• 검색 결과가 없습니다.

Fabrication of Nano Structure

N/A
N/A
Protected

Academic year: 2022

Share "Fabrication of Nano Structure"

Copied!
39
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

Nanomaterials

48

Fabrication of Nano Structure

Fabrication of Nano Structure - - assembly assembly

capillary force

- lateral capillary force deformation of liquid surface

6

1

2 1

for floating force ( ) for immersion force

( ) F R K R

F R K R σ

σ

⎛ ⎞

∝ ⎜ ⎟

⎝ ⎠

1

: interfacial tension between air and liquid R: radius of particle

L: interparticle distance

K (R): modified Bessel function σ

two similar particles

light and heavy hydrophilic and hydrophobic

P.A. Kralchevsky, Curr. Opin. Colloid Interf. Sci. 6(2001) 383.

(2)

Nanomaterials

49

Fabrication of Nano Structure

Fabrication of Nano Structure - - assembly assembly

capillary force

- colloidal crystal multilayer, SiO

2

alcosol

P. Jiang, Chem. Mater. 11 (1999) 2132.

(3)

Nanomaterials

50

Fabrication of Nano Structure

Fabrication of Nano Structure - - assembly assembly

capillary force

- patterned colloid deposition by electrostatic and capillary force

P. Jiang, Chem. Mater. 11 (1999) 2132.

(4)

Nanomaterials

51

Fabrication of Nano Structure

Fabrication of Nano Structure - - assembly assembly

Dispersion interaction

- gold nanocrystals (1.5~6 nm) capped with covalently bound linear alkylthiols

size dependence of van der Waals dispersional attraction between nanoparticles

P.C. Ohara, Phys. Rev. Lett. 75 (1995) 3466.

6

1

dispersion interaction at larger D at small D V D

V D

P.C. Ohara, Angew. Chem. Inter.

Ed. Engl. 36 (1997) 1078.

(5)

Nanomaterials

52

Fabrication of Nano Structure

Fabrication of Nano Structure - - assembly assembly

Dispersion interaction

- self-organization of CdSe nanocrystallites into 3-D semiconductor quantum dot superlattice (colloidal crystals)

C.B. Murray, Science 270 (1995) 1335.

(6)

Nanomaterials

53

Fabrication of Nano Structure

Fabrication of Nano Structure - - assembly assembly

Shear force assisted assembly

- GaP, InP, Si NWs in ethanol solution

- passing suspension through fluidic channels formed between PDMA and a flat surface

Y. Huang, Science 291 (2001) 630.

(7)

Nanomaterials

54

Fabrication of Nano Structure

Fabrication of Nano Structure - - assembly assembly

Electric field assisted assembly

- Au nanowires

- electrically isolated electrodes - 1.0x10

4

~1.4x10

5

V/m

P.A. Smith, Appl. Phys. Lett. 77 (2000) 1399.

(8)

Nanomaterials

55

Fabrication of Nano Structure

Fabrication of Nano Structure - - assembly assembly

Electric field assisted assembly

- InP

D. Huang, Nature, 409 (2001) 66.

55

(9)

Nanomaterials

56

Fabrication of Nano Structure

Fabrication of Nano Structure - - assembly assembly

Covalently linked assembly

- Au and Ag

R. Griffith, Science 267 (1995) 1629. T. Vossmeyer, Angew. Chem. Int. Ed. Engl. 36 (1997) 1080.

(10)

Nanomaterials

57

Fabrication of Nano Structure

Fabrication of Nano Structure - - assembly assembly

Covalently linked assembly

- microcontact printing of Pd

- selective electroless deposition of Cu

P.C. Hidber, Langmuir, 12 (1996) 1375.

(11)

Nanomaterials

58

Fabrication of Nano Structure

Fabrication of Nano Structure - - assembly assembly

Template assisted assembly

- PS beads assembled in etched Si (100)

Y.Yin, J. Am. Chem. Soc. 123 (2001) 8718.

(12)

Nanomaterials

59

10nm

3-D Patterning Techniques

A) two photon polymerization in a polymer resist

B) holographic lithography in a polymer resist

C) photolithography with a gray-scale mask D) woodpile lattice fabricated

in a layer-by-layer fashion.

E) Opaline lattice of polystyrene beads

self-assembled between two flat substrates F) Silica inverse opal that was fabricated

by templating a sol-gel precursor against an polymer opaline lattice,

followed by selective removal of the beads.

Fabrication of Nanostructure

Fabrication of Nanostructure 3D Patterning 3D Patterning

Adv. Mater. 2000, 16, 1250

(13)

Nanomaterials

60

10nm

Writing with a focused laser or electron beam

- carving of a surface by ablating the material with a focused beam in a serial manner - laser-induced deposition of precursor compound

- photoinduced polymerization of a liquid prepolymer

Fabrication of Nanostructure

Fabrication of Nanostructure 3D Patterning 3D Patterning

N. Barsch, Appl. Phys. A 77 (2003) 237. O. Lehmann, Science 270 (1995) 1644. B.G. Cumpston, Science 269 (1995)1078.

(14)

Nanomaterials

61

Writing with a focused laser or electron beam - Two-Photon Absorption (TPA)

Fabrication of Nanostructure

Fabrication of Nanostructure 3D Patterning 3D Patterning

Polymerization by the strong absorption of prepolymers

selective removal of unpolymerized precursors 3D-Patterning

S. Kawata, Nature, 412 (2001) 697.

B.H. Cumpston, Nature, 398 (1999) 51.

(15)

Nanomaterials

62

Two-Photon Absorption (TPA)

Fabrication of Nanostructure

Fabrication of Nanostructure 3D Patterning 3D Patterning

W. Zhou, Science, 296(2002)1106.

(16)

Nanomaterials

63

10nm

Holographic patterning

Fabrication of Nanostructure

Fabrication of Nanostructure 3D Patterning 3D Patterning

- 2-beam interference patterns - 4-beam interference patterns

D. Kim, Appl. Phys. Lett. 66 91995) 1166. M. Campbell, Nature, 404 (2000) 53.

(17)

Nanomaterials

64

10nm

Holographic patterning

Fabrication of Nanostructure

Fabrication of Nanostructure 3D Patterning 3D Patterning

M. Campbell, Nature, 404 (2000) 53. S. Yang, Chem Mater. 14 (2002) 2831.

(18)

Nanomaterials

65

10nm

Gray scale lithography

Fabrication of Nanostructure

Fabrication of Nanostructure 3D Patterning 3D Patterning

E.-B. Kley, Microelectron. Eng. 34, 261 Y. Oppliger, Microelectron. Eng. 23 (1994) 449.

(19)

Nanomaterials

66

10nm

Layer by layer fashion

Fabrication of Nanostructure

Fabrication of Nanostructure 3D Patterning 3D Patterning

J.A. Lewis, Materials Today, 7 (2004) 32.

(20)

Nanomaterials

67

10nm

Layer by layer fashion

Fabrication of Nanostructure

Fabrication of Nanostructure 3D Patterning 3D Patterning

G. M. Gratson, Nature, 428 (2004) 386.

(21)

Nanomaterials

68

10nm

Layer by layer fashion

Fabrication of Nanostructure

Fabrication of Nanostructure 3D Patterning 3D Patterning

D. Therriault, Nature Mater. 2 (2003) 265.

(22)

Nanomaterials

69

10nm

Layer by layer fashion

Fabrication of Nanostructure

Fabrication of Nanostructure 3D Patterning 3D Patterning

S.Y. Lin, Nature, 394 (1998) 254. J.G. Fleming, Nature, 417 (2002) 52.

(23)

Nanomaterials

70

10nm

Layer by layer fashion

Fabrication of Nanostructure

Fabrication of Nanostructure 3D Patterning 3D Patterning

S. Noda, Science, 289 (2000) 604.

(24)

Nanomaterials

71

Colloidal Photonic Crystals- Opal

Fabrication of Nanostructure

Fabrication of Nanostructure 3D Patterning 3D Patterning

O.D.Velev, Curr. Opin. Colloid Interface Sci. 5 (2000) 56.

(25)

Nanomaterials

72

Colloidal Photonic Crystals- Opal

Fabrication of Nanostructure

Fabrication of Nanostructure 3D Patterning 3D Patterning

10nm

Experimental procedure to

fabricate colloidal photonic crystals:

aqueous dispersions of colloids injected into the cell

drying the cell

peeling off the top substrate

S.H. Park, Adv. Mater. 10 (1998) 1028.

(26)

Nanomaterials

73

Colloidal Photonic Crystals- Opal

Fabrication of Nanostructure

Fabrication of Nanostructure 3D Patterning 3D Patterning

W.T.S. Huck, J. AM. Chem. Soc. 120 (1998) 8267.

(27)

Nanomaterials

74

Inverse Opals

Fabrication of Nanostructure

Fabrication of Nanostructure 3D Patterning 3D Patterning

O.D. Velve, Nature, 389 (1997) 447.

(28)

Nanomaterials

75

Inverse Opals

Fabrication of Nanostructure

Fabrication of Nanostructure 3D Patterning 3D Patterning

Y.A. Vlasov, Adv. Mater. 11 (1999) 165.

(29)

Nanomaterials

76

Inverse Opals

Fabrication of Nanostructure

Fabrication of Nanostructure 3D Patterning 3D Patterning

P.V. Braun, Nature, 402 (1999) 603.

(30)

Nanomaterials

77

Inverse Opals

Fabrication of Nanostructure

Fabrication of Nanostructure 3D Patterning 3D Patterning

A. Blanco, Nature, 405 (2000) 437.

(31)

Nanomaterials

78

Inverse Opals

Fabrication of Nanostructure

Fabrication of Nanostructure 3D Patterning 3D Patterning

H.Miguez, Langmuir, 16 (2000) 4405.

(32)

Nanomaterials

79

Fabrication of Nano Structure

Fabrication of Nano Structure - - quantum dot quantum dot

quantum dot

- GaAs/InGaAs/GaAs

- metalorganic vapor phase epitaxial growth in tetrahedral shaped recess (TRS)

Y. Sugiyama, Jpn. J. Appl. Phys. 34 (1995) 4384.

T. Sekiguchi, Appl. Phys. Lett. 83 (1998) 4944.

(33)

Nanomaterials

80

Fabrication of Nano Structure

Fabrication of Nano Structure - - quantum dot quantum dot

quantum dot

- GaAs/InGaAs/GaAs

T. Sekiguchi, Appl. Phys. Lett. 83 (1998) 4944.

QD

QW

QD

QW

(34)

Nanomaterials

81

Fabrication of Nano Structure

Fabrication of Nano Structure - - quantum dot quantum dot

quantum dot

- selective are MOCVD - GaAs/AlGaAs/GaAs

T. Fukui, Appl.Phys.Lett. 58 (1991)2018.

(35)

Nanomaterials

82

Fabrication of Nano Structure

Fabrication of Nano Structure - - quantum dot quantum dot

quantum dot

- selective area metalorganic vapor epixay

- AlGaAs/GaAs, SiN

x

mask by photolithography and wet chemical etching

K. Kumakura, Jpn. J. Appl. Phys. 34 91995) 4387.

(36)

Nanomaterials

83

Fabrication of Nano Structure

Fabrication of Nano Structure - - quantum dot quantum dot

quantum dot

- selective epitaxial growth on masked substrates by MOCVD

- mask- 20 nm thick SiO

2

film with round windows, of which the diameter was

100 nm, made by plasma CVD, electron beam lithography, and wet chemical etching

- GaAs/Al

0.4

Ga

0.6

As/(100) GaAs

Y. Nagamune, Appl. Phys. Lett. 64 (1994) 2495.

(37)

Nanomaterials

84

Fabrication of Nano Structure

Fabrication of Nano Structure - - quantum dot quantum dot

quantum dot

- cleaved edge overgrowth (CED)-AlGaAs/GaAs by MBE

- localization energy of the exciton ground state wrt to the connected QW- 10 meV

M. Grundmann, Phys. Rev. 55 (1997) 4054.

(38)

Nanomaterials

85

Consolidation of nanomaterial

suppress the grain boundary migration enhance grain boundary diffusion

Two step sintering

I. W. Chen, Nature, 404 (2000) 168-171

Fabrication of Nanostructure

Fabrication of Nanostructure 3D Bulk 3D Bulk

(39)

Nanomaterials

86

(a) (b)

500nm 500nm

Temperature(oC)

500 600 700 800 900 1000 1100 1200

Relative density(%)

70 75 80 85 90 95 100

SPS for 5 min.

SPS for 1h Normal sintering for 1 h

SPS (spark plasma sintering) fast heating rate

Nonocrysatlline TiO

2

Y. I. Lee, Mater Res Bull., 38 (2003)925

Fabrication of Nanostructure

Fabrication of Nanostructure 3D Bulk 3D Bulk

참조

관련 문서

After first field tests, we expect electric passenger drones or eVTOL aircraft (short for electric vertical take-off and landing) to start providing commercial mobility

1 John Owen, Justification by Faith Alone, in The Works of John Owen, ed. John Bolt, trans. Scott Clark, "Do This and Live: Christ's Active Obedience as the

The composition, structure, and optical properties of 3d-doped CdGa 2 O 4 crystals were studied Stoichiometry of these compound semiconductors were determined

Hakim, The Story of Science – – Newton at the Center, Newton at the Center, Smithsonian Books, Washington DC, USA, 2005.. Smithsonian Books, Washington

à Element nodes have child nodes, which can be attributes or subelements à Text in an element is modeled as a text node child of the element. à Children of a node

Transverse integrated method is an innovative way of solving 3-D neutron diffusion equation which is to convert the 3-D partial. differential equation into 3

We report the fabrication of nano-porous ZnO nanowires (NWs) using a process combining laser-induced hydrothermal growth followed by a post annealing process.. Initially,

• Ideal structure of low-Miller-index surfaces of face-centered cubic (fcc) Surface unit-cell vectors aꞌ and bꞌ can be expressed by bulk a and b. → superlattice: unit