• 검색 결과가 없습니다.

Chapter2. Vector analysis

N/A
N/A
Protected

Academic year: 2022

Share "Chapter2. Vector analysis"

Copied!
33
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

Chapter2 Vector analysis

Chapter2. Vector analysis

(2)

2 1 Introduction 2-1 Introduction

1. vector algebra

addition, subtraction and multiplication , p

2. orthogonal coordinate systems 3. vector calculation

differentiation, integration (line, surface and volume differentiation, integration (line, surface and volume integrals)

del( ) operator, gradient, divergence and curl operation ∇

(3)

2 2 Vector Addition and Subtraction 2-2 Vector Addition and Subtraction

1 Addition 1. Addition

, , A

A Aa A A a

= = = A

Commutative law : A B C

A B B A + =

+ = + 1

Associative law : 2 A + ( B C + ) = ( A + B ) + C 2. Subtraction

( )

A B − = + − A B

(4)

2 3 Products of Vectors 2-3 Products of Vectors

1. Scalar or dot product 1. Scalar or dot product

A B i = AB cos θ

A θ B

Commutative law :

Distributive law : ( ) A B B A

A B C A B A C

=

+ = +

i i

i i i

1 2

θ B

2

or

A A i = A A = A A i

( ) ( )

C = C C i = A + B i A + B

2 2

2 2

2 cos

2 cos

A B AB

A B AB

θ α

= + +

= + −

B C

α

θ

A

(5)

2. Vector or cross product 2. Vector or cross product A B × = a AB

n

sin θ

B

A B ×

A B × = − × B A

θ A

an

ω

V

d

sin V = ω d = ω R θ

θ

d p

R

V = × ω R

(6)

3 Product of three vectors 3. Product of three vectors

( ) ( ) ( )

A B C i × = B C i × A = C A B i ×

( ) ( ) ( )

A × B C × = B A C i − C A B i

(7)

2 4 Orthogonal Coordinate Systems 2.4 Orthogonal Coordinate Systems

1 2 3

Base vector ( , , ) u

1

u

2

u

3

1 2 3 2 3 1 3 1 2

1 2 2 3 3 1

( )

, ,

0

u u u u u u u u u

u u u u u u

× = × = × =

= = =

i i i

1 2 2 3 3 1

1 1 2 2 3 3

u u i = u u i = u u i = 1

1 1 2 2 3 3 1 1 2 2 3 3

,

( 1, 2, 3) : const does not mean that the surface in plane. It can

u u u u u u

i

A A u A u A u B B u B u B u u i

= + + = + +

=

be curved surfaces

e.g) spherical coordinate system( , r θ , )

h f f h

φ : const means the surface of a sphere

(it is not plane, but , , are perpendicular to each other) r

r θ φ

(8)

A B A B + A B + A B

1 1 2 2 3 3

1 2 3

u u u u u u

A B A B A B A B

u u u

A B A A A

= + +

i

1 2 3

1 2 3

( ) ( ) ( )

u u u

u u u

A B A A A

B B B

A B A B A B A B A B A B

× =

2 3 3 2 1 3 3 1 1 2 2 1

1 2 3

= u A B (

u u

A B

u u

) − u A B (

u u

A B

u u

) + u A B (

u u

A B

u u

)

(9)

1. Differential change in one of the coordinates 와 Diffetential length change 의 상관 관계

1 2 3

, ( : metric coefficient, may be a function of , , ) e.g) polar coordinate(the subset of c

i i i i

dl =h du h u u u

ylindrical coordinate) (u u1 2)=(r φ) dφ inφ → dl2 = rdφ inφ direction ( , )=( , ) in in direction

2. differential length change : vector

u u r d dl rd

l

φ φ φ → = φ φ

임의의 방향의

1 1 2 2 3 3 1( 1 1) 2( 2 2) 3( 3 3)

3

dl = dll =u dl +u dl +u dl =u h du +u h du +u h du

Differential volume change : scalar 3

1 2 3 1 2 3

. Differential volume change : scalar dv =h h h du du du

1 1

4. Differential area change : vector (right hand rule)

) Differential area normal to the unit vector ds dsn

cf ds u

=

1 1

) Differential area normal to the unit vector

cf ds u

1 2 3 2 3 2 3

ds =dl dl = h h du du

(10)

2 4 1 Cartesian Coordinates 2-4.1 Cartesian Coordinates

di l h h h 1

1 2 3

( , u u u , ) = ( , , ) x y z distance element. so h

1

= h

2

= h

3

= 1

u1 = x u2 = y u3 = z , ,

position vector to the point ( , , )

u x u y u z

x y z

x y z

= = =

× =

1 1 1

x x y y z z

OP x x y y z z A B A B A B A B

= + +

= + +

i

1 2 3

( ,u u u, )=( , , )x y z

x y z

x y z

x y z

A B A A A

B B B

× =

, ,

x y z

x y z

dl xdx ydy zdz

ds dydz ds dxdz ds d

= + +

= = = xdy

dv =dxdydz

(11)

2 4 2 Cylindrical Coordinates 2-4.2 Cylindrical Coordinates

( u u u

1 2 3

) = ( r φ z ) h = h = 1 h = r

( , u u u , ) = ( , , ) r φ z h

1

= h

3

= 1, h

2

= r

, , r × = φ z φ × = z r z r × = φ

r z

A = rA + φ A

φ

+ zA

1 2 3

( ,u u u, )=( , , )r φ z

(12)

dl d φ φ d d

dl=rdr+φ φd +zdz

, ,

r z

dl rdr rd zdz

ds rd dz ds drdz ds rdrd dv rdrd dz

φ

φ φ

φ φ

φ

= + +

= = =

=

, ,

r z

ds rd sz ds drdz ds rdrd dv rdrd dz

φ φ φ

φ

= = =

=

) r z x y z

cf A=rA +φAφ +zA xA + yA + zA

φ

cos sin

sin cos

y

x r r

y r r

A A x A r x A x A A

A A y A r y A y A A

φ

φ φ

φ φ

φ φ φ

φ φ φ

= = + =

= = + = +

i i i

i i i

cos sin 0 sin cos 0

0 0 1

x r

y

A A

A A

A A

φ

φ φ

φ φ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢= ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣Az 0 0 1⎦ ⎣ ⎦Az 대입

⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦

cos , sin , x=r φ y =r φ z = z

대입

2 2 1

, tan ( ), y

r x y z z

φ x

= + = =

(13)

2 4 3 Spherical Coordinate 2-4.3 Spherical Coordinate

( u u u

1 2 3

) = ( R θ φ ) h = 1 h = R h = R sin θ ( , u u u , ) = ( , , ) R θ φ h

1

= 1, , sin h

2

= R h

3

= R θ

, , R × = θ φ θ φ × = R φ × = R θ

A = RA

R

+ θ A

θ

+ φ A

φ

(14)

sindl = RdR+θ θ φRd + R θ θd

2

2

sin , sin ,

sin

dsR R d d ds R dRd ds RdRd

dv R dRd d

θ φ

θ θ φ θ φ θ

θ θ φ

= = =

=

) sin cos sin sin cos

cf x = R θ φ y = R θ φ z = R θ

2 2

2 2 2 1 1

) sin cos , sin sin , cos

, tan , tan

cf x R y R z R

x y y

R x y z

z x

θ φ θ φ θ

θ φ

= = =

= + + = + =

H.W1 : Find the conversion matrix from spherical into cartesian

(15)

2 5 Integrals Containing Vector Functions 2-5 Integrals Containing Vector Functions

Fdv vdl F dl A ds

,

,

i ,

i

1. (for cartesian)

2 ( )[ ] ( ) ( ) ( )

v c c s

v z y x

Fdv vdl F dl A ds

Fdv Fdxdydz

vdl v x y z xdx ydy zdz x v x y z dx y v x y z dy z v x y z dz

=

= + + = + +

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫ ∫

1

2. ( , , )[ ] ( , , ) ( , , ) ( , , )

) from point P

cvdl cv x y z xdx ydy zdz x v x y z dxc y v x y z dyc z v x y z dzc

cf

= + + = + +

∫ ∫ ∫ ∫ ∫

2

to point P2

around path

p vdl Cvdl

1

, around path

p vdl Ccvdl

∫ ∫

y

2

) evaluate

0P

exr dr

P2

(1,1) P

2 2 2

where from the original to the point (1,1) ) along the direct path

r x y P

a OP

= +

1

2

) along the path ) along the path

b OP P

c OP P

x

P1

o

(16)

2 2

2 2 2

0 0

-1

) 2 2

3

where cos sin and . since tan tan

a

P

r dr r r dr r

y y

r x φ y φ φ π φ φ π

= =

= + = = ⇒ = =

∫ ∫

where cos sin and . since tan tan

4 4

2 2

3 3

r x y

x x

x y

φ + φ φ φ ⇒ φ

= +

1

1

1

2 2 2 2 2

0 0

) along O

4 1

( ) (0 ) ( 1)

3 3

P P P

P

b P P

x + y dr = + y dy y + x + dxx = x + y

0

0

1

2 2

0

3 3

1 4

) same way, ( )

3

c

P

x + y dr = x + 3 y

(17)

3 ∫ F dl i = ?

3. ?

) Given 2 , evaluate

C

B A

F dl

ex F xxy y x F dl

=

= −

i

i ) In cartesian coordinates

) In cylindrical coordinates a

b

) I t i

x=0,y=3

2 2

) In cartesian

( 2 ) ( ) 2

( 2 ) 9(1 ) using 9

a

F dl xxy y x xdx ydy xydx xdy

xydx xdy π x y

= − + = −

− = − + + =

i i

3, 0

( 2 ) 9(1 ) using 9

2 ) In cylindrical

( cos 2 sin ) ( sin 2 cos )

x y xydx xdy x y

b

F r xy φ xy φ φ xy φ x φ

= = = + + =

= − − +

where x =rcos , φ y =rsin , φ dlr 3

3( sin 2 cos )

d d

F dl xy x d

π

φ φ φ

φ φ φ

π

=

= − +

i

2

0 3( sin 2 cos ) 9(1 ), where 3cos and 3sin

xy φ x φ φd π2 x φ y φ

− + = − + = =

(18)

4 ∫ A dA d h i l h fl f h

4. the integral measures the flux of the vector field flowing through the area

s

A ds

s

A nds

A S

= ⇒

ii

cf ) the convention for the positive direction of or a closed surface

ds n

an open surface

depend on the direction in which the perimeter of the open

f i d

surface is traversed

disk

(19)

1 2

) Given k k , ( 3, 2)

ex ) Given F = a + a , ( z = ± 3, r = 2) evaluate .

r z

s

ex F a a z r

r r

F ds

+ ±

i

∫ ∫ ∫ ∫

)

a)top face : , , 3 ( 0 2, 0 2 )

top bottom side

S face face wall

sol F ds F nds F nds F nds

n z ds rdrdφ z r φ π

= + +

= = = = → = →

i

i

i

i

2 2

2 2

0 0

3 12

b)bottom face : , , 3

top face

F nds k rdrd k

n z ds rdrd z

π φ π

φ

= =

= − = = −

i

∫ ∫

) , ,

φ

2 2

2 2

0 0 3 12

c)side wall : 2

bottom face

F nds k rdrd k

n r ds rdrd r

π φ π

φ

= =

= = =

i

∫ ∫

2 3

1 1

0 3

c)side wall : , , 2

side 12

wall

n r ds rdrd r F nds π k rdrd k

φ

φ π

= = =

= =

∫ ∫ ∫

i

1 2

12 ( 2 )

S F ds π k k

i = +

(20)

2 6 Gradient of a Scalar Field 2-6 Gradient of a Scalar Field

scalar or vector fields : function of ( t ; u u u

1 2 3

) scalar or vector fields : function of ( ; , , ) space rate of change of a scalar fields at a given time

the gradient of the scalar : the vector that represents both the magnitude and t u u u

g p g

the direction of the maximum space rate of increase of a scalar

grad dV or dV (where, )

V n V n dl dn

dndn

) cos ( )

( )

dn dn

dV dV dn dV dV

cf n l V l

dl dn dl dn dn dV V dl

α

= = = = ∇

i i

dV = ∇ i ( V dl )

(21)

V V V dVdl1+ ∂ dl2 + ∂ dl3

1 2 3

1 1 2 2 3 3 1 1 1 2 2 2 3 3 3

where, ( ) ( ) ( )

dV dl dl dl

l l l

dl u dl u dl u dl u h du u h du u h du

V V V V V V

= + +

∂ ∂ ∂

= + + = + +

123 ∂ ⎞

(

1 1 2 2 3 3

)

123 ∂ ⎞

1 2 3 1 2 3

1

V V V V V V

dV u u u u dl u dl u dl u u u dl

l l l l l l

V u V

⎛ ∂ ∂ ∂ ⎞ ⎛ ∂ ∂ ∂ ⎞

=⎜⎝ ∂ + ∂ + ∂ ⎟⎠ + + =⎜⎝ ∂ + ∂ + ∂ ⎟⎠

∇ = ∂

i i

2 3 1 2 3

V V V V V

uuuuu

+ + = + +

V u1

l

∴ ∂1 2 2 3 3 1 1 1 2 2 2 3 3 3

1 2 3

1 1 2 2 3 3

u u u u u

l l h u h u h u

u u u V

h u h u h u

+ + + +

∂ ∂ ∂ ∂ ∂

⎛ ∂ ∂ ∂ ⎞

=⎜⎝ 11 + 22 + 33 ⎟⎠

1 2 3

1 1 2 2 3 3

u u u

h u h u h u

⎝ ⎠

∂ ∂ ∂

⇒ ∇ ≡ + +

∂ ∂ ∂

) divergence operation curl opetation

cf ∇ ⇒

∇× ⇒ i

Vector differential operator

∇× ⇒ curl opetation

(22)

2 7 Divergence of a Vector Field 2-7 Divergence of a Vector Field

Divergence of a vector field at a point ( )

Net outward flux of per unit volume as the volume about the

A div A

A

point tends to zero

A d lim

0 S

v

A ds div A

Δ →

v

= ∫ Δ i

→ (two d imensional surface/three dimensional volume) spatial

derivatives as the volume approaches zero pp

(23)

. ) In cartesian coordinates

s

e g

A ds

⎡ ⎤

i

front back right left top bottom

face face face face face face

⎡ ⎤ A ds

= ⎢ + + + + + ⎥

⎣ ∫ ∫ ∫ ∫ ∫ ∫ ⎦ i

0 0 0

front face

( ) ( , , )

front front front x 2

front face

A ds = A Δs = A x Δ Δ =y z A x + Δx y z Δ Δy z

i i i

0 , 0 0

0 0 0 0 0 0

( , )

( , , ) ( , , )

2 2

back face

x

x x

x y z

A

x x

A x y z A x y z high order term

x

Δ Δ

+ = + +

bac A dsi ( ) ( 0 , 0, 0)

2

( ) ( )

back back back x

k face

x

A s A x y z A x x y z y z

A

x x

A A hi h d t

= Δ = − Δ Δ = − Δ Δ Δ

Δ Δ +

i i

0, 0 0

0 0 0 0 0 0

( , )

( , , ) ( , , )

2 2

x

x x

x y z

A x y z A x y z high order term

= x +

(24)

⎛ ⎞

( 0, 0 0, )

[ ] . . .

x y z

x front back

face face

A ds A H O T x y z

x

A A A

⎛ ∂ ⎞

∴ + = ⎜ ⎝ ∂ + ⎟ ⎠ Δ Δ Δ

⎛ ∂ ∂ ∂ ⎞

∫ ∫ i

( 0, 0 0, )

. . . in , ,

x y z

x y z

s

A A A

A ds x y z H O T x y z

x y z

⎛ ∂ ∂ ∂ ⎞

∴ ∫ i = ⎜ ⎝ ∂ + ∂ + ∂ ⎟ ⎠ Δ Δ Δ + Δ Δ Δ

2 3 1 1

1 2 3 1 2

1 ( ) (

x

A

y z

A A

div A A h h A h h

x y z h h h u u

∂ ∂ ∂ ∂ ∂

≡ ∇ = + + = +

∂ ∂ ∂ ∂

i ∂

3 2 1 2 3

3

) ( )

A h h A

u

⎡ + ∂ ⎤

⎢ ∂ ⎥

⎣ ⎦

depend on the position of the point on which it is evaluated

⎣ ⎦

∂ ∂ ∂

1 2 3

1 1 2 2 3 3

cf ) u u u

h u h u h u

∂ ∂ ∂

∇ ≡ + +

∂ ∂ ∂

(25)

( )

ˆ ˆ ˆ ˆ ˆ ˆ

A ⎛ ∂ ∂ ∂ ⎞ A A A

∇ ⎜ + + ⎟

(

+ +

)

( ) ( ) ( )

1 2 3 1 1 2 2 3 3

1 1 2 2 3 3

1 1 1 2 2 2 3 3 3

ˆ ˆ ˆ ˆ ˆ ˆ

A u u u u A u A u A

h u h u h u

u u A u u A u u A

h u h u h u

∇ =⎜⎝ ∂ + ∂ + ∂ ⎟⎠ + +

∂ ∂ ∂

= + +

∂ ∂ ∂

i i

i i i

1 1 2 2 3 3

h uh uh u

cos sin , sin cos

r x y x y

r

φ φ φ φ φ

φ

= + = − +

∂ ∂

y

r , φ r φ φ φ

∂ = ∂ =

∂ ∂

) cylindrical coordinate eg

x φ

φ

( ) ( ) ( )

1 2 3 1 2 3

) y

, , and 1, , 1

r z

g

u r u u z h h r h

r rA r A r zA

r r φ r

φ

φ

= = = = = =

+ +

i i i

x

r r z z z

r r A r r A r A r A r A r z A

r r r φ r φ r r

φ φ

= i + i + i + i + i + i = 1

( )

Ar

r

( )

A

)1 r r Ar

cf rA A

r r r r

= +

(26)

2 8 Divergence Theorem 2-8 Divergence Theorem

Adv A ds

∇ =

ii

from definition of divergence, ( A)

j

V s

j j

s

Adv A ds

v A ds

∇ Δ =

∫ ∫

i i

0 0

1 1

lim ( ) lim

j j j

N N

j j s

v v

j j

A v A ds

Δ → = Δ → =

⎡ ⎤ ⎡ ⎤

∇ Δ =

⎢ ⎥ ⎢ ⎥

⎣ ∑ i ⎦ ⎣ ∑ ∫ i

Volume integral

0 1

lim

j j

N

s s

v j

A ds A ds

Δ →

⎡ ⎤

⎢ ⎥ =

⎣ ∑∫ i ⎦ ∫ i

( )

V

A dv

V

i

j

j=1 j

( ∇ A dv ) = A ds

∴ ∫ ∫

V

( i ) ∫ ∫

s

i

(27)

2 9 Curl of a Vector Field 2-9 Curl of a Vector Field

Flow source outward flux divergence

Vortex source

C

cause a circulation of a vector around it

circulation of around contour C A

A dli . ) a force acting on ane g object

circulation will be the work done by the force in moving the object once around the contour

electric field e.m.f water whi lr

ing down a sink drain → vortex sink

( ) (

0

)

max

( )

lim 1

1

n C

curl A A s a A dl

Δ → s ⎡ ⎤

≡ ∇× Δ ⎣

i

( ) ( )

0 1

( )

) lim

u u

u s C

u u

cf A a A A dl

Δ → s

∇× = ∇× =

Δ

i i

(28)

( )

ˆ ˆ

u , , : , , ,

1

u u

x s x y C

= Δ = Δ Δ

⎛ ⎞

( )

0

sides

1,2,3,4

lim 1

x y z

A A dl

Δ Δ → y z

⎛ ⎞

∇× = Δ Δ ⎝⎜

i ⎟⎠

0 0 0

side1

, ( , , )

z 2

dl = Δz z A dli = A x y + Δy z Δz

0 0 0

0 0 0 0 0 0

( , , )

where, ( , , ) ( , , ) . . .

2 2

( )

z

z z

x y z

A

y y

A x y z A x y z H O T

y A

A dl A y H O T

Δ Δ

+ = + +

⎧ Δ ∂ ⎫

⎪ ⎪Δ

⎨ ⎬

0 0 0

0 0 0

side1

( , , )

( , , ) . . .

2 side3

z z

x y z

A

A dl A x y z y H O T z

y

⎪ Δ ⎪

i =⎨⎪⎩ + ∂ + ⎬⎪⎭Δ

A

yy ∂ ⎫

Δ ⎪ Δ ⎪

dl 0 0 0 0 0 0

side3

( , , )

, ( , , ) ( , , ) . . . ( )

2 2

z

z z

x y z

A

y y

z z A dl A x y z z A dl A x y z H O T z

y

⎧ ∂ ⎫

Δ ⎪ Δ ⎪

= − Δ i = − Δ ∴

i = ⎨⎪⎩ − ∂ + ⎬⎪⎭ −Δ

(29)

side1 side3+

0 0 0

( , , )

. .

side2 side4

z

x y z

A H O T y z

y

= + Δ Δ

+

. . 0 , when 0 and z 0

H O T → Δ → y Δ →

0 0 0

( , , )

side2 side4

. . ( )

y z y

x x y z

A A A

H O T y z A

y y z

+

= − + Δ Δ ∇× =

General expression in cartesian

z Ay

A xA y

∇× = + x z y x

x y z

A A A A

z

+ =

A x y

y z

∇× = +

General expression for orthogonal curvilinear systems

x y z

z x z x y x y z

A A A

+ =

1 1 2 2 3 3

1 2 3 1 2 3

ˆ ˆ ˆ

1

u h u h u h

A h h h u u u

∇× = 1 2 3 1 2 3

1 1 2 2 3 3

h A h A h A

(30)

2 10 Stokes’s Theorem 2-10 Stokes s Theorem

( ∇× A ds ) = A dl

ii

from definition of curl, ( ) ( )

j

j j C

A s A dl

∇× i Δ =

i

( )

S

∇× A ds =

C

A dl

ii

0 1

lim ( ) ( ) ( )

j

j

N

j j S

s j

A s A ds

Δ → =

∇× i Δ =

∇× i

∑ ∫

N

0 1

lim

j Cj C

s j

A dl A dl

Δ → =

∑ ∫

i =

i

) ( ) 0,

cf

S

∇× A ds i =

closed surface no boundary contour

S

(31)

2 11 Two Null Identities 2-11 Two Null Identities

1 ∇× ∇ ( V ) ≡ 0

the curl of the gradient of any scalar field is identically zero

1. ( ) 0

[ ] ( ) 0

V

V ds V dl dV

∇× ∇ ≡

∇×∇ = ∇ = =

ii

[ ] ( ) 0

cos ( )

S

V ds

C

V dl

C

dV

dV dV dn dV dV

n l V l dl dn dl dn α dn

∇×∇ = ∇ = =

= = = = ∇

ii

∵ i i

( )

dl dn dl dn dn

dV = ∇ V d

i l

참 고

the divergence of the curl of any vector field is identically zer

2. ( ) 0

o

∇ ∇× A =

→ i

참 고

the divergence of the curl of any vector field is identically zer

( ) ) 0

o

V

A dv

S

( A ds

∇ ∇× = ∇× =

ii

(32)

) ˆ

n

of should be outward, cf a ds

1 2

ˆ ˆ

so , also outward

n

n n

a a

∫ ∫

1

ˆ

1

2

ˆ

2

. ) ( ) ( ) ( )

0

n n

S S S

i e A ds A a ds A a ds

A dl A dl

∇× = ∇× + ∇×

= + =

∫ ∫ ∫

∫ ∫

i i i

i i

1 2

1 2

( and are same, but opposite in direction)

C C

C C

∫ ∫

(33)

2 12 Helmholtz’s Theorem 2-12 Helmholtz s Theorem

1. solenoidal and irrotational if 0 and 0 2 solenoidal but not irrotational if 0 and 0

F F

F F

∇ = ∇× =

∇ = ∇× ≠

i i

2. solenoidal but not irrotational if 0 and 0 3. irrotational but not solenoidal if 0 and 0 4. neither solenoidal nor irro

F F

F F

∇ = ∇× ≠

∇× = ∇ ≠

i

i

tational if ∇× ≠ F 0 and ∇ i F ≠ 0 4. neither solenoidal nor irrotational if ∇× ≠ F 0 and ∇ F ≠ 0

Helmholtz's theorem

: A vector field is determined to within an additive constant if

b th it di d it l ifi d h

both its divergence and its curl are specified everywhere

참조

관련 문서

9.6 Calculus Review: Functions of Several Variables 9.7 Gradients of a Scalar Field. Directional Derivative 9.8 Divergence of a Vector Field. 9.9 Curl of a Vector Field 9.9 Curl

10.2 Path Independence of Line Integrals 10.3 Calculus Review: Double Integrals 10.4 Green’s Theorem in the Plane.. 10.5 Surfaces for Surface Integrals

10.2 Path Independence of Line Integrals p g 10.3 Calculus Review: Double Integrals 10 4 Green’s Theorem in the Plane.. 10.4 Green s Theorem in the Plane 10.5 Surfaces

Micro- and nano-sized pores were formed on the surface of the alloy using PEO and anodization methods, and the pore shape change according to the Zr

The surface of untreated Ti, SLA treated Ti, and AA plasma polymerized SLA/Ti were also examined for their proliferation and differentiation of

16.4 Residue Integration of Real Integrals

Determining optimal surface roughness of TiO₂blasted titanium implant material for attachment, proliferation and differentiation of cells derived from

3 An Analytic Function of Constant Absolute Value Is Constant The Cauchy-Riemann equations also help in deriving general. properties