• 검색 결과가 없습니다.

Fabrication of Electrodes for PEMFC using Electrodeposition

N/A
N/A
Protected

Academic year: 2022

Share "Fabrication of Electrodes for PEMFC using Electrodeposition"

Copied!
6
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

(Journal of the Korean Institute of Chemical Engineers)

*O»j šÏ‚ PEMFCÏ *B–

‚ã~Á;'&*Áf‚W**Áš’**

‚“ö.æVF’²

*‚“*KÒ

**^&v z"

(1999j 3ú 30¢ 7>, 1999j 9ú 16¢ j)

Fabrication of Electrodes for PEMFC using Electrodeposition

Kyoung Hwan Choi, Young Joon Park*, Han Sung Kim** and Tae Hee Lee**

Korea Institute of Energy Research

*KEPCO

**Dept. of Chem. Eng., Yonsei Univ.

(Received 30 March 1999; accepted 16 September 1999)

º £

3 C/cm2¢ r *~&ê 300 mA/cm2(0.7 V)

& &Ë Ö>‚ ªÊ*O *~ï 1.8 C/cm2¢ r 664 W/g Ptb‚ &Ë – 8j &.

Abstract−The low Pt loading electrodes for PEMFC were manufactured using electrodeposition and their cell perfor- mances were measured. Also an optimal electrode fabrication process was determined by comparing Pt dispersion, loading and electrodeposition efficiency in direct current and pulse electrodeposition. Electrodeposition could reduce Pt particle size about 15ç, and enhance dispersion and specific surface area of Pt because of impregnating catalyst on the surface of electrode.

Pulse electrodeposition was better than direct current one in electrodeposition efficiency and Pt dispersion, and it could increase cell performance due to higher Pt loading at same total passed charge. The electrode, which was made by growing Pt nuclei in direct current electrodeposition after creating Pt nuclei in pulse one at pulse charge of 3 C/cm2, showed the best per- formance of 300 mA/cm2(0.7 V). At 0.7 V the electrode that Pt dispersion was highest and pulse charge was 1.8 C/cm2 had the largest mass activity of 664 W/g Pt.

Key words: PEMFC, Pulse Electrodeposition, Nuclei Creation, Nuclei Growth, Dispersion

1. B †

"‚ ²; ¶ÿN~ ÿKöb‚ BB7ž ª¶ *šî; ò*

æ(Proton Exchange Membrane Fuel Cell, PEMFC)º ¦ ^B&

ì &NöB~ ·ÿš &Ë~– ¸f ö.æ ÎN 5 *~&ê¢

ÒÏ~V r^ö .V R¶j& ¸ *šî ï~ &Ûj *‚ >ª

W.ÒÏb‚ê Ö>‚ WËj <º WË *~ BBš ’>

®[1-4].

*Ò ’> ®º PEMFCÏ *B–»öº brushing, spraying, silk screen, decal

ª¶ *šîïö *Òʺ O»š–, ¾^æº / ÒÒ¢ ææ Ú *ö «&B *j B–~º O»š. šf?f O»b‚ B–

‚ *~ ãÖ *šîï" ç7 7/~º ¦ªò *>wö ^

~² > *Ú¦öº >wö ^~æ á~º j‚W /& š

*~ Nafion solution" ?f ionomer¢ * Úö ŽŽB >w âçêšj {Ëʺ O»š ÒÏ>Ú z[5]. ~æò ionomer~

Î&f j‚W /~ šÒº *~ ÎNj ÎÚNÒ *WË~

E-mail: leeth@trans1.yonsei.ac.kr

(2)

2. š†' Vã

2-1.* >w

*O(electrodeposition)f *V'b‚ .³j &ç ‚š*ö *~

(1)

Û~ ãÖö Mn+º Cu2+f ?f *‚ ;~ šN 6º [Au (CN)2]?f .³zbj ¾æÞ. >šö anodeöBº * ¶Ú

& Ϛ~ .³šN~ /öš F röº r" ?f >wš ¢ ÚÂ.

(2)

­­ ãÖöº &ÏW .³"š *Oχö Î&> W.*"

?f j‚W anode& ÒÏ>Vê ‚.  ’öBº &ÏW .³"

b‚ "zW.Ö(H2PtCl6ÁnH2O, Sigma-Aldrich Co.)j ÒÏ®º–

*O * *öB~ >wf r" ?f 3B~ >wš rJ^ ® [8].

(3) (4) (5)

*OB .³~ îïf ¾–š »ö ~šB ’† > ®.

(6)

VB wº *O.³~ îïš, qº *~ï, Mf .³~ Öîï, φº *OÎNš.

2-2. .³*O~ zšî¾

*O zšî¾f › Wêf WB ›š WË~º ê‚ ¾2

> ®. › Wf * ‚šö – "*{j žÚ2b‚Ž šÚæ

– Wˆ ›~ >f ηš Ö;B. › Wêº *" *O&

ç*~ *Oçö 'Ëj "– ›~ &êº *O–f *~&êö "

6~. ›f ¢ W>š ç&'b‚ Ôf "*{öBê jv'

†š² W˂. › WËêº *'b‚ *O";~ &¦ªj N æ~æ‚ W˖šj Fæ~º ©š 7º~.

Ö;~ WËf BB~ .³ ‡Oö¶(adatom)& Ö;϶ö ֏Ž

b‚Ž šÚê. î‚ Ö>º ‡Oö¶º š ϶ö šÒ~º

f ?f ϶Ú~ n;' *~¢ Fig. 1ö ¾æÚî. ֏f ^ B

~ ž ‡Oö¶f 7/† > ®º kink site(1)öB &Ë ¾ š

¾ šÚê. ¾ (3)" ?š V‚ šÒ~º ‡Oö¶º ²>ò

š î‚Ú ›b‚ B*~ &¦ªf n;'ž *~‚ {Ö>–¾ Ò

î*, (ii) ‡Oö¶ ;Wj *‚ *¶~ šÿ, (iii) ‡Oö¶~ *

‚š*öB ϶ *~‚~ {Ö.

WË~º ›~ ’–º (ii), (iii) ê~ ç&' ³êö ~š Ö;

ö ϶~ ‚'*~ö ‡Oö¶& *~~² B. >šö ¸f *~

&êöBº ‚š{֚ z šç *¶šÿ³ê  †šæ p² >

Ú º& › Wš šÚæ ê³ ê¯F ãÖ ‚šf šæ á~

² B. šr *O–ö rf Î&B¢ Ibš WË";j –.†

~ 7š >V r^ö *OχÚöB~ bî*ö Vž ^B6š

®. ¢ š ;~ W˚ ·>š ' tipb‚~ bî* Ã&

& ¢Ú¾ tipš ·ãb‚ &rš ˆ>ƒ iR dropj ‚²z~J º ãËö Vž~ >æç W˚ æV'ž WË;& B[9].

2-3. Pulse *O

Pulse 6º period current reverse‚ ®Òº 2;~ ç~*Köb

‚Ž *Oj ~º O»b‚B ¢>'ž ;º ~ö**~, Öz

**~, off time~ Bb‚ šÚæ– ÿ¢‚ ";š >>– >

¯B.

¢>'ž 2;f Ò'2 ;š, ‘on time’ ÿnöº .V~ ‚š

.³šN ³ê& ²’χ ³êö "7~¾ *š æÎö V¢ 6

²~ Ö"'b‚ j;çç {Ö ";š B. ‘off time’ ÿnö º *¶~ šÿš šÚææ p &~{Öö ~š r‚šf .

³ ·šNb‚ ÒÏ*B. ªÊ2~ "Vf ’V j :ÞÚ2b‚

Ž *~*, bî*, ‚š Ö;z "; j –.† > ®.

ªÊ*Oj šÏ~º šFº ç~¢ šÏ† rö j~ {Ö[ n ö ç&'b‚ ¸f .³šN ³ê¢ Fæ~ ›Wš Ö^‚ ¸ f *~&ê‚ *Oj † > ® V¢B z× –&‚ *O[j á j > ®V r^š[5,10-12].

3. þË~ 5 O»

3-1.ê²* B–

ê²çbf polytetrafluoroethylene(PTFE)j šÏ~ B>¾Ò¢ ‚ Mn++ne→M

M→Mn++ne

PtCl62 +2e↔PtCl42 +2Cl PtCl42 +2e↔Pt 4Cl+ PtCl62+4e↔Pt 6Cl+

w=φMq ---nF

(3)

ê 300oCöB 1* ÿn š–B *¾Ò~&. *¾ÒB ê²çb

*ö š:¿(Vulcan XC-72), 40 wt% PTFE 5 isopropyl alcohol (IPA)j b‚ paste¢ rolling~&. š *ö *O *Oχ"~

7/Ëj ËçÊV *~ š:¿, 40 wt% PTFE, 20 wt% &Ò

^Ö 5 IPA~ b‡j ê²[*ö air-brush¢ šÏ~ spraying~

 80oCöB 2* ÿn š–B ê²*j B–~&.

3-2.*O þ

*Oχ 18 mM "zW.Ö(H2PtCl6Á6H2O, Sigma-Aldrich Co.)j ÒÏ~&b–, W.*j anode‚ ~ ê²*j cathode‚ ~

100, IMACE Co.)¢ šÏ~ 10, 60 mA/cm2 *~&êöB >¯>

î, šr ªÊ –šf on time" off timej '' 100 msf 300 ms

‚ –.~ *j B–~&. W. æïf *~&êf cycle>

¢ –.Žb‚Ž ö~º ·b‚ –.~&.

Fig. 2º *O–~ ’–¢ ¾æÞ ©š. *Oχj î²¢ šÏ

~ purgeÎ ê *Oj ~& *‚šöB ²’χ~ ³ê¢

¢;~² FæB "V *~ v>B "î.

3-3.ï/* Ún:Ò B–

*šîïf Du PontÒ~ Nafion® 115¢ ÒÏ~& ï~ >zf

‚š~ .³, FV ®Bb B–¢ *~ 3 wt% H2O2f H2SO4j š Ï~ *¾Ò ~&. *¾ÒB ï" *Oö ~š B–B *j 120oC, 130 atmöB 3ª* hot pressing~ ï/* Ún:Ò¢ B–~&.

šr *~ š'f 1 cm2‚ ;~&.

3-4. **æ WË þ

>wVڞ >²f Ö²º Fï –.V¢ ۚ &ÛVö />

&ÛVöB >ÃVf zç‚ * *æö ê«>î. >wVÚ~

Fïf 200 mL/min‚ ;Ê, Nêº >², Ö² 5 fö &š

'' 85, 80, 70oC‚ Fæ~&. >²f Ö²~ *Vz>wö ~

~ BB *~º ž¦²‚‚ ÖB DC Electronic Load (Model- 6060B, Hewlett Packard Co.)¢ šÏ~ ;*{ –šöB G;~&.

4. Ö" 5 V

4-1.W.Ö; W &V

*O»~ ßûf *B– /~ «¶’V¢ *¢ > ® *

X-ray Spectrometer, Oxford Link ISIS)¢ šÏ~ *O»b‚ B

–‚ *~ šöB Pt¢ scanning‚ ©š. W. peak& *~

‚šöBò ’² ¾æ ©b‚ j *O W.Ö;š *~ ‚

šöBò W 5 W˂ ©j r > ®.

W.j *OÊæ pf ê²*" 60 mA/cm2~ *~&êöB pulse *OÎ *~ XRD(D/MAX Rint 2000, RIGAKU) ªCj ۚB áf Ö"¢ Fig. 4ö ¾æÚî. Fig. 4öB (d)º W.ö &

‚ V& peakš (a)º W.j *OÊæ pf ê²*b‚B W . peak¢ {ž~º V&b‚ â~. (b)f (c)º ªÊ*OÎ *

b‚ *ö ~J& *~ïj (b)º 0.6 C/cm2, (c)º 1.8 C/cm2

©š. (c)~ ãÖ Â]‚ W. peak‚¦V *ö W.Ö;š W

>îº ©j r > ® (b)~ ãÖ W.š *O>îæò *Oïš

' Ö;ãj B&‚ ;W~æ ášB W. peak& ’² ¾æ¾æ pf ©b‚ 'B.

Fig. 5º ªÊ*Oö ~š *ö WB W.«¶~ TEM(H-600, Hitachi Co.) Òêš. W.~ ç㚠15 ç;ê‚ Vš~ ‚‚š

Fig. 2. Schematic diagram of electrodeposition cell.

Fig. 3. Linear mapping of Pt distribution along the cross section of the electrode fabricated by electrodeposition.

Fig. 4. Comparison of XRD peaks with pulse charge.

(4)

4-2.W./ æï ªC

*Oö ~š *ö æB W.ïf  (6)" ?š ¾–š »

ö ~š š†'b‚ ~J& C *~ïö jf~² B. ¾ *O

–~ Nê, *~&ê, *Oχ~ ³ê, "*{, *O&ç~ ‚š–š

~ *O–šö V¢ *OÎNš ¢^ æïš æ~² B.

Fig. 6f ç~ 5 ªÊ*Oj šÏ~ B–‚ *~ W./  æïj ICP-MS¢ šÏ~ ’‚ Ö"¢ ¾æÞ ©b‚ *ö ~J

& C *~ïö &~ *ö æB W.ïj ¾æÞ ©š. ç~

*O~ ãÖ 10 mA/cm2~ *~&êöB C *~ïj 1.0-4.0 C/cm2 ræ æzB&– *O~&, ªÊ*Of 60 mA/cm2~ *~&êö B C *~ï 0.6-3.0 C/cm2º*öB *Oj ~ *j B–~&.

fö ~J& *~ï~ Ã&ö V¢ ç~f ªÊö &êìš W.

æïf Ã&~& ÿ¢‚ *~ïöB jv† r ç~*Oº ª Ê*OöB W.æïš – ©j r > ®. ?f *~ïöB æ

–šöB *O»b‚ B–‚ *~ *š' š†æï, B

æï 5 *OÎNj Table 1ö ¾æÚî. *~&ê~ ªÊ*O~

*OÎNš z ±f ©f – "*{ö ~‚ *V' ’ÿKš ’, ªÊ*O off-time ÿnö šN{Öö ~š *O>º *~ ‚š

ö .B .³šNš Ï>æ‚ ç~*O  ‚š .³šN³ê

öBº >²& B~² > š >wö šº *~º .³~ *O

~&ê¢ ’² ¸¢ > ®ÚB *~&êöB *Oš &Ë~ «

4-3. XPSªCj ۂ /~ ªÖê G;

*Oö ~š æB W./~ ªÖê¢ G;~V *~ XPSª Cj ~&. XPS spectra~ š'b‚¦V ' Wª~ ;ï' ªCš

&Ë~æ‚ š©j šÏ~ Pt~ ‚š ö¶ >¢ ªC~ ~.

š j šÏ~ XPS peak~ š'j ö¶j‚ ~֚ "š ‚š

ö žÂB ß; ö²~ ªÖê¢ r > ®. ªCö ÒÏB ASF (Atomic Sensitive Factor)º peak~ intensity¢ ;š "º 8b‚

º 1.75, Cº 0.205&. Fig. 7f ç~f ªÊ *Oö ~š B–‚

*(Fig. 6)~ W./~ ªÖê¢ C *~ïö &~ ¾æÞ ©š

. ç~*Oj † ãÖº ‚ê*~&ê‚ ž~ 10 mA/cm2~ *~

Pt ---C

  

atom

= Ptarea PtASF --- Carea CASF --- ---

Fig. 6. Comparison of Pt loading with total passed charge in direct and pulse current electrodeposition.

Fig. 7. Surface concentration of Pt atom on carbon with total passed charge at direct and pulse current electrodeposition.

(5)

&êöB *Oj ~& ªÊ*Of 60 mA/cm2~ *~&êöB *O j ~&. *ö ~J& C *~ïš Ã&Žö V¢ W.~ ªÖê º –.O Ã&~&, ç~*Oö jš ªÊ*Oö ~š B–‚ *

~ W.ªÖê& Ö>‚ ©j r > ®î. &*~&ê~ ç~*

Of î‚Ú ›~ Wº "‚ ›~ W˚ šÚæV r^ö

›Wš Ö^‚ *~&ê~ ªÊ*OöB ªÖê& ±f ©b‚

ÒòB. *~&ê~ ªÊ*OöBº C *~ïš 0.6 C/cm2  º 1.8 C/cm2öB ªÖê& £* Ã&~&º– š©f æB /ï

~ Ã&f Žþ ›j WÒ *š ç&'b‚ ^îV r^ž © b‚ 'B. ¾ C *~ïš ªÊ*O*š &Ë ^î~ 3.0 C/cm2~ ãÖ ªÖê& z šç Ã&~æ pf ©f *~&êöB

~ ê³B *Ob‚ žš n;'ž *O*~ž kink¾ edge site¢

dæ ႠW. ~ö«" **ö š šÒ~~ ‡Oö¶ê *

~¢ TÎ š WB ›~ tip¦ªö ›j WÊ WË~Jº ã˚ ;~V r^š¢ ÒòB.

WË ò*æ *j B–~V *šBº W./¢ ªÖ  Ú" ÿö W./~ ›j n;'b‚ WËB *>wš n;

'b‚ ¢Ú¾êƒ š¢ ‚. ֓ ªÊ*O" ç~*Oj –~

*j B–~š š‚ Î"¢ áj > ®V r^ö ªÊf ç~*

Oj –~ *j B–~&. Table 2º  –šöB ªÊ*O b‚ ›j W‚ r ç~*Ob‚ ›j WËB *j B–~

&j ãÖ~ W.ªÖê¢ ¾æÞ ©š. šr ' *ö ~J& C

*~ïf 4 C/cm2‚ ÿ¢~² Fæ~ jv~&. W.æïj j v~š ªÊ*~¢ ôš ~J*>ƒ æïf Ã&~&æò ªÖêº ªÊ*~f ç~*~& '' 1.8" 2.2 C/cm2¢ ãÖö &Ë ±f © j r > ®. ªÊ*~f ç~*~& 0.6" 3.4 C/cm2¢ ãÖ ªÖ ê& ±æ pf ©f &*~&ê~ ç~*Oš î‚Ú › Wöº

’² 'Ëj "æ á®V r^ž ©b‚ ÒòB. ¾rö ªÊ*~

‚ 3.0 C/cm2j ~JB › Wj ‚ ê ç~*~¢ ~JB › WË j Î ãÖº W.æïš &Ë æò ªÖêº J®J ’² Î Úê ©j r > ®.

4-4. **æ WË G;

C *~ïj Ã&ʖ ç~*Ob‚ B–‚ *~ **æ W Ëj Fig. 8ö jv~ ¾æÚî. C *~ï~ Ã&ö V¢ *~

WËf ’² Ã&~&º– š©f *ö ~J& C *~ïš Ã&

~š æB W./~ ·š Ã&~V r^ö *~ WËf Ëç B ©b‚ ÒòB. ~J& C *~ïš 1 C/cm2" 2 C/cm2ž ãÖ W./~ æïš '' 0.061 mg/cm2" 0.088 mg/cm2b‚ *Ò

¢>'b‚ ÒÏ>º ò*æ *~ 0.4 mg/cm2[15]ö j~ Ö 'f ·šV r^ö W˚ ±æ Ⴀ©b‚ '>– 4 C/cm2~ ãÖº W.æïš 0.247 mg/cm2šîæò ç~*Ob‚ žš W.

/~ ªÖê& ±æ p Ö;;& j‚š'š ·f >æç (dendrite)b‚ WË~V r^ö *W˚ ’² Ã&~æº á‚ © b‚ ÒòB[6].

Fig. 9º C *~ïj Ã&ʖ ªÊ*Ob‚ B–‚ *~ *

*æ WËj ¾æÞ ©š. C *~ï~ Ã&ö V¢ *~ WËf

’² Ã&~&º– š©f ç~*O" îR&æ‚ *ö ~J& *

~ïš 0.6, 1.8, 3.0 C/cm2b‚ Ã&Žö V¢ *OB W.~ ·š

0.069, 0.114, 0.293 mg/cm2b‚ Ã&~&V r^ž ©b‚ Òò>–

ç~*Oö j~ z 'f *~ïj &æ B–‚ *~ W˚

z Ö>‚ ©j r > ®. V¢B ªÊ*Oj ÒÏ~ *j B

–~š 'f *~ïj &æ z ôf ·~ W./¢ æÒ >

®ÚB *OÎNj ¸¢ > ®b– *WË 6‚ ËçÒ > ®º

©b‚ ÒòB.

ªÊ*Ob‚ ›WÎ ê ç~*O~ Ö;WËj Î *~

WËj ªÊ 5 ç~*Oòb‚ B–‚ *~ WË" jv~ Fig. 10 ö ¾æÚî. šr *ö ~J& C *~ïf 4 C/cm2b‚ ¢;~

‚ *~ W˚ R Ö>‚ ©j r > ®b– ªÊ*O" ç~

*Oj –~ B–‚ *š ªÊ*Oòb‚ B–‚ * ± f WËj ¾æÚî. šº ªÊ*Ob‚ ›Wj Î ê ç~*

Ob‚ ›j n;'b‚ WËB B–‚ *~ /’–& *>

2ž ã Ö ªÊ*~ïš 'Ú / ›~ Wïš ', ªÖ>V *ö ç

~‚ ›j WËVV r^ö ªÖê& ÎÚ^ W˚ ±æ pf © b‚ ÒòB. 6‚ Table 2~ Ö"f ?š ªÊ*Oš 0.6, 1.8, 3.0 C/

Table 2. Surface concentration of Pt atom for carbon and Pt loading at the various conditions(Total charge: 4 C/cm2)

Charge(C/cm2)

Pt loading (Pt/C)atom

Pulse Direct

0.6 3.4 0.239 0.128

1.8 2.2 0.295 0.229

3.0 1.0 0.320 0.138

Fig. 8. Electrode performances with total passed charge in direct cur- rent electrodeposition(70oC, 1 atm).

Fig. 9. Electrode performances with total passed charge in pulse current electrodeposition(70oC, 1 atm).

(6)

cm2b‚ ôj>ƒ *OB W./~ ·š Ã&~V r^ö *W ˚ 0.7 V~ ;*{öB 145, 280, 300 mA/cm2b‚ ËçB ©b‚

ÒòB. ªÊ*O *~ïš 3.0 C/cm2¢ ãÖº 1.8 C/cm2r  ªÖêº ÎÚææò &Ë ±f WËj ¾æÚî. ¾ 0.7 Vö B W./~ mass activity‚ jv~š '' 424, 664, 656 W/g Pt‚ ªÖê& &Ë – ªÊ*O *~ï 1.8 C/cm2¢ r &Ë – mass activity8j ¾æÚî.

5. Ö †

(1)*O»j šÏ~ *B– W./¢ *‚šöò æ

Ò > ®î ªÊ*O /~ ªÖê¢ Ã&Ê «¶’V¢ 15 ç;ê‚ *¢ > ®Ú j‚š'j ËçÒ > ®î.

(2)ªÊ*Of ç~*O *OÎN" ªÖê& ± W.æï j Ã&Ò > ®Ú *~ WËj ËçÒ > ®î.

4. Bockris, J. O. and Srinivasan, S.: “Fuel Cells: Their Electrode Chem- istry,” McGraw-Hill, N.Y.(1967).

5. Pletcher, D. and Walsh, F. C.: “Industrial Electrochemistry,” Chapman and Hall(1990).

6. Choi, K. H., Kim, H. S. and Lee, T. H.: J. of Power Sources, 75(2), 234(1998).

7. Jernstedt, G. W.: Ann. Proc. Amer. Electroplaters Soc., 36, 151(1950).

8. Bard, A. J.: “Encyclopedia of Electrochemistry of the Elements,” Marcel Dekker Inc., 4(1976).

9.Ä8×, ³“: “è˜Áe§˜/,” è¦, 54(1996).

10. Cheh, H. Y.: J. Electrochem. Soc., 118, 551(1971).

11. Hayashi, Y.: Met. Finish., 82, 77(1984).

12. Brett, C. M. A. and Brett, A. M. O.: “Electrochemistry-Principles, Method and Applications,” Oxford Univ. Press Inc., N.Y.(1993).

13. Choi, K. H., Liew, J. H., Shul, Y. G., Shin, C. S., Ryu, S. K. and Lee, T. H.: HWAHAK KONGHAK, 35, 433(1997).

14. Kim, J. S., Song, R. H. and Pyun, S. I.: Journal of the Metal Finish- ing Society of Korea, 21, 19(1988).

15. Mukerjee, S., Srinivasan, S. and Appleby, A. J.: Electrochim. Acta, 38, 1661(1993).

Fig. 10. Performances of electrodes fabricated at the different ratio of pulse and direct current(Total charge: 4 C/cm2, 70oC, 1 atm).

참조

관련 문서

Fall time decreases with increasing CNT concentration due to increase in effective elastic constant and the slight increase in the viscosity of LC-CNT dispersion, which suppress

[2] Passalacqua E, Lufrano F, Squadrito G, Patti A, Giorgi L, Influence ofstructure in low-Pt loading electrodes for polymer electrolyte fuel cells, Electrochim.. [3]

With regard to the slaughter age, bulls slaughtered younger (16 months) showed higher animal performance, better feed efficiency and carcass yield.. However,

Kim, “Catalytic Behavior of 3-Mercapto-1- Propane Sulfonic Acid on Cu Electrodeposition and Its Effect on Cu Film Properties for CMOS Device Metallization”, J..

One nanoporous Pt electrode was to measure the pH as an indicating electrode (pH-IE) and the other assembled with copolyelectrolytic junction was to maintain constant

[r]

To evaluate the performance of dye-sensitized solar cells using the C, Co-TMPP/C, and Pt/C electrodes, as shown in Fig. 6 and Table 1, photocurrent-voltage curves

5A that current of cyclohexanol oxidation on Cu/CuDMG electrode is 2500 nA, more than three times higher than Cu electrode 1000 nA; for both of the two