• 검색 결과가 없습니다.

A Study on the Reactivity of Zinc-based Sorbents for Hot Gas Desulfurization using Natural Zeolite as the Support

N/A
N/A
Protected

Academic year: 2022

Share "A Study on the Reactivity of Zinc-based Sorbents for Hot Gas Desulfurization using Natural Zeolite as the Support "

Copied!
8
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

      

   *

  , 

712-749    214-1

*  

702-701    1370 (2003 5 6 , 2003 8 11 )

A Study on the Reactivity of Zinc-based Sorbents for Hot Gas Desulfurization using Natural Zeolite as the Support

No-Kuk Park, Yong-Kgil Jung, Jong-Dae Lee, Tae-Jin Leeand Jae-Chang Kim*

National Research Laboratory, School of Chemical Engineering and Technology, Yeungnam University, 214-1 Dae-dong, Gyeongsan, Kyungpook 712-749, Korea

*Department of Chemical Engineering, Kyungpook National University 1370 Sankeuk-dong, Bukgu, Daegu 702-701, Korea

(Received 6 May 2003; accepted 11 August 2003)

 

        ! "#$ %.

& '  ()*"+,- 480oC/580oC(.//01)23 4 567 89 ():; ()<1 =#>

$ ?@ ! ABC +,:;   ABC1 %. &  "# +,DE 

#> 20 gS/100 g sorbent L M NO%. ABC"- AI(BC P)Q 14.7%81%. R S23T 

   U '#"$ VW%.

Abstract−Two types of zinc-based sorbents using alumina and natural zeolite as the supports for hot-gas desulfurization were prepared, and investigated their desulfurization capability. Their reaction rate and sulfur capacity were compared by Cahn balance and over the fixed bed reactor system at 480oC/580oC (sulfidation/regeneration). The attrition resistance was mea- sured by ASTM method. The initial sulfidation rate of ZnO/natural zeolite sorbent was higher than that of ZnO/alumina, and the sulfur capacity of ZnO/natural zeolite sorbent was maintained above 20 gS/100 g sorbent for 10 cycles. A attrition index was 14.7%. The use of natural zeolite as a support of sorbents may be possible for hot gas desulfurization.

Key words: Desulfurization, Zinc-Based Sorbent, Natural Zeolite, IGCC, Support

1.  

12·3 4  56 789$ : "# 

() ; < 8= >?@% +.. 789$ :56 8 9A$ ()*  +B CD EF  GHIB AJ K $ ()5B 7LA MN OAP(IGCC)Q RS TU 8V OAP(PFBC) W +!, :XL)Y 89

(MCFC) ZB % )[ 89(SOFC)$ :56 $ ()5

B A 89(IGFC) W 8= @% +B\, ]  

D   ^_ `% +.. 789 

 Q# 4 (5B H2S, SO2, COS, CS2 WQ a bN[

c# JK d 89 efD gh i  + j kl m  n Sop q rY S*  +.[1-3]. s S 789$ :56 "# $ ()5 t4B 89A n uSv .w bxy z{O |}t-~ ..

789  Q# 4 (5B bN[ € | }5B ‚ @% +B %ƒ„… †bc# % y‡ †b

|$ :56 450oC h %ƒ 4 bN[ ˆ‰ Š |}5

‹ &' Œ% Ž… kl‹ 2E rY (5

|x q5.B 6s  ”• % +.[4].

To whom correspondence should be addressed.

E-mail: tjlee@yu.ac.kr

(2)

 41 5 2003 10

%ƒ„… †b|B ^ –—)[ ˜,™ +B\, š›œ, =

Žœ, œ, k8œž a .Ÿ  x †b| 8= @¡!

] n 4 )k8 ^ z¢[£D k8œ †b|B bN[Q z

¢x q56 1 DOE(department of energy) )5 RTI(research triangle institute), METC(morgantown energy technology center) W 4 .Ÿ  x †b|$ 8= 5¤! ¥¦¥§ ?v ¨ + .. ©ª, )k8Q )«L ^ xy 5B MN–—)[D zinc titanate †b|B ¬ ­#x q56 650oC h %ƒ†b N †b| ®¯™ +.[5-12].

/0 123 6s 8=°] %ƒ„… †bc# 650oC h %

ƒ 4 ±p q ”e²œh ³|ž ± ,¯´ µ³ 500oC

#¶ nƒ ± „ 5·  ¸5¯B ¹ 5% +.. ±

ƒ¶ 5· ¸ ºm nƒ „ ¸ †b|  x »

± Q| ¶o@ O¼½..  >1Q 12 8=°] t4 x¾ ¿¦v zinc titanate †b|B 650oC h %ƒ 4 q

x¾ £ j~ klm ^z¢[£D )k8 ¬ ­#x Œ 6^B À ®¯™ +~ nƒ ± „ 4B Á [£ ­

# zà z¢x Ä À  @¡.. ž a MN–—)

[(zinc titanate) ³|• tÅ5 56 ¬ ­#x Ä )

k8 Æ Ç VÅÈh /V OÉÃ4 nƒ ± „ 4 z

Ê W   :5% z¢x 5 56 .Ÿ Ë|

$ : 8= < >?@¡! 1 4B . ©Ì dž

+B ¥# .[13-18].

%ƒ„… †bc# z¢OAP %#U, TU, STU @

, +! ÍÍ ”Ε +d /0 @% +B %ƒ„… † bc# ¬z¢ 56 ƒ¶|, SŽ STU †bc# Ï

€@% +.[19]. STUc# :5 t4B ¸ 2ÐÑx

™- 5! 8— “(zM :O x¾ S@ t4B 2=x qt- ..

Ò 8= 4B ®˜dž ¥ŽÊ$ TO uS5% +B 12) Ó 8|Ôm I$   :56 †b|$ | 5¤! ®˜d$

  : †b|ž z¢©x Ç 2ÐÑ ©x ÁÂ5¤.. |   Õ  †b| z¢x, 2=x, 2ÐÑx  5% ] ÅQ

$ Ö 12) Ó8|Ôm I$ STU: k8œ †b| x¾

 »±   |O5%° 5¤..

2.  

2-1.  

Ò 8= 4B % )[ ×N‚(solid oxide mixing method) %

ƒ„… k8œ †b|$ | 5¤.[17]. Ø°Ù 20µm 5D )

k8Q  $ 75:25 ڒÁ' ÛÜ(ball mill) Ý% 24 OÞ T­ yß Ç ×N à Sx ÅN|D E.G(ethylene glycol) á w Ë56 Æ9[£ âyª zã56 ä,> % ×N[ Ro x å5¤.. µ  B ®˜d(aldrich)ž Ó8|Ôm I(Tæ)ç,

^))$ :5¤.. Roxå | v ¥èé џ xå $ 150oC 4 24 OÞT­ „ 5% 750oC 4 2 OÞT­ ¬Ž5¤

! á Ù yß56 150-300µm Ù Ø°~ yŽ à

750oC 4 2 OÞT­ .O ¬Ž5¤.. Z  : ºê k

8œ †b| Æ©x ÁÂ5 56  $ :5 % ë

 )k8~ Tì ‚ †b|$ | 5¤..

2-2. -

z¢B 2 15 mm 7í; :5¤! O9$ ÝB sample capacity tubeB 7퓣 |î :5¤% O9 â>w 50 mg

#¶ 56 Æ, b, “(¥§ ?5¤.. Æ, b, “(O

¥§ „ Table 2 dï2¡..

k8œ †b| nƒ „ 4 Æ©x  5 56 ð-ñò A$ :56 Æ¥§ ?5¤.. ë )k8~ |  † b|ž Ó8|Ôm I$   ×N †b| 56 bV

 uS@  7LѐA ÍÍ 10OÞó ¹oOô ڒõ$

;ö5¤.. µ ƃ¶B 480oC ! 7LѐA S—

250 ml/min z¢ 5÷ 4 h÷ øù¶ú 5¤..

†b| z¢x b Ç “(—¶÷J û5¤! z¢—¶

÷J z¢—¶$ ÁÂ5¤.. bz¢ cyÚå A 4 ()@B 7LAž  x S ѐA$ :5¤! “(

AB 5% )V uSv £V ý7 c$ :5¤.. µ S Table 1. Composition of natural zeolite

Elements Composition of natural zeolite, wt%

SiO2 65.0

Al2O3 14.8

K2O 1.61

Fe2O3 2.64

MgO 0.78

CaO 4.44

Na2O 2.65

TiO2 0.36

MnO 0.08

P2O5 0.33

ZnO 0.15

BaO 0.07

Table 2. Experimental conditions for reactivity and durability tests by micro-reactor system

Conditions This work KRW

Reduction Sulfidation Regeneration Sulfidation Regeneration

Temperature (oC) Pressure (atm) Flow rate (ml/min)

480 1 250

480 1 250

580 1 250

650-750 15

690-760

Gas composition - H2S 1.0 O2 5.0 H2S 0.55 O2 2.0

(vol.%) H2

CO CO2 H2O N2

11.7 19.0 6.8 10.0 balance

H2 CO CO2 H2O N2

11.7 19.0 6.8 10.0 balance

H2O N2

10 balance

H2 CO CO2 H2O N2

11.65 18.97

6.75 5.12 56.95

N2 98.0

RP (reducing power) 2.6 2.6 2.58

(3)

Ø@B z¢AB 5÷ 4 h÷ 250 ml/min S— þ¯^¡

! b Ç “(z¢ ƒ¶B ÍÍ 480oCž 580oC S5¤..

2-3. Micro-reactor

†b| ” 8—zM¥§  2=x  ¥§ %#U z¢

 4 ?5¤! †b| b Ç “(z¢  ÿ Þ^

56  ÿ zM ¦u ºê b :¾(sulfur capacity)

 õ#¶÷J 2=x û5¤.. z¢B 7퓣 2

10 mmD %#U øz¢$ :5¤% SØ@B ѐA ø

 250 ml/min 5¤.. Ò 8= 4 : 89A  x Table 2

 ¥§ „ dï ¨ž a KRW cyÚå A 4 ()@B 7LA x ѐ 5¤.. “(AB 5 vol% )Vž u

 10 vol% [ ×N5¤! b Ç “(z¢ƒ¶B ÍÍ 480oC, 580oC 4 ?5¤.. z¢ o=B T.C.D.(thermal conductivity detector) Ç PFPD(plused framable photometric detector, O.I Analytical)

”v G.C.(gas chromatograph, Donam DS6200A)ž ƒ-mD 8Å56 z¢·à A x y75¤B\, y7: š Chromosil-310 (Supelco)  šQ GS-GASPRO ÑF; š ÍÍ TCDž

PFPD 8Å56 :5¤.. bz¢ z¢ o= 4 H2S

¶ 2,000 ppm @à 95¤% cž £V Ž% [ ×N “ (A$ SØ5Ã4 bv †b|$ .O “(O ! z¢ o=

 A x y756 SO2 ¿o@  µ “(z¢ 95¤..

2-4. 

†b| 2ÐÑx ¥§ ASTM[20] |¼v 2ÐÑx O§

”e(attrition tester) 4 ?5¤.. STAB £V(N2)$ :5

¤! ¥§‚ 2ÐÑü# ST ÷y †b| 50 g â>

5% STA$ 10 l/min S— þ¯^¡! S— …  AJ(wet gas meter)$ :56 ü#5¤.. µ S— Ch

(0oC, 1 atm) „ #5¤! û¶B  30%#¶ S

5¤.. ¶B 2ÐÑü#”e2 #$ |}5 À ! D  ^Ø [ hƒ „ ¦R t4 (5¶ú ” e5¤.. F y‡ : I  1OÞ Î   56 v

Fy‡ ڒ$ ü#5¤..

2-5.   

†b| z¢à [xõ B BET Cà ü#(Micromeritics Gemini 2375), XRD(X-Ray Diffractometer, RIGAKU, D/May-2500), EDX (Energy Dispersive X-ray, FISONS, KEVEX SIGMA), SEM(Scanning Electron Microscope, Hitachi, S-4100)W :56 y75¤! C Ã[xõ CÃ, Å#x, k8 uw, CÃåh W ;ö5¤..

3. 

3-1. ZnO   

Ò 8= †bz¢ƒ¶D 480oC 4 7LA  )k8

(ZnO) Æ©x  5 56 ð-ñòA ¥§ÅQ$ Fig. 1

b|$ 480oC 4 ÍÍ 10OÞ T­ ÆO ÅQ ë )k8

  15%#¶, Ó8|Ôm I$   : †b|B  3.4%

#¶ Æ@¡.. µ ƶB ÍÍ †b| uS ZnO )V w ڒw Á$ y' œ)5¤..

ƶ(degree of reduction, %)= ×100

s ÅQ Û µ k8œ †b| 7LA t4 480oC #

¶ 4 Æ >? D*  +¡!,  $ :u4

Æ |*  +¡.. )k8 Æ@Ã ÆV k8(Zn)

“5’ @B\, ÆV k8 !B• 419.5oC #¶ Ò 8= †b z¢ƒ¶. Ä µ³ %ƒz¢ „ 4 ‘’ VÅ(sintering)v..

Æv k8 VÅ †b| z¢x 5 ÆD p  +B\, Ó

zeolite) q  $ :5  ë )k8 †b|(ZnO)

Á56 Ɨ¶ "¯#$ D*  +¡.. Ɨ¶ "Ž

.B À ÆV k8 Æ@ ,% µ³ VÅK¶$ VO

&Q TO VÅ  k8œ †b| x¾5$ |*  +..

3-2.   !

Õ   $ : †b| b Ç “(z¢O z¢OÞ

¡.. ®˜dž Ó8|Ôm I$   : Õ  †b|

2O3

†b| Á56 Ó8|Ôm I$   : ZnO/natural zeolite

†b| Öz¢—¶ž ûå ¶' h 4 b Šw é Œ

 À dï(.. ®˜d q bz¢ 4 bVž z¢x )d Ó8|Ôm IB bVž z¢x +B .Ÿ xy

Æ  ڒVw ZnOuw× OÆ°w

ZnÆ°w+OÆ°w

Fig. 1. Reduction of ZnO and ZnO/Natural zeolite with H2 at 480oC.

Fig. 2. Sulfidation rates of zinc-based sorbents.

(4)

 41 5 2003 10

*+ uS@, + µ³ Öz¢—¶ž b:¾ é q

À ,Îv.. Kim, Lee W[21-23] k8œ †b| ), )

l-, ).I WQ a –—)[ Ë| :* q z

¢x Ç 2=x *  +.% % ¨ +.. Ó8|Ôm I uS Fe2O3(2.64 wt%)Q Na2O(2.65 wt%)B … (1-3)Q a z¢

400oC 5 ƒ¶ 4 bVž z¢x q5 µ³ k8œ

†b| Ö z¢x Q b:¾ ¦ í· eB Ë

| ¼:* À ,Îv..

3Fe2O3+H2/2Fe3O4+H2O (1)

Fe3O4+3H2S/3FeS+4H2O (2)

Na2O+H2S/Na2S+H2O (3)

Õ  †b| “(z¢©x z¢OÞ Ú’õ ;ö ÅQ, Fig. 3 dï ¨ž a Ö 80y0 “(z¢—¶B ZnO/natural zeolite †b| 12d 80y à B ZnO/Al2O3†b

| ڒõ é 1Ž >?@¡.. Õ †b| ÑÕ 250y 2 “ ( 39@¡..

3-3. " 

b-“( 14 ¥Ov À 1  ÿ 56 ZnO/Al2O3†b|ž

ZnO/natural zeolite †b| b-“( 8—  ÿ ¥§ ?

5¤.. †bƒ¶ž “(ƒ¶$ ÍÍ 480oCž 580oC %#OÉ% 10

 ÿ ¥§ ¥O ÅQ H2S 5Q6 Fig. 4ž Fig. 5 dï 2¡.. ZnO/Al2O3†b| q 6  ÿ †b-“( zM@B T

­ 1  ÿ z¢O¼ à  150 min, 2  ÿ  180 min, 3  ÿ  220 min, 4  ÿ  210 min, 5  ÿ  200 min, 6  ÿ  170 min0 z¢ o= 4 H2S 7 ¿o@ 8

! 5Q6 9¶ ÁÂ 5¤.. ZnO/natural zeolite †b|

q¶ 9  ÿ >?@B T­ 1  ÿ bz¢ O¼ à 140 min, 2  ÿ à B  200 min #¶0 H2S 7 ¿o@ 8

! 5Q6 9¶ 5¤.. ìz †b|ž a Š|B

Š ºê z¢ o= Oõ 5Q6 9 *ú &

' ! ^xy z¢ :65B Á'¶ Œ.. Õ †b| ÑÕ ÁÂ

 †b&' Œ% ^z¢[D )k8 z¢ :65B Á' Œ

 À dï(..

; Õ †b| ÑÕ  ÿ ¦ ºm Ö B b:¾ ¦

5B À dï(B\, s ÆD 1  ÿ 4 †b|Ø°

2÷0 3ª z¢ :65 8 µ³ .. %ƒ„… †b|

 -%   z¢ Szekely W[24] |­ grain model ²f

@B\, GibsonQ Harrison W[25] nƒ 4 grain )<(grain diffusion resistance) Œ µ³ H2S †b| Ø°n=÷y0

)@  µ³ †b| >x Ē dï?.% % ¨ +..

; Kang W[18] b-“(z¢ zM@B Q# 4 †b|Ø°

+.. ] 8=ÅQ$ ÁÂt Û µ Ö  ÿ bz¢ 4 †b|

 b:¾ Ä À H2S 2÷)—¶ "è À ÆD ! b-“( zM@Ã4 c (x÷J 2÷) SŽt#

µ³ b:¾ ¦5B À ²f*  +..

bz¢ 4 b Š †b|$ 580oC, 5vol%)V(O2) „ “ (Q# 4 (5B SO2 Oõ$ ;ö 5Q6 Fig. 6Q Fig. 7 dï2¡.. ZnO/Al2O3†b| q “(z¢ O¼ à  3%#¶ SO2 So@¡! z¢O¼ à  50-100 min#¶ 4 SO2

So¶ V5 O¼5B\,  SO25Q6 9

 3~5! z¢  ÿ ¦*ú 5Q6 9 3~t

% TO “( 9OÞ 8@, 6  ÿ 4B 300 min#¶ 4

¶ “( 9@ 8.. ZnO/natural zeolite †b| q B “ (z¢ O¼ à  100 min #¶0  3%#¶ SO2 So@¡

! 5Q6 9 5% 250 min à B SO2 ;ö@

8.. ž a †b| “(—¶ "è À b)Y (x ^ ÆD ®¯™ +.[26]. C, bk8(ZnS) )V t4 )“

Fig. 3. Regeneration rates of zinc-based sorbents. Fig. 4. H2S breakthrough curve for the sulfidation of ZnO/Al2O3 sor- bent at 480oC.

Fig. 5. H2S breakthrough curve for the sulfidation of ZnO/natural zeo- lite sorbent at 480oC.

(5)

(@B Q# 4 Õ  $ B\, 5dB … (4)ž a SO2

 )@B À ! .ê B … (5)ž a b)Y(ZnSO4) (x v à b)Y %ƒ ¬yt t4 SO2 @B  .. Ò 8

= 4 †b| “( ÐD ÷y 4 “(—¶ "¯B SB b )Y (x D5B À ,Îv..

ZnS+3/2O2/ZnSO3/ZnO+SO2 (4)

ZnS+3/2O2/ZnSO3+1/2O2/ZnSO4/ZnO+SO2, SO3 (5) h ÅQ 4 ZnO/Al2O3†b| Á56 ZnO/natural zeolite † b| “(  ÿ ¦ ºm Á ­#D “(©x S

5¤B\, Ó8|Ôm I uS )Q a w –—)[

†b| “( í· ^B Ë| E* 5 µ³D À , Îv.. Kim, Lee, Jun W[21-23] †b| “(x 5 5 6 –—)[ Ë| :5¤B\, ] 8=ÅQ 4¶ )

(Fe2O3) Ë| :* q “(x @¡.% % ¨ + .. )k8 Á56 ) 450-600oC=Þ 4 “(—¶ Fù

! k8œ MN)[D zinc titanatež zinc ferrite q ¶ zinc ferrite “(—¶ é Fê À  @¡..

Ò 8= 4B %ƒ„… †b| b Ç “( 8— >?p

q ¶ b:¾ ì#5’ S@B #¶$ †b| 2=x m #5¤.. Ò 8= 4 |  Õ  k8œ †b| 8—-z MD b-“(  ÿ ¥§ 4  ÿ ¦ ºê †b| b

:¾ Table 3 dï2¡.. ZnO/Al2O3†b| q 1  ÿ 4 b:¾  15 gS/100 g sorbent #¶, 3  ÿ 4  25 gS/

100 g sorbent#¶¤!, 5  ÿ à  20 gS/100 g sorbent #¶

$ S5B À dï(.. ZnO/natural zeolite †b|B 1  ÿ 4 b:¾ 20 gS/100 g sorbent #¶¤! 2  ÿ 4 26 gS/

100 g sorbent #¶ Sv à 4  ÿ0 V@. .O ¦5 6 26 gS/100 g sorbent S@B À dï(..  ÿ ¦ º ê b:¾ ZnO/Al2O3 †b| q 4  ÿ0 ¦5.

à V5B · dï2¡! ZnO/natural zeolite †b| q 25 gS/100 g sorbent h 10  ÿ 0 S@B À dï(

.. 2=x q À  v ZnO/natural zeolite †b| 5 6 10  ÿ à x¾ D5%° ” x¾¥§ †b-“(

30  ÿ ¥§ ?5¤..

3-4. 30 #$% &'"

  Ó8|Ôm I$ : ZnO/natural zeolite †b| 30

 ÿ ” x¾¥§  b :¾ Fig. 8 dï2¡.. Fig. 8 4 dï ¨ž a 10  ÿ 4 b :¾ G° 5@¡

B\, 7íz¢ †b| â>U ÷y ;ö ÅQ, †b| AB t4 ÏHI Èh ( À †b|ž z¢5 % JQ 5B bV t4 Ðe †b| x¾ 5v À D À

 D@¡.. †b|$ “â> ÅQ, 10  ÿ 4  18 gS/

100 g sorbent V5¤K b :¾ 11  ÿ .O 4M@¡

B\ b:¾ L(29.6 gS/100 g sorbent) ‰05B #¶ · h@¡.. sd 4M@¡K b :¾ 15  ÿ0 S@.

16, 20, 24  ÿ 4 Μ V@B · dï(.. b:

¾ V5B  ÿ 4 z¢ 2 â>U D5¤d ÏH I Û  +B © • M@ 8.. Áú †b&' 

— V@¡~ 30  ÿ0 b:¾ 15 gS/100g sorbent h S@¡B\, s ÅQB ©Nª Ë|$ :5 % )

k8Q Ó8|Ôm I  ~ | v k8œ †b|4B k Fig. 6. SO2 breakthrough curve for the regeneration of ZnO/Al2O3 sor-

bent at 580oC.

Fig. 7. SO2 breakthrough curve for the regeneration of ZnO/natural zeolite sorbent at 580oC.

Table 3. Sulfur capacity of Zn/natural zeolite and ZnO/Al2O3 sorbents Sorbents Sulfur capacity(gS/100g sorbent), Number of cycles

1 2 3 4 5 6 7 8 9

ZnO/Al2O3 21.1 25.3 27.2 26.1 25.2 22.2 − − − ZnO/natural zeolite 20.2 26.1 25.3 23.2 25.1 26.3 27.4 26.2 26.1

Fig. 8. Sulfur capacity of ZnO/natural zeolite during 30 cycle reaction.

(6)

 41 5 2003 10

^ q x¾ ûv..

; ”x¾¥§ 4 ;ö@B Á>x ÆD  5 56 z¢·à †b| Cà ü#5¤! SEM/EDX$ :56 C Ã[xõ$ ;ö5¤.. Cà ü#ÅQ, b-“( ”8—zM ¥

§·à †b| Cà 3.7 m2/g 4 9.4 m2/g ¦5¤$ ¶ O=5% b:¾ 5@¡.. EDX y7 †b| Cà k 8uw z¢ 86.4%#¶¤B\, 24  ÿQ 30  ÿ z¢à ÍÍ 90.2%, 94.6% ¦@¡.. Z 30 ÿ à †b| CÃ

SEM ;ö ÅQ Fig. 9(b) dï ÀQ a P[ Q6 + B åh Û  +¡.. h Céxõ y7ÅQ÷J k8œ

†b|$ ”Þ 8— zM : * q 7LA n Nx

A(CO, H2) t )k8 Æ@, ÆV k8 @%, ]

 CÃ T(migration) Ç VÅ t Á>x ì,R  +$

D*  +¡..

3-5.  #

Ó8|Ôm Iž ®˜d$   :56 |  Õ  k 8œ †b| 56 5OÞT­ Air jet STO †b| ÐÑ g¥ Ÿ÷J ä,> ÐÑC(AI: attrition index)ž #ÐÑC (CAI: collected attrition index)$ Table 3 dï2¡.. ®˜d$ 

#ÐÑCB 34.5%#¶¤! Ó8|Ôm I$   :

†b|B ÐÑC 14.7%, #ÐÑCB 9.1%#¶¤.. 7SS c” STU Tz¢c# :@B FCC T ÐÑg¥#¶B

STA S— 10 slpm(standard liter per minute) ì µ  20%

#¶D\, Ó8|Ôm I$   : †b| q ©Nª Å N|$ :5 8$ ¶ O=5% Œ 2ÐÑx > À d ï(.. ìz †b| ض$ S5 56 UVd I (bentonite)ž •V(clay) WQ a Úx ÅN|$ :5B\, Ò 8

= 4   : Ó8|Ôm I q¶ UVd Id •V

ž ÐW .Ÿ X+ xy MN ×Nv Ó8Y[4 OZIž S xy u5% +..  4 E*Q Úx ÅN| E* TO B À ,Îv.. ©ª Ó8|Ôm I 4.44 wt%#¶ uSv )š›(CaO) ®˜dž ¥ŽÊ ^x yD OZI )k8, Yk8WQ u uS@, ¢Å| ¼:

.. )š› uSv Ó8|Ôm I$   :* q 2ÐÑ

©x 5B\ í· i  + À ,Îv..

3-6. XRD

Õ †b| b-“( 8—z¢¥§ ? z¢·à [ŽS

 ©x õ$ ;ö5 56 XRD$ :56 †b| Å#= 

õ$  5¤! ] ÅQ$ Fig. 10Q Fig. 11 dï2¡..

ZnO/Al2O3†b|B z¢ q 2θL 31.7, 34.3, 36.2D ZnO

©x@Ù~ dï(d z¢ à B ZnOž 2θL 31.22, 36.8D ZnAl2O4 ©x@Ù u dï(.. z¢ >?@B T­ ^z¢[

£D ZnOž  D Al2O3 ÅN56 MN)[D ZnAl2O4ž a Fig. 9. SEM photography of ZnO/natural zeolite sorbent, (a) fresh, (b)

30 cycle reacted.

Fig. 10. XRD pattern of ZnO/Al2O3 sorbent.

Table 4. Attrition resistance of zinc-based sorbents

Sorbents AI(5),

[%]

CAI(5), [%]

Initial weight, [g]

Flow rate, [slpm]

RH, [%] Temp.,

ZnO/Al2O3 43.1 34.5 50 10 28.3 22

ZnO/natural zeolite 14.7 9.1 50 10 30.2 26

(7)

 A@X=  [£ (x@¡.. sd ZnAl2O4B [¶ [5%

¬­#x Œ [ŽS ©x ~ H2Sž z¢x }

)B À ®¯™ +B\, Ò 8= b-“(8—z¢¥§ 4 b

:¾ •E V5B 6s  ÆD n 5d Û  +.[27].

zà ZnO/natural zeolite †b|B z¢Q à XRD y7ÅQ ZnO

~ ;ö@¡! 8—z¢ t4 ZnO Å#x 5@, @ÙF

 V À 3 .ê Å#= $ \k Û  )¡.. ÁÂ ®

˜d Á56 Ó8|Ôm I  4 ­#D À ,Î v..

4.  

®˜dž Ó8|Ôm I$ k8œ †b| = ­#x 5

   :56 †b|$ | 5¤!, ] †b| x

¾ û5 56 z¢x, 2=x, 2ÐÑx ÁÂ5¤! ¥§

ÅQ÷J .$Q a ÅQ$ ä¡..

k8œ †b| b-“(8—z¢x 5 t4B )k8

 VÅ *  +B ¸  $ :5B À SŽ5! Ó 8|Ôm I$   :* q ®˜d$   :  qž ÐW )k8 VÅ |*  +¡.. Z Ó8|Ô m I uS Fe2O3, Na2O, CaO WQ a –—)[ Ë| Ç ÅN| ¼:56 z¢x, 2=x, 2ÐÑx ·hOÉB í· +

$ Ó8|Ôm Iž a Ó8Y[ †b| x¾ SŽ

u D5¤..

Ò 8= 4B 12) Ó8|Ôm I$   :56 k8œ

†b|$ | u]  5Ã4 x¾ q %ƒ„… † b| 1) ¾x D*  +B xQ$ ä¡.. Eà Ó8|Ô

* q %&' %ƒ„… †b| h: Ç 1)O$ ^á_

 + À  v..

Ò 8=B QS÷ 1#8=¥ç t4 ?@¡! 8

=Á Æ {`l..



1. Park, Y. S., Rhee, Y. W. and Son, J. E., Chemical Industry and Tech- nology, 11(5), 366(1993).

2. Rhee, Y. W. and Son, J. E., Chemical Industry and Technology, 13(1), 53(1995).

3. Yi, C. K. and Wi. Y. H., Chemical Industry and Technology, 13(5), 466(1995).

4. Rutkowski, M. D., Klett, M. G. and Zaharchuk, R., “Assesment of Hot Gas Containment Control,” Proceeding of the Advanced Coal- Fired Power Systems ‘96 Review Meeting, METC(1996).

5. Copeland, R. J., Cesario, M., Dubovik, M., Feinberg, D. and Windecker, B., “A Long Life ZnO-TiO2 Sorbent,” Proceeding of the Advanced Coal- Fired Power Systems ‘95 Review Meeting Volume I, 394(1995).

6 Copeland, R. J., Cesario, M., Dubovik, M., Feinberg, D., NacQueen, B., Sibold, J., Windecker, B. and Yang, J., “Long Life ZnO-TiO2 and Novel Sorbent,” Proceeding of the Advanced Coal-Fired Power Sys- tems ‘96 Review Meeting(1996).

7. Rhee, Y. W., Lee, T. J. and Yi, C. K., Chemical Industry and Tech- nology, 15(3), 273(1997).

8. Rhee, Y. W., Lee, T. J. and Yi, C. K., Chemical Industry and Tech- nology, 15(4), 342(1997).

9. Ayala, R. and March, D. W., “Cheracterization and Long-Range Reactivity of Zinc Ferrite in High-Temperature Desulfurization Processes,” Ind.

Eng. Chem. Res., 30(1), 55(1991).

10. Woods, M. C. and Gangwal, S. K., “Kinetics of the Reactions of a Zinc Ferrite Sorbent in High-Temperature Coal Gas Desulfuriza- tion,” Ind. Eng. Chem. Res., 30(1), 100(1991).

11. Gibson, J. B. and Herrison, D. P., “The Reaction between Hydrogen Sulfide and Spherical Pellets of Zinc Oxide,” Ind. Eng. Chem. Pro.

Des. Dev., 19, 231(1980).

12. Sa, L. N., Focht, G. D., Ranade, P. V. and Harrison, D. P., “High- Temperature Desulfurization Using Zinc Ferrite: Solid Structural Property Changes,” Chem. Eng. Sci., 44(2), 215(1989).

13. Kidd, D. R., “Nickel-promoted Absorbing Compositions for Selective Removal of Hydrogen Sulfide,” U.S.Patent No. 5,094,996(1992).

14. Kidd, D. R., Delzer, G. A., Kubick, D. H. and Schubert, P. F., “Selective Removal of Hydrogen Sulfide over a Zinc Oxide and Silica Absorb- ing Composition,” U.S.Patent No. 5,358,921(1994).

15. Khare, G. P. and Cass, B. W., “Fluidizable Sulfur Sorbent and Flu- idized Sorption Process,” U.S.Patent No. 5,439,867(1995).

16. Kidd, D. R., “Selective Removal of Hydrogen Sulfide over a Nickel- promoted Absorbing Composition,” U.S.Patent No. 4,990,318(1991).

17. Lim, C. J., Cha, Y. K., Park, N. K., Ryu, S. O., Lee, T. J. and Kim, J. C.,

“A Study of Advanced Zinc Titanate Sorbent for Mid-Temperature Des- ulfurization,” HWAHAK KONGHAK, 38(1), 111-116(2000).

18. Kang, S. C., Jun, H. K., Lee, T. J., Ryu, S. O. and Kim, J. C., “The Fig. 11. XRD pattern of ZnO/natural zeolite sorbent.

(8)

 41 5 2003 10

Characterization of Zn-based Desulfurization Sorbents on Various Supports,” HWAHAK KONGHAK, 40(3), 289-297(2002).

19. Gupta, R. P. and Gangwal, S. K., “Enhanced Durability of High-Temper- ature Desulfurization Sorbents for Fluidized-Bed Applications,” Top- ical Report to DOE/METC, November(1992).

20. ASTM D 5757-95, “Standard Method for Detemination of Attrition of Powered Catalysts by Air Jets,”(1995).

21. Jun, H.-K., Lee, T.-J. and Kim, J.-C., “Role of Iron Oxide in Promo- tion of Zn-Ti-Based Desulfurization Sorbents during Regeneration at Middle Temperatures,” Ind. Eng. Chem. Res., 41, 4733(2002).

22. Lee, H. S., Kang, M. P., Song, Y. S., Rhee, Y. W. and Lee, T. J.,

“Desulfurization Chatacteristics of CuO-Fe2O3 Sorbents,” Korean J.

Chem. Eng., 18(5), 635(2001).

23. Jun, H. K., Lee, T. J., Ryu, S. O. and Kim, J.C., “A Study of Zn-Ti-

Based H2S Removal Sorbents Promoted with Cobalt Oxides,” Ind.

Eng. Chem. Res., 40, 3547(2001).

24. Szekely, J., Evans, J. W. and Sohn, H. Y., “Gas-Solid Reactions,”

Academic Press, New York(1976).

25. Gibson, J. B. III, and Harrison, D. P., “The Reaction between Hydro- gen Sulfide and Spherical Pellets of Zinc Oxide,” Ind. Eng. Chem.

Process Des. Dev., 19, 231(1980).

26. Sasaoka, E., Hatori, M., Yoshmura, H. and Su, C., “Role of H2O in Oxidation of Spent High-Temperature Desulfurization Sorbent Fe2O3 and CuO in the Presence of O2,” Ind. Eng. Chem. Res., 40, 2512(2001).

27. Park, N. K., Lee, C. U., Ryu, S. O., Lee, T. J. and Kim, J. C., “Prep- aration and Reactivity of ZnO/Al2O3 Desulfurization Sorbents for Removal H2S,” Energy Engg. J., 11(2), 136-141(2002).

참조

관련 문서

This study researched the possibility of using natural products for hair growth agents and hair loss prevention materials based on the test for the antioxidant and

His initial knowledge of the tradition was fragmentary because it was based on the literature that comprises this tradition and its descendants.. His initial

Following the spirit of Mehlum et al.(2006), we hypothesize that the effect of an abundance of natural resources on a country’s level of corruption depends on the quality of

First, there were 11 error-triggers in the process of communication of information design using natural objects as a metaphor: ① Ratio of visual expressions

1 John Owen, Justification by Faith Alone, in The Works of John Owen, ed. John Bolt, trans. Scott Clark, &#34;Do This and Live: Christ's Active Obedience as the

This thesis is the study of natural images seen through the sensible eyes of a researcher, more specifically focusing on the contemplation of nature

 Let us determine the natural response for the overdamped RLC circuit of Figure 9.4-1 when the initial conditions are v(0) and i(0) for the capacitor and the

The spectrum of a given shock is a plot of the maximum response quantity (x) against the ratio of the forcing characteristic (such as rise time) to