fûr² ‡r:. TPU

® FÖê VW’² O‡Ê 6 Öê O‡Ê èšr F

֖ Öê ÿ‡Ê 6 Únê +š Jʳ ":

Æ, Vr FÖV Fãš ÊB:.1 ÊB² TPU&r Ú

r k2² Úr Ö® ¾Ê 25% ÊÒ ¢ kªÒ ²

’W V¦þRÒ JB jâ² JV⇠‡® ‡Ê rZ

r:.2 †Òr TPU® ’W ‡– F֖ Ö® Ú e

Ö® kª& †Ò âr:6 R n Þ:.

TPU® F֖ Ö® Ú& N®ê êÎ& V² FÂê

$– FÂæ:& ®®B J6n’Æ Ž"& î îî Þ:.3,4 TPU® rÆ& ÿ®ê J‚® ÚæÊ óV¶n³ F֖

Ö® Úê î Òîê ûš JÎ:.5 N6 Êâ2š

zÊ®  VÃk® ûÇ jÊâ2šzÊÒ ÿ² 

TPU® Ú î Òî6 ’‡® rv Vû² ْ² J6n 6 Þ:.6 B² ·k ‡š JÊê Öê ÚV ¶Ê6 V K‡® rvÊ Vû®:.7,8 NBî TPU® Ö® kª Æ/&

V² FÂê Ž"& J6r ÙÊ 2Ž ْ² î:.9 ÒnW’

² 6Úæ ’® kª Æ/– :¢R o– Avrami 3’² î

 n Þ:.10 ) exp(

1 )

(t = − −Ktn

α (1) 3 (1)&r αê kª, tê 2Zš îÆ, Kê nÊ6, n

:0á#øn”>Ì#Ó ¥#«I##

ønz###áY»#˜MÌ#HÞ#

‹|G}¿ÐÃ}P1#W1#Udphvdq}¿K?%# DÁ(c# 5<(c# býZ^c5cÀ#

+5337T# <# 46¼# Q:/#5338T# 6# <¼# T,#

#

Hiihfwv#ri#Sro|ro#W|shv#dqg#Kdug#Vhjphqw#Frqwhqwv#rq#wkh#

Fu|vwdool}dwlrq#ri#Wkhuprsodvwlf#Sro|xuhwkdqhv#

Vxqj#Jhxq#Nlp/#Plqj#Ml#Ol/#P1#W1#Udphvdq/#dqg#Gdl#Vrr#Ohh%# Division of Environmental and Chemical Engineering,

Chonbuk National University, Jeonju 561-756, Korea (Received September 13, 2004;accepted March 9, 2005)

5¨Ü JV⇠J^(thermoplastic polyurethane: TPU)® rÆ& ÿ² J‚ Û®– Ö ¾& †Î TPU® kª Æ/š 6†®V:. TPU® rÆ& ÿ² J‚– ÚæÊ 2000Î poly(tetramethylene ether glycol) (PTMEG), poly(propylene glycol)(PPG) diol, polycaprolactone(PCL) diol, poly(butylene adipate)(PBA) diolš ÿ®V’Æ,

Ö ¾– 35»44 wt%V:. TPU® Ö W kªê Ö ¾Ê $šn³ 6~&r V†n:. TPU

® G~ kª ãê Ö ¾Ê $šn³ ¶Ê6, TPU rÆ& ÿ² J‚ Û®²ê PTMEG>PPG>PCL≥

PBA ûÊ îî, F֖ Ö® ÿ‡Ê šn³ ÿ‹2&r Ö® nâ¿Ê ÿÊ®6 kª ãV ¶ÊÆ, W kªV 6~&r îîê ْ² Ês®V:.G

Abstract:Effects of the polyol type and the hard segment content of thermoplastic polyurethane (TPU) on the crystallization of hard segments in TPUs were studied employing differential scanning calorimetry. Diols used for the preparation of TPUs were poly(tetramethylene ether glycol) (PTMEG), poly(propylene glycol) (PPG), poly- caprolactone (PCL), poly(butylene adipate) (PBA) the molecular weights of which were 2000 and the hard seg- ments contents of TPUs were 35»44 wt%. We found that crystallization of hard segments in TPUs were observed at higher temperatures and became faster with increasing hard segment contents of TPUs. The crystallization rate of TPU was also affected by the types of polyols used for the preparation of TPUs. It is postulated that lower misci- bility of soft segments and hard segments results in higher crystallization rate and increase of cooling crystallization temperatures due to better hydrogen bonding between hard segments in melts.

Keywords: thermoplastic polyurethane, crystallization rate, soft segment, hard segment, miscibility.

To whom correspondence should be addressed.

G

E-mail: daisoolee@chonbuk.ac.kr

(2)

– Avrami index² k® kR VÞê ْ² ¢zŽ Þ:.11 2Z& †Î kª Æ/ Æʆ²Ö† K e nš ®† Z®B 3 (1)– :¢R oÊ kv n Þ:.

log [-ln(1-α)]logKnlog t (2)

†Òr 3 (2)® âÚ log t& V®B 2®Ê ††– yë

^’²Ö† nR KÒ WW ¶ n Þ:.

N FÂ&rê TPU rÆ2 ÿ®ê J‚® Û® e Ö ¾

 ~Ê& †Ò Ö® kª Æ/Ê â BÒê VÒ 6

†®6æ ®V:. ÊB² FÂRê TPU® ƇR ‡k VK Æ Ê® V VÒ Êʾ’²¾ W^² ‡k Æʚ zk®ê Æ

Ž6V v n ޚ ÙÊÒê f& ž®V:.

2. /

TPU rÆÒ Z®B J‚²ê Aldrich® ÚæÊ 2000Î poly(tetramethylene ether glycol)(PTMEG), polycarprolactone(PCL) diol, poly(propylene glycol)(PPG) diol, poly(butylene adipate)(PBA) diol Gš

ÿ®V’Æ, diisocyanate²ê Dow Chemical® diphenylene methane- 4,4'-diisocyanate(MDI)Ò ÿ®6 Fûr²ê Aldrich® 2Ó _ 1,4-butane diol(BD)š ÿ®V:. J‚– K ÊÆ†Ò Êÿ

®B 90 ×&r 3Ò Ê, 2 mmHg ÆÊ&r nښ rƲ  ÿ

®V’Æ, ÿ:² ÿ² N,N '-dimethylformamide(DMF)– F ûr BDê 4 Å ÚæÒ Êÿ®B 3Ò /ž ÊÆ  ÿ®V:.

TPU® rÆ îš Table 1& î:. Table 1&r Ö ¾

– MDI– BD® ŠâÚ~² î:. †W ¦n†, â†

®®û®– ~ e ~ Æ^†Ò lî 4Âk n§† ž&

ÊÆr J‚R DMFÒ ‚Û®6 ¦n®B ÿÊ2þ  70 ×¢

 ~Ò ‚6 MDIÒ ‚Û®V:. J‚R MDI Ê® rJ n§’² β _ÿ² ~ š ®† Z®B MDIÒ 3GÚ

®B Ú¶ ‚Û¾’²¾ n§ ~V 80 × Ê®V n³ Æ^®

V:. ^kr ç® MDIÒ þ¦ ‚Û²  3‡r ^š6Úæ® NCO

¾Ê, ASTM D2572-80 ë& †Ò n-dibutyl amine’² CWk®B,

6W’² J‚® ç&>Ê Êâ2šzʲ Fnš ¢ h

& B®Ê Fûr² BDÒ þV®V:. FûrÒ þV² :¢ Ó 22Z Ê Fourier transform infra red spectrometer(FTIR,

JASCO)Ò Êÿ®B NCO / ‡ ’ÂV 2270 cm-1&r ª Ê V†n  ¢š «Î²  20ÚZ êVW’² n§2þ :

¢ n§š Û"®V:. g¿– ²Û 3‡’® 6kÚÊ 30 wt%Î ÿ

·2² ß®V:. ÿ·’²  2"® ÊÆÒ Z®B :

® 2& æú[² :¢ Jã ÊƆ– KÊÆ†Ò Êÿ®B ÿ:Ò rƲ 2š :. rƲ TPU® Úæš wk®† Z

®B ²V JúFb 2"² Ö² z‚R²öNî’(gel per- meation chromatography:GPC, Waters Millipore 246)Ò ÿ®V:. Ê Ær TPU 2"Ò tetrahydrofuran& ÏB ãÒ 0.1 wt% nV®

Âkÿ·š rƲ :¢ BR®B GPC& RÛ®6, ÿò 2Z&

†Î Ê^¶ ªÒ wk®B n6 Úæ(number average mole- cular weight; Mn)R g6 Úæ(weight average molecular weight;

Mw)š wk®V:. W kª& †Î šG~ kª Æ/š Æ

®† Z®Bê ¢>NÚ ® 2" ÿ†& 10 mg kÒ V_

² :¢ 2~RJ†(differential scanning calorimeter: DSC, TA 2000) &r 20 ×/min’² 230 ×¢ ~2r 4ÚZ v®B TPU Ö k:® JÊ{š rÆ ² , DSC& ûr W û

®– J>† Z²Nþš Êÿ®B W ãÒ WW 15, 10, 5.0, 2.5 ×/

min ² B®Æ W®B W kª& †Î rJ ‡š Æ®

V:. G~ kª :.– ¢>NÚ ® 2"ÿ†& V_r 10 mg k® TPUÒ ÿ‹f Ê ~Î 230 ײ vnê  r ç² VJ f® ⠆ ÚZ† ®&r Ó 4ÚZ v2r TPU

Ö kWC® JÊ{š rƲ , N k² kª ~

(Tc)² vr DSC ž’² 6ãÞ „þ DSC cell ~V Tc& B

®â nÊrֆ 2Z& †Î rJ ‡š Æ®V:. kª& † Î rJÊ ª Ê V†n  š ¢, ·ªâÒ Êÿ®B 2"

Ò -100 ×¢ _²  10 ×/min® Òk² ~ ã² 230 ×

¢ ~®B TPU® JW ZÊ ‡š Æ®V:. DSC :.–

3. ûG Z ë«

Figure 1&ê PTMEG e PCL diolš Êÿ®B TPUÒ rÆ®ê g¿Rk&r  ^š6Úæ:R FûrÒ ‚Û®B ²Û

Table 1. Sample Codes and Recipes for TPUs Prepared Feed molar ratio

Sample

code Polyol

Polyol MDI BD

Hard segment content(wt%)

PT44 1.0 5.0 4.0 44

PT88 1.0 4.0 3.0 38

PT35

PTMEG

1.0 3.5 2.5 35

PG44 1.0 5.0 4.0 44

PG38 1.0 4.0 3.0 38

PG35

PPG

1.0 3.5 2.5 35

PC44 1.0 5.0 4.0 44

PC38 1.0 4.0 3.0 38

PC35

PCL

1.0 3.5 2.5 35

PA44 1.0 5.0 4.0 44

PA38 1.0 4.0 3.0 38

PA35

PBA

1.0 3.5 2.5 35

Figure 1. FTIR spectra of prepolymers and polyurethanes. (a) polyurethane PT44, (b) prepolymer of PT44, (c) polyurethane PC44, and (d) prepolymer of PC44.

G

Transmittance(%)

7333# 6333# 5333# 4333#

Wavenumber(cm-1)

(3)

®  2276 cm-1ÖR&r V†nê NCO†® / ‡ ’ V Fûr ‚Ûš ² n§ Ê&ê Ò ÙÊ «În:.

N6 TPU® NH†– CO†® ‡ ’ÂV WW 3496 e 1682 cm-1&r V†n:. †Òr N FÂ&r rƲ TPU® nK >Z ÂÆÒ Figure 2– oÊ î n Þ:. Table 2&ê GPC² «Î

² TPU® Úæš î:. TPU® Úæ– rÆ& ÿ² J

‚ Û®& †Ò ~ÊÒ JV:. Table 1& î j– oÊ, /Ò

² Ö ¾® TPUÒ rÆ®ê  ç¶W’² /Ò² îR o– ÆÊ&r rÆ®V¢& Þ®6 ÚæÊ ~ÊÒ JÊê ٖ J‚® Û®& †Î r e N ʒ® ~Ê& †Î®

ê ْ² êwr:. Figure 3& PT44Ò 230 ×ֆ W2úÊr 

†Ò Ö® kª& †Î®ê rJ ’ÂV – ~&r V

†n:. šG~ W kª :.&r W ãV ¶Òn³  kª rJ’ÂV V~&r V†nê ٖ thermal lag& †Î®ê ْ² f>r:. ²R Han G® J6& ®®Ê TPUê ÿ‹ 2

&r F֖ ÖV Úr 2Ò JÎ:.12†Òr Figure 3&r V†nê kª rJ–, F֖ ÖV Úr 2

&r †ËRk(nucleation)R «& ®®B 2¯WÎ †JÊ Òî ê RkÊ nn®ê ÙÊ:. ÒnW’² 6Úæ ’® kª&ê

†Ë RkR V~Þê JC¯W êÎR «& ®² Úæ †JR V~Þê /C¯W êÎÊ /2& Wûš N²:. †Òr kªê

k® ÿ‹~(Tm)– šk WC® vZÊ~(Tg) Ê&r ÒîÆ, Figure 4& î j– oÊ gZ ~ ÆÊÎ Tmax&r

kª ãê ²Vhš JÎ:. Figure 3&r kªV V~&r V

†vn³ kª& †Î®ê rJãV ¶Î ٖ, Figure 4&r  kª ãV ²Vhš JÊê TmaxJ: è– ~ ÆÊ&r kª V Òî† ¢ŽÎ ْ² R n Þ:. ÊB² û– N FÂ&r TPU rÆ& ÿ² J‚® Û® e Ö ¾& VÊ / Ò®â V†n:. Table 3&ê TPU® Û®² ÊB² W k ª ‡š êÓ®B î:. Table 3&r WãV ¶Òn³

kªV nr®ê rJÊ óV®V’Æ, Ö ¾Ê $šn

³ kª rJÊ 6~&r V†n:. McKiernan® J6& ®®Ê J^– ÿ‹2&r ^†:Ê 75% k® nâ 

¿š ² 2Ê6 Ê:Ê kª& Wûš Ââ N²:. TPU® 

Ö ¾Ê $šn³ kªV 6~&r V†nê ‡– Ö

¾Ê èšn³ ÿ‹2&r ÚæZ nâ ¿Ê ÿÊ®6  kª& v®â çÿ®† ¢ŽÎ ْ² f>r:. B² TPU®

rÆ& ÿ² J‚® Û®²ê TPU® Ö kª rJ ’ ÂV PTMEG>PPG>PCL_! r’² 6~&r V†n:. ÊB²

~Êê TPU® rÆ& ÿ² J‚® O‡Ê šn³ kªV

/ Figure 2. Structures of thermoplastic polyurethanes prepared from MDI, BD, and various type of polyols. (a) PTMEG, (b) PPG, (c) PCL, and (d) PBA.

G

Table 2. Mn and Mw of TPUs Determined by GPC

Sample code Mw(g/mol) Mn(g/mol) Polydispersity PT44

PT38 PT35

25100 24500 25900

4300 3700 3500

5.8 6.6 7.4 PG44

PG38 PG35

55600 52600 47300

10300 10400 7300

5.4 5.0 6.4 PC44

PC38 PC35

50100 51000 55100

10000 11000 10600

4.9 4.7 5.2 PA44

PA38 PA35

120300 86600 88900

22800 12500 19000

5.3 6.9 4.7

Crystallization rate

9j# 9p#

Temperature

Figure 4. Temperature dependancy of crystallization rate of polymers.

G

Heat flow >> exo.

473# 483# 493# 4:3# 4;3# 4<3# Temperature(×)

Figure 3. DSC thermograms of PT44 obtained by cooling from 230 × at different cooling rates (×/min) of (a) 15, (b) 10, (c) 5, and (d) 2.5.

G

9pd{

#

(4)

6~&r î Òîê ْ² R n ޒÆ, F֖ O‡Ê Æ 

Ö® ÿ‡ ~Ê& †Î®ê ْ² f>r:. Figure 2& î

 j– oÊ TPU® rÆ& ÿ² J‚ VÆ &¢Ê ÛÎ PTMEG– PPG®  nK>Z ÂÆ PTMEG® O‡Ê 6,  VW’² O‡Ê Æ &ú¢Ê J‚Î PBA– PCL– O‡Ê v

®† ¢ŽÊ:.

Figure 3& î j– o– kª ‡š Ž6®B G~ k ª :.š Z² ~Ò zk®6, DSCÒ Êÿ®B – PC44® ther- mogramš Figure 5& î:. :. ~ êZ&r kª ~

V šn³ kªV ¾ Òîê +Ê V†n:. Figure 5&

î :. ~ êZê kª ãV ²VÒ JÊê TmaxJ: è

– ~ʆ ¢Ž& kª ~V šn³ kªV ¶Êâ V

†r ْ² R n Þ:. Figure 6&ê G~ kªV Ê> :¢

r -70 × ÖR&r TPU® FÖ vZÊ& †Î®ê ‡Ê V

†n6 200 × ÖR&r Ö k® ÿ‹& †Î®ê ·JÊ mul- tiplet² V†n:. Ö® k ÿ‹ ·J’ÂV multiplet’² V†nê ٖ TPU® Û®& VÊ K WÊ:. Magil& ®

®Ê ʲ²Zb 6Š®  kª ~– 2Z& †Òr k ÿ‹ ·J’ÂV doublet’² îî† ®ê Æ, ÊB² Z–  k® †V r² :Î Ù:Ê ¾. Ê®Æî, kªV Ò îê ÙÊ †Î²:.17 ²R Higgins G& ®®Ê J^® 

Ö ¾Ê $š ¢ k ÿ‹ ·J’ÂV multiplet² îîÆ Ê B² ‡– Ö k® Æ‡Ê ÓZ :Î Ù:Ê ¾. Ê®

† ¢ŽÊ:.18 Figure 4&r Ö® k ÿ‹’ÂV multiplet’

² îîê ٖ, Higgins® F R J6– oÊ, Ö WC®

Æ‡Ê ÖÚW’² :Î Ù:Ê ¾. Ê®6 Ê:® k †V ÓZ :ʆ ¢ŽÎ ْ² R n Þ:.

Figure 5& î kªV nn®ê rJ ‡’²Ö† 2Z

& †Î kª Æ/š Ús®† Z®B kª(α(t))Ò šî–

o– VÒ Êÿ®B rJ ‡ Æʆ²Ö† ®V:.

t dt d dH t H

t

c

=∆

0

) 1

α( (3)

3 (3)&r ∆Hcê G~ kª Rk® rJÊ6 dH/dtê rJ ãÊ:. 3 (3)š Êÿ®B ² kª Æ/š Figure 7& î

:. Figure 7&r kªê V~&r ¾ ßnê ٚ JBR6 Þ:. 6Úæ ’® kª Æ/š Ús¶ ¢ æR ÿ®ê Avrami 3š Wÿ®† ZÊr, ´r Figure 7& î kª ÆÊ†Ò Ê ÿ®B Figure 8R o– 2Ò ®B ‡š Ús®V:. Table 4&

ê Figure 8R o– 2Ò ² Ús R  Avrami 3® Î æ:š î:. Table 4&r Cooper GÊ J6² j– oÊ TPU Table 3. Cooling Crystallization Properties of TPUs

S am p le co d e

C o o lin g rate (×/min)

Tpeak

(×) ∆Hc

(J/g ) S am p le

co d e

C o o lin g rate (×/min)

Tpeak

(×) ∆H c

(J/g )

P T 4 4 2 .5

5 1 0 1 5

1 7 6 .5 1 7 2 .8 1 6 9 .1 1 6 4 .4

5 .7 7 .6 1 4 .9 1 9 .6

P G 4 4 2 .5

5 1 0 1 5

1 7 5 .5 1 6 8 .0 1 6 2 .9 1 5 4 .5

8 .5 9 .9 1 2 .0 1 2 .1

P T 3 5 2 .5

5 1 0 1 5

1 7 1 .9 1 6 9 .8 1 6 4 .1 1 6 0 .1

4 .1 4 .6 5 .9 6 .0

P G 3 8 2 .5

5 1 0 1 5

1 7 5 .7 1 6 2 .3 1 6 0 .1 1 5 3 .2

6 .0 7 .0 7 .1 8 .6

P T 3 5 2 .5

5 1 0 1 5

1 7 4 .1 1 7 2 .0 1 6 7 .5 1 6 3 .1

4 .5 4 .5 5 .3 5 .9

P G 3 5 2 .5

5 1 0 1 5

1 7 0 .7 1 6 4 .0 1 5 2 .0 1 4 1 .0

3 .3 4 .4 5 .6 4 .9

P C 4 4 2 .5

5 1 0 1 5

1 6 7 .5 1 5 7 .5 1 4 8 .7 1 4 3 .4

1 1 .4 1 2 .4 1 2 .5 1 2 .7

P A 4 4 2 .5

5 1 0 1 5

1 6 5 .5 1 5 9 .0 1 5 1 .2 1 4 1 .5

9 .1 1 1 .1 1 2 .4 1 4 .0

P C 3 8 2 .5

5 1 0 1 5

1 5 7 .5 1 4 5 .3 1 3 5 .0 1 2 2 .5

8 .0 8 .7 8 .8 9 .0

P A 3 8 2 .5

5 1 0 1 5

1 5 5 .0 1 4 6 .0 1 3 2 .7 1 2 5 .2

7 .2 9 .0 9 .3 9 .9

P C 3 5 2 .5

5 1 0 1 5

1 3 7 .8 1 2 9 .0 1 1 8 .0 1 1 1 .0

5 .2 5 .4 5 .5 5 .7

P A 3 5 2 .5

5 1 0 1 5

1 4 5 .0 1 3 4 .9 1 1 8 .9 1 1 0 .8

6 .6 7 .6 8 .0 8 .1

Figure 5. DSC thermograms of PC44 at different isothermal cry- stallization temperatures (×). (a) 160, (b) 163, and (c) 166.

G

Heat flow(W/g) >> exo.

# 3# 5# 7# 9# ;# 43#

Time(min)

Heat flow(W/g) >> exo.

0433# 083# 3# 83# 433# 483# 533# 583# Temperature(×)

Figure 6. DSC thermograms of PC44 obtained by heating at 10 ×/

min after isothermal crystallization at different temperatures (×). (a) 160, (b) 163, and (c) 166.

G

(5)

® Ö ¾Ê èšn³ TmÊ è6 ∆HcV Ââ î:.19

kª ~V šn³ kª rJÊ ’Â& B®ê 2Z(tpeak

=â îî kªV ¾ ßnê ٚ ¢ n Þ:. TPU® G~

kª ~V šn³ kªV ¶Î ‡– Figure 3&r V†r

W kª Æ/R /Ò² ûÊÆ, kª ãÒ â®ê êÎ VÆ JC¯WÎ êÎÊ Ââ çÿ®ê TmaxJ: è– ~êZ&

r kªV Ò† ¢Ž’² R n Þ:. 3 (1)® Avramic index h– PTMEG, PPG, PCL TPU®  3»5² î’î PBA

TPUê 5 ÊÎ  V†n:. Wunderlich& ®®Ê ÒnW

’² Avrami index hÊ 3»5Î  k® k2V ÂkÎ nÊ 5 ÊÎ  :rkΠْ² ¢zŽ Þ:.11 TPU® &

Table 4& î j– o– Avrami index h® ~Êê Ö®  k k2® ~ÊÒ îê ْ² f>r:. 3 (1)® K h– TPU

® kª ~V èšn³ fâ®B kªV æzê ٚ î

’Æ, K hš /Ò² ~&r š¦¶ ¢ PTMEG TPUV

PPG TPUJ: Â6, PCL TPUV PBA TPUJ: Ââ î

:. ÊB² ‡® ~Êê šG~ W kª Æ/&r– ‚

V² ֖ FÖ® ÿ‡ ~Ê& †Î®ê ْ² R n Þ :. Figure 9&ê TPU® rÆ& ÿ² J‚ Û®² Ö ¾

& †Î Vû – ~&r îîê TmÒ î:. Figure 9&

r Tm– /Ò² Ƈ® ÖÚ& Þ®6 ~ÊÒ Jږ F

Ö® ÒÖV ֖® ÖÚWÎ ÿ‡ ~ʲ ήB :Î k

² ÿÊn† ¢ŽÊ:. Tm®  PTMEG>PPG>PCL>PBA r’² è– ûš JÊê ٖ kªV V†nê ~– v² û

š JB ´r _² ÿ‡® ~ÊÒ q¾®ê ْ² f>r :. ß, J‚Ê ‡®ê F֖ O‡Ê Æ Ö® ÿ‡Ê

šn³ TPU® Ö WC& ϚÞê FÖ® ¾Ê 6, ÿ

‹2 Ö® W kªÒ VÊ®ê ÙÊ Wr Ö Úæ Z nâ ¿Ê ÿÊ®B, ÖV 6~&r kªV Òî6

kª ãV ¶ÊÆ Ê:® TmhÊ è– +š JÊê ÙÊ:.

Table 4. Parameters of Avrami Equation for Isothermal Crystallization of TPUs Sample

code Tc

(×) tpeak

(min)

H c

(J/g) n K Tm

(×)

Sample code

Tc

(×) tpeak

(min)

H c

(J/g) n K Tm

(×) PT44

173 176 179

1.2 1.8 2.3

8.8 7.8 6.1

4.1 4.2 4.7

3.2Ý10-1 8.0Ý10-2 1.9Ý10-2

198 199 200

PG44 173 176 179

1.2 1.7 2.3

9.8 9.7 6.8

3.9 4.2 4.9

3.7Ý10-1 5.6Ý10-2 7.0Ý10-3

202 203 203 PT38

173 176 179

0.5 1.1 1.9

4.9 3.4 3.4

3.0 3.2 3.3

2.9Ý10 0 2.1Ý10 0 6.2Ý10-1

202 206 206

PG38 173 176 179

2.0 2.3 2.8

4.0 3.6 2.4

4.0 4.6 5.1

7.1Ý10-2 1.4Ý10-2 4.0Ý10-3

205 204 204 PT35

176 179 182

0.8 1.5 3.8

4.4 3.2 2.5

3.9 4.0 4.1

8.5Ý10-1 1.2Ý10-1 2.8Ý10-3

196 197 198

PG35 166 169 172

2.1 2.6 3.3

2.7 2.8 2.4

4.7 4.8 4.7

2.1Ý10-2 6.0Ý10-3 3.0Ý10-3

199 199 200 PC44

160 163 166

1.0 1.5 1.9

8.9 9.3 9.1

3.7 4.1 4.1

5.8Ý10-1 1.9Ý10-1 4.9Ý10-2

196 197 198

PA44 166 169 172

2.4 4.1 6.0

7.1 6.7 5.7

5.3 5.5 6.2

5.3Ý10-3 3.9Ý10-4 2.2Ý10-5

191 193 195 PC38

150 153 156

1.1 1.6 2.1

5.6 5.6 5.2

4.0 3.9 4.0

3.3Ý10-1 1.2Ý10-1 4.2Ý10-2

196 193 194

PA38 153 156 159

2.5 3.5 4.2

4.8 3.9 4.3

5.1 4.9 4.9

1.0Ý10-2 2.0Ý10-3 4.1Ý10-4

185 187 188 PC35

133 136 139

1.0 1.2 1.8

3.8 3.6 3.1

3.0 3.1 3.1

5.1Ý10-1 2.3Ý10-2 8.1Ý10-2

186 185 180

PA35 137 140 143

3.5 3.2 2.2

3.5 3.2 2.2

3.2 3.8 4.6

7.8Ý10-3 1.3Ý10-3 1.7Ý10-4

175 177 178

# 3# 4# 5# 6# 7# 8# 9#

Time(min) 413

31;

319 317 315 313

Relative crystallinity(α)

Figure 7. Relative crystallinity as a function of cystallization time for PC44 at (0) 173 ×, (;) 176 ×, and (5) 179 ×.

G

418 413 318 313 0318 0413 0418 0513 0518

log[-ln(1-α)]

031:8#03183#03158# 3133# 3158# 3183# 31:8 log t

Figure 8. Avrami plots of PC44 at various crystallization temperatures (×). (0) 173, (;) 176, and (5) 179.

G

(6)

4. û«

JV⇠J^® rÆ2 ÿ®ê J‚® Û®– 

Ö ¾& †Î Ö® kª Æ/ ªÒ Æ®V:. :.W

’² Ʋ ~ êZ&rê kª ~V šn³ kªV ¶ Êâ ßn:. TPU Ö ¾Ê $šn³ kªV ¾æ’

Æ TPU rÆ& ÿ² J‚ Û®²ê PTMEG>PPG>PCL≥PBA r’² kªV ¶Êâ ß~Ê V†n:. ÊB² ~Êê TPU

® F֖ Ö® ÿ‡ ~Ê& †Î®ê ْ² f>n:.

ß, TPU® F֖ Ö® ÿ‡Ê šn³ Ö® Úæ Z nâ¿Ê v®6 Ö kªV î Òîê ْ² Ê s¶ n Þ:. G~ kªÒ Avrami 3š Êÿ®B Ús² R VÖÚ® TPUê Avrami index hÊ 3»5 Ê® hš Vî PBA

ê 5 Ê® hš JÊê  Þ k ÂÆ® ~ÊV Þê ْ² f>n:.

[÷£ KÜN FÂê &†’ ²ÿ †vrr >® 

&& ®®B Ê>¢’Æ, Ê& f2:.

S+S

1. G. Oertel, Polyurethane Handbook, 2nd Ed., Ch.2, Hanser Publishers, Munich, 1993.

2. S. Abouzahr, G. L. Wilkes, and Z. Ophir, Polymer, 23, 1077 (1982).

3. M. Szycher, Szycher' Handbook of Polyurethane, Ch.1, CRC Press, London, 1999.

4. C. Hepburn, Polyurethane Elastomer, 2nd Ed., Ch. 9, Elesvier Science Publishers, New York, 1992.

5. D. J. Martin, G. F. Meijs, G. M. Renwick, S. J. McCarthy, and P. A.

Guantilake, J. Appl. Polym. Sci., 62, 1377 (1996).

6. R. Mix, J. Gahde, H. Goering, and G. Schulz, J. Polym. Sci.; Part A:

Polym. Chem., 34, 33 (1996).

7. W. Tang, R. J. Farris, W. J. MacKnight, and C. D. Eisenbach, Macro- molecules, 27, 2814 (1994).

8. W. Tang, W. J. MacKnight, and S. Hsu, Macromolecules, 28, 4284 (1995).

9. S. G. Kim and D. S. Lee, Macromol. Res., 10, 365 (2002).

10. M. Avrami, J. Chem. Phys., 7, 1103 (1939).

11. B. Wunderlich, in Thermal Characterization of Polymeric Materials, E. A.

Turi, Editor, Chapter 2, Academic Press, New York, 1997.

12. P. J. Yoon and C. D. Han, Macromolecules, 33, 2171 (2000).

13. A. Gandica and J. Magil, Polymer, 13, 595 (1972).

14. J. Magil and H. Li, J. Polym. Sci., Ploym. Lett. Ed., 11, 667 (1973).

15. R. L. McKiernan, P. Sikorski, E. D. T. Atkins, S. P. Gido, and J. Penelle, Macromolecules, 35, 8433 (2002).

16. R. L. McKiernan, A. M. Heintz, S. L. Hsu, E. D. T. Atkins, J. Penelle, and S. P. Gido, Macromolecules, 35, 6970 (2002).

17. J. Magil, Rubber Chem. & Tech., 68, 507 (1995).

18. A. Saiani, C. Rochas, G. Eeckhaut, W. A. Daunch, J. W. Leenslag, and J. S.

Higgins, Macromolecules, 37, 1411 (2004).

19. S. Velankar and S. L. Cooper, Macromolecules, 32, 395 (2000).

# Figure 9. Effects of hard segment contents on Tm of TPU prepared from various polyols. (;) PTMEG, (5) PPG, (0) PCL, and (7) PBA.

G

553#

533#

4;3#

493#

473#

453#

Tm(×)

# 67# 69# 6;# 73# 75# 77# Hardsegment content (wt%)

참조

관련 문서

The results revealed that being in middle school students and having higher economic status, better subjective health status, and higher self-control were influencing factors

It was found that m-LLDPE has longer induction time to start crystallization from the amorphous state than that of conventional LLDPE with similar branching number, but the

aesthetic of the hard and soft tissues of the oral

A Study on Introduction of Nucleating Agents at Polylactic Acid to Enhace Crystallinity and Crystallization Rate.. Myung-hyun Kim⋅Byeong-uk Nam †

Table 2.. In the spinal cord, large confluent intramedullary lesions that extend over multiple segments are common 3,12) , and the degree of contrast enhancement is

In this paper, we compared 3D modeling data obtained under the soft light and hard light environments with the ground truth to compare the results of

They find that a higher level of internationalization (using the composite index of foreign sales ratio, foreign asset ratio, and the number of geographic segments a firm

The crystallization process and morphology according to the calcination temperature were examined.. The properties of the synthesized powder were evaluated