• 검색 결과가 없습니다.

Thermal Properties and Microencapsulation of a Phosphate Flame Retardant with a Epoxy Resin

N/A
N/A
Protected

Academic year: 2022

Share "Thermal Properties and Microencapsulation of a Phosphate Flame Retardant with a Epoxy Resin "

Copied!
8
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

Demo

 Polymer (Korea), Vol. 28, No. 5, pp 404-411 (2004) /

 žVâ, \28Ì \5x, 2004„, pp 404-411

"™Ý

Ü0\Ô 0̘p ¬ô q„ @ ÄÐ ì 

Ü0q„ À,˜, \”¼ æÔ 0̘ •@¼ „

<Ô |œ\ ìéXô È$.1 ùÈ, ˜ý œ”A¸

¸ Ü0\Ô @q, Ü0 è<˜ qå< ”ì\

MjY_=ùñ&ÙõAm™Õ

-ñéÙ ÑŒq~$®mé

®:¯ñ}~.¯Ê>..¯½Ž.%

0x@™# ظ<™p`Q<U/#.0x@™# ”™5™</#..\¼è# @8,0¬Ì#

+5336„# ;# 8¼# QX/#5337„# <# <¼# „,#

Thermal Properties and Microencapsulation of a Phosphate Flame Retardant with a Epoxy Resin

Kyung-Hyun Baek, Jun-Young Lee*, Sang-Hyun Hong**, and Jung-Hyun Kim*% Graduate Program in Nano Science and Technology, Yonsei University,

134 shinchon-dong, seodaemun-ku, Seoul 120-749, Korea

*Department of Chemical Engineering, Yonsei University, 134 shinchon-dong, seodaemun-ku, Seoul 120-749, Korea

**Samsung Cheil Industries Chemical R&D Center, 332-2, Gocheon-dong, Uiwang-si, Gyeonggi-do 437-010, Korea

e-mail : jayhkim@yonsei.ac.kr

(Received August 5, 2003;accepted September 9, 2004)

5¨¹¸ Ü0\¸ øìØ ,äØ´ø (TPP)€ 4A, pA q´ ðX˜ dø ¬ ¬°¼ Uq˜

Ô ¸6½ U˜ - X ¼ ´é˜, ´¬œáЄ \°˜@$. `éq ¸ Ü0\¸ TPPÔ ÄÐ

•Ü 5U @5  ÄÐ X \ p” O iܜ ¸˜, Ü0\˜ Ð$< ÄÐ 5©ì˜ VŒq x

\$„ ¼pè$. ´¼ ´ð˜p D´ TPP¼ ´¬œáĘ@$. É, 8 5U€ áИ ,|¸

TPP€ ý |¸ ¸6½ U˜ - H„ |©\ `”\€ ¨ XQ`U (O/W) œ -`”

ä \°\ `”¡„ ¸D Q©Õ|œ @X‘„ ɘ@$. |©\ `”\˜ Th< Ñ 8ì TPP

¨  p¸ $„ ɘ@|° ´¬œáИ Uq O 4A ùq˜ •¸„ D´ DSC€ TGA ˜´

Ä]˜@$. Pœ áÐ ÅИ U™A p„ D´ SEM< TEM„ ´é˜, áИ ¬p O è4œ 1

„ Ä]˜@$. |©\ `”\˜ Th´ Lœ F127< ÌT °$ä` d,d´ø (SDBS)@ 1¹1 ¼

Œ, 8ì `”\˜ Å ´ Ý@ X áИ ÅÐ@ ¬U´° À ” ¼œ ÅÐ U¼ 4@$.

,-897,.9¹The microcapsules containing triphenyl phosphate (TPP), a flame retardant, were prepared by phase- inversion emulsification technique using the epoxy resin (Novolac type) with excellent physical properties and network structure. This microencapsulation process was adopted for the protection of TPP evaporation and wetting of polymer composite during the polymer blend processing. The TPP, epoxy resin and mixed surfactants were emulsified to oil in water (O/W) by the phase inversion technology and then conducted on the crosslinking of epoxy resin by in-situ polymerization. The capsule size and size distribution of TPP capsules was controlled by mixed surfactant ratio, concentration and TPP contents. The formation and thermal property of TPP capsules were measured by differential scanning calorimetry and thermogravimetric analysis. The morphology and size of TPP capsules were also investigated by scanning and transmission electron microscopies. As the surfactant concentration increased, the TPP capsules were more spherical and mono-dispersed at the same weight ratio of mixed surfactants (F127 : SDBS).

Keywords¹microcapsule, phosphate flame retardant, in-situ polymerization.

(2)

Polymer (Korea), Vol. 28, No. 5, 2004 Microencapsulation of a Phosphate Flame Retardant  

žVâ, \28Ì \5x, 2004„ ¸ Ü0\˜ ´¬œáД #

 0p @œ ˆUq´ ° ø´° 8 œéiˆ€ Ý

@˜ ÈÔ Ôx´$.28,Ø ¸ Ü0\€ ÄÐ X

˜ 4Lôi  200 ´˜ Ҁ 4@5 hÔ Ü 0\˜ éu D„ \ä° ´œ ¸´ Ü0\˜ ¡

” O ÄÐ 5©ì Èô\ œ´˜ VŒq x\$

´ ¼pX È$. Pœ ÄÐ $øíä\ Ü0\@

èôx Ø@Ô ìD O h\ ¸e ˜´ Ä Ð 4Lô@ ½Ì UXÔ @̔˜ x\@ \X Èô éq„ Ý@äp ôdô P$´ È$. ´,

œ ýð ¸ Ü0\¼ 4A ùq´ ðXœ |œ ´

¬œáД¨|œ¨ ´ð  X ÈÔ° É, ´¬œá Ð”Ô ,|„ ¸À ˜ý|œÀp 4x  X È|°

ÄÐ 4Lôi @5  4@5 h @œ ô4q å

< ,|˜ iÜͼ °H˜, ÍiÜ ùq< Ä Ð X \˜ @̔ ˜œ ìD„ i ˜Ô på

„ p@  X È$.3-5

8, œ 8 0¬\Ô p˜ x\P$„ ´ð˜

¸ Ü0\˜ éq„ Ý@äp D˜, pA U

@ Ë ô4q´ ðXœ - X ¼ ý |œ ´ éœ ´¬œáД O 8 ùqÄ]„ 0¬˜ Ð ˜

@$. ´¬œáД iÕ|œÔ ´ ÕQ©,6,7 ¡Q

´°Õ,8 8€|9-15 iÕ 1´ È|°, ¸ Ü0\

´¬œáÐ”Ô - X ˜ -`”€ - X

˜ ý”X‘„ in-situ Q©Õ|œ Ép$.16-22 -`” <U\ `”\˜ `U< ÍÔ -<U

°H O XÄð\ ÅИ ¬°A ùq QԜ - „

œ$.17,18 8 $\ `\ `”\Ô \œ $¸ q

˜ `”\¸ T´hq `”\€ Œ´hq `”\¼ |

©˜, ìé˜@$. |©\ `”\Ô AA˜ `” À, åe Èô\ (|œ ìéXô `”\ 4$ å

\ surface activity, spreading, forming 1˜ `”Ñé„ X É  X È$.23-26 Pœ, in-situ Q©Õ€ Ҁ Xh O ͘ áД@ @å˜, \°Té´ @t˜ áД

(¼ ½Ì °H  X ÈÔ åP„  È$.23,24 p¼\ 8 0¬\Ô -`”€ in-situ Q©´ ¼ô ØÔ <U\ ìéXÔ T´hq `”\€ Œ´hq `

”\˜ Th< Ñ p¸ ¸ Ü0\ áИ Uq O è 4œ ˜ @p O Ü0\ áИ 4A ùq„ Œ„4˜

$. Pœ ¸ Ü0\˜ ¨  p¸ Ü0\ áИ U q O ÅИ ¬p O è4œ ¼ @p˜@$.

#aU

)I ´¬œáИ ý |œ ìé˜Ô - X Ô 0”P´ 85ð95 ¸ ¬H¸ ¸6½ U˜ YDCN-

500-90P (Kukdo Chem., Korea)„, ,|œ\Ô ¹ÔP´

47ð49 ¸ ¸ Ü0\¸ triphenyl phosphate (TPP)„

\¼è(<)\ [„ ìé˜@$. ùÈ, YDCN-500-90 P Ô P˜ - X œ\ 150 \ 3000ð4500 cps Pq„ @ È$. `”\Ô h\ ´° propyl- ene oxide € ethylene oxide˜ 6 5Q©ô U˜ T

´hq `”\¸ Pluronic F127 (BASF, Germany)€ h

\ paste Ÿ Œ´hq `”\¸ sodium dodecyl- benzene sulfonate (SDBS, Junsei co., Japan)„ |©˜, ì é˜@$. `”\ Pluronic F127< SDBS˜ HLB R€

AA 22€ 40|œ\ œXq´ Ҁ `”\¼ ìé˜@$.

ý”\Ô hq ý”\¸ 2-piperazinoethylamine (AEP, Sigma-Aldrich Co., U.S.A.)„ U\ ´ ìé˜@$. U Ä ¨ ˜ °H< -`”¼ Éäp D´ D.D.I. wa- ter¼ ìé˜@$.

aU¦  -`”€ in-situ Q©Õ„ ´éœ ¸ Ü 0\˜ ´¬œáÐ \° iՀ $Œ< Y$. -

X (YDCN-500-90P), ¸ Ü0\ (TPP), `”\ (F127, SDBS)„ 1D ˆ 120 ˜ ´°d2 Í\ ¨ ¹

¸$. ¹¸ 顄 70ð80 œ A  ý”\ AEP¼

-  @T 10 wt%œ è@˜, |©è$. 8  -`”¼ Éäp D´ 50 ´˜ D.D.I. water

¼ UÄ ¨ ´ 25%@ X è@œ  ”p (Omni, U.S.A)\ 12000 rpm˜ XÍœ 5ÄD U\

`”è$. `”\ 顄 ´QÐS X‘p ˆ\  - X ˜ ý”¼ D´ X‘h 80 \ 500 rpm˜

XÍœ 2D ˆ ` \ áД X‘„ É

è$. \°\ ¸ Ü0\ áЀ `pé$ (methyl al- cohol)¼ ´é˜, 3Ì ¸œ xÙÑ  60 ¸ ´

°d2 Í\ ´°p$.

`”<U\ `”\Ô T´hq `”\ Pluronic F127

< Œ´hq `”\¸ SDBS¼ |©˜, ìé˜@$. T

´hq `”\Ô ÅÐ$˜ ÅôA ˆUq (steric stabili- zation)„ À,˜ Œ´hq `”\˜ ýð UDpA ˆ Uq (electrostatic stabilization)„ À,œ$.23,24 ´  @ Ř `”\@  |©Xô ìéX´ ´åe<

œ´Ð`H ¼ îä|œ¨ (|œ ìéXô `

”\4$ `” è<¼ 9@”  X È$.25 p¼\ `

\  `”\˜ |©Th´ ¸ Ü0\ áД 8˜

Ô Aå< |©\ `”\˜ Ñ´ ¸ Ü0\ áД

8˜Ô Aå„ Œ„4˜$.

Pœ, ,|¸ ¸ Ü0\˜ Å ´ Ý@¨ p

¼ `”¡˜ P€ ý |¸ - X €˜ ¨ Th ”@ ¼ôÜ$. ´ ¸ Ü0\˜ Å  p¸ ´¬œáИ ¬p, è4œ O ¬pÄ,¼ T

(3)

  Baek et al. Polymer (Korea), Vol. 28, No. 5, 2004/

  qýD# 1# žVâ, \28Ì \5x, 2004„/

 Ä]˜@$. Table 1 ¸ Ü0\ (TPP)˜ ´¬

œáÐ ÅÐ \°¼ Dœ Øi O ùq„ 4,<$.

š ¸ Ü0\ áИ ý”4,  ˜ °q, 4ˆU q 1˜ 4A ùq„ Ä]˜p D˜, 100 mL/min Í

˜ ÌÄDp ˜\ ¸ Ü0\ áÐ Ä„ h

<ì 4  (DSC, TA Instrument 2920, U.S.A.)€ 4Q Ä] (TGA, TA Instrument 2050, U.S.A.)¼ ´é˜, 10 /min˜ ùh Íœ aU˜@ áÐ ÅИ U

™A p„ D´ <ìDÐ D8ý (SEM, Hitachi s-4200, Japan)< l<DÐ D8ý (TEM, JEOL JEM-2000 EXII,

Japan)„ ìé˜, ´¬œáИ è4œ O ¬p

1„ Ä]˜@$. ùÈ TEM aU€ TPP ´¬œáÐ Ä„ diglycidyl ether bisphenol A (DGEBA) U˜  - X  |© O ý”è  ´¬œàM Ñ„

° TPP ´¬œáИ (´„ aU˜@$.

$-yŒ]­

-ñéÙ Õ™í - X ¼ ´é˜Ô -`

” p`€ X ´¬œ ¬p˜ XÄðXô ÅÐ U

œ q5A|œ \°Xô X È$. ´Œ ,|œ\ ¸

 Ü0\¼ Ř, ´¬œáЄ \°  X ÈÔ è¸„ \˜@|°, Figure 1€ ¸ Ü0\ (TPP)˜

´¬œáД @œ è¼ 4,< È$. Figure 1 Ø ø T€ Y´ D´@ ¼ôØÔ P, É -

P (phase-inversion point) ´D ¸ Ü0\¼ ,¨˜

Ô - X |©|€ 0Í„ ´( È|° ¡

€ `”\ ˜˜, ˆU”\ | Åм Uq˜ È

$. ´Œ | ÅÐ ì´ ¸e€ XÌð© ˜˜, $

ð Ue˜Ì Ñé˜Ô°,21 8 äœ ÍA|œ |„

Ô@˜Ì X´ | ÅÐ$ ì´ ‘ D€ Üw˜Ì Ø Ø° -P„ Ø´ |€ 0Í|œ, - X

|©|€ Äð|œ D´@ ¼ôØÌ \$. ´,

œ D€ 8 äœ |„ ÍA|œ Ô@˜Ô ˆ

P@ Ý@˜, -P À<\ @å Ҁ P¼ 4 ,<° -P ´ D´@ ¼ôÜ  @Pœ T LÔ Ã|œÀp ½Ì Œ X È$.17 Äð¸ - X

|©| ¡A€ - X € ¸ Ü0\ (TPP) 8ì hý”\ AEP@ (¼ |œ ´ì˜Ô°, 4 ˜

œ in-situ ý”X‘´ ɨ p¼ - X Ô d ø ¬ ¬°¼ Uq˜Ì X° ¸ Ü0\Ô ¡A ô

\ Äì@ ¼ôØ $Q”ô Uœ ¡Aô Äð

„ ´(Ì \$. ´œ¨ 4A, pA q´ ðXœ $ Q”ô U˜ - ´¬œáд Uq\$.

-ñéÙ ÕÒõŒq~$® - X ¼

´é˜, -`”€ in-situ Q©Õ|œ \°œ TPP ¸

 Ü0\˜ ´¬œáЀ DSC€ TGA, 8ì TEM„

õ´ áÐ ÅИ Uq„ •¸˜@$. Figure 2(a)Ô |

©\ `”\˜ Th (F127¹SDBS)< ¨ ´ AA 1¹1

< 12 wt% ˜´ \°Xô TPP ´¬œáÐ (

B-2)„ h ¨X p¼ |˜ ¡4 O \4 D´¼ aU˜, |˜ éuh¼ Œ X ÈÔ DSC !`„ 4 ,< È$. Figure 2(a)\ \Xœ - ÄÐ\

Ø Ø ŠÔ éuP„ TPP ´¬œáЀ ½ 50 À<\ éuP„ 4,< È$. ´œ¨ 47ð49 ˜

¹ÔP„ VÔ TPP˜ ùq€ ´¬œáД\ ´

 (A|œ 4, È| œ TPP ´¬œáИ \

°Ô q5A|œ ´(ôŒŒ„ DQA|œ Œ X È$.

Pœ |©\ `”\˜ Th (F127¹SDBS)´ 1¹1´

20 wt% `”\˜ ¨  ˜´ \°Xô ´¬œáÐ

( B-4)„ h ¨X p¼  ˜ Q ”¼ aU

œ TGA !`„ Figure 2(b) Ø ô$. \Xœ TPPÔ 190ð300 A-ô\ 100 wt% Q PÌ@ ´(ô 7DEOH7KH&KDUDFWHULVWLFVDQG5HFLSHVIRU3UHSDUD

WLRQRIWKH7330LFURFDSVXOHV

sam ple TPP

contentsa (w t% ) F127 : SD B S m ixed surfactant contentsa (w t% )

capsule form ation

capsule size (µm)

A -1 1 : 0 : -

A -2 1 : 2 V -

A -3 1 : 1 V 17(20

A -4 2 : 1 V -

A -5

33

0 : 1

10

: -

B -1 5 : -

B -2 12 V 14(19

B -3 15 V 12(15

B -4

33 1 : 1

20 V 3(7

C -1 25 : -

C -2 40 1 : 1 12

V 12(17

a based on the TPP+epoxy resin.

)LJXUH  Schematic diagram of phosphate flame retardant microencapsulation via phase inversion and in-situ crosslinking reaction.#

Water

Epoxy resin + TPP + Curing agent

Water added

Phase inversion

Water

Dispersed Epoxy mixtures

In-situ crosslinking

reaction Microcapsulated particles Water

Epoxy resin + TPP + Curing agent

Water added

Phase inversion

Water

Dispersed Epoxy mixtures

In-situ crosslinking

reaction Microcapsulated particles Water

Epoxy resin + TPP + Curing agent

Water added

Phase inversion

Water

Dispersed Epoxy mixtures

In-situ crosslinking

reaction Microcapsulated particles Water

Epoxy resin + TPP + Curing agent

Water added

Phase inversion

Water

Dispersed Epoxy mixtures

In-situ crosslinking

reaction Microcapsulated particles

(4)

Polymer (Korea), Vol. 28, No. 5, 2004 Microencapsulation of a Phosphate Flame Retardant  

žVâ, \28Ì \5x, 2004„ ¸ Ü0\˜ ´¬œáД #

°, \Xœ - ÄÐÔ 330ð470 A-\ 80 wt% @ Q PÌ@ ´(ôŒ$. ´€ T˜, TPP

´¬œáÐ ( B-4)€ Ü0\¸ TPP˜ Aå|œ

320 À<\ 1hA¸ Q PÌ@ ÑX , áÐ Ìì¸ - ÄÐÔ ½ 380 À<\ 2hA

¸ Q PÌ@ \h„ Œ X È$. Pœ \Xœ TPP

˜ Q PÌ h (285 )€ T˜, ´¬œáД

 ˜œ TPP˜ Q PÌ hÔ 285 \ 324 œ

¬Ì ù˜@Œ„ Œ X È$. ´€ Y€ TPP ´¬œ

áЀ pA U€ ô4q´ Uœ -@ ,|¸

¸ Ü0\ (TPP)¼ ¸À ˜ý|œÀp 4x´ <Ô -  „ œ$. É, áÐ Ìì¸ -œ ¸´ ,| TPP

˜ iÜ hÔ Ý@h„ Œ X È$. ´ ð< ˜´ TPP

´¬œáЀ ÄÐ X €˜ 4Lôi 200 ´

˜ @5 h¼ ì\ X ÈÔ ô4q„ @ X È|°

¸ Ü0\˜ Ý\ O ìD„ õ\ì X Ȅ Ã

|œ ì \$.

TPP ´¬œáИ Uq •¸„ Dœ P œ@ ˜ i

Õ|œ TEM„ ´é˜@$. ð` \°\ ´¬œáÐ Å Ð (B-2)¼ Ä œ DGEBA U˜ Ôé - X

 |© O ý”\ <|° ´¬œàM ˜´

TEM aUé Uø„ \ј@$. Figure 3€ p˜ <

U„ °œ  TEM ˜´ aU\  B-2˜ ì„

4,< È$. ´¬œáИ ¬pÔ ½ 15 µm U

´° áÐ ÅÐ Í ¸ Ü0\¸ TPP@ $Q”ô Uœ ¨`Xô Ȍ„ •¸  X È$. D˜ Ä]ð

<$œ ¸´ -`” O in-situ Q©Õ„ ´éœ ¸

Ü0\ áÐUq„ •¸˜@$.

Ñ™¹æÁ¥Õ~" - X ¼ ´é˜Ô TPP

¸ Ü0\˜ ´¬œáÐ”Ô -`” <U\ Å ôA ˆUq„ À,˜Ô T´hq `”\ (F127)€ UD pA ˆUq„ À,˜Ô Œ´hq `”\ (SDBS)¼ |

©˜, ìé˜@$. -€ 8 |© Th´ TPP ´

¬œáИ Uq, ¬p O è4œ  8˜Ô Aå„ SEM Ä]„ õ´ Œ X È$. Figure 4Ô |©\ `”\˜

Th ” (aðe, F127 : SDBS = 1:0, 1:2, 1:1, 2:1, 0:1) p

¼ \°\ TPP ´¬œáÐ ÅИ SEM ì´$. 8 ü\ 4/´ T´hq `”\ (F127)€ Œ´hq `”

\ (SDBS)@ ¼ Th ˜´ \°\ ´¬œáÐ  (Figure 4(c), A-3)Ô 17ð20 µm ¬p˜ ¬U ÅÐ@

Uqh„ Œ X È$. T´hq `”\ (F127)€ Œ´h q `”\ (SDBS)¼ ( ìé˜, \°\  (Figure 4(a), A-1)€ (Figure 4(e), A-5)Ô áЄ, Uq˜ û˜@

, |©\ `”\˜ Th (F127¹SDBS)´ 1:2¸  (Figure 4(b), A-2)€ 2:1¸ (Figure 4(d), A-4)Ô AA ´¬

œáИ \° Äð ˆUq´ î|° Pœ ÅЀ Å ÐD ½D˜ ‘ D„ \è$. D˜ ð<¼

083# 33# 83# 433# 483# 533# 583

Temperature (×) (a)

315 314 313 0314 0315 0316 0317 0318 0319

Heat flow (W/g)

# 3# 533# 733# 933#

Temperature (×) (b)

433#

;3#

93#

73#

53#

3#

053#

073#

Weight (%)

417#

415#

413#

31;#

319#

317#

315#

313#

Derivation Weight (%/×)

)LJXUH  Thermal properties of epoxy microcapsules inclu- ding phosphate flame retardant; (a) DSC curves and (b) TGA curves.#

)LJXUH  TEM image of TPP microcapsule (B-2) with the multi-core structure containing 33 wt% of TPP contents based on the TPP + epoxy resin. #

Hsr{|#Sro|phu#

WSS#Fdsvxoh#+E05,#

(5)

  Baek et al. Polymer (Korea), Vol. 28, No. 5, 2004/

  qýD# 1# žVâ, \28Ì \5x, 2004„/

õ´ TPP ¸ Ü0\¼ ,¨˜Ô - X ˜ -

`”Ô `” ˆUq a´\ ÅôA ˆUq< UDp A ˆUq„ Y€ Thœ À,˜@„ ýð @å ˆUq´

ðX˜@|°, ´ ýð ´¬œáИ ÅÐ ¬p O è4

œ @ œA˜  Ȍ„ 4,< È$.

Ñ™)FÕ~" TPP ´¬œáИ \°  ÅXÔ `”\˜ Ñ p¸ áÐ ÅИ ¬p O è4

œ ¼ @p˜@$. ´ p\ øI˜@/´ T´h q `”\€ Œ´hq `”\¼ ¼ Th (F127 : SDBS

= 1¹1)œ |©˜, ìé˜@|° ìé\ р Dô UÄ @T 5 wt%Àp 20 wt%Œ °H˜@$. Figure 5 Ô Å\ `”\˜ Ñ (aðd, 5, 12, 15, 20 wt%) p¼

\°\ TPP ´¬œáИ SEM ì´°, `”\˜

Å ´ 10 wt%œ \°\ ´¬œáИ SEM ì

€ Figure 4(c)\ 4,<$. 8ü\ 4/´ |©\

`”\˜ Å ´ 5 wt% ˜´ \°\  (Figure 5(a),

B-1)Ô ´¬œáЄ Uq˜ û˜° Aô |©\

`”\@ 10 wt% ( A-3) ´ Xô¼ ¬U˜ 

´¬œáЄ Uq¨„ Œ X È$. Pœ 8 $ A-

\ |©\ `”\˜ Å „ Ý@ì ýð TPP 

´¬œáÐ ÅÐÔ ¬p@ P̘ À ” ¼˜° ¬ U˜ è4œ ¼ 4´ Ȍ„ Œ X È$. É, TPP ¸

Ü0\ ´¬œáИ \°  ìéXÔ `”\˜ р

¼XA¸ `”Q©< Y´ Ä𘠈Uq $$À A å„ 8˜° ' áÐ ÅÐ è4œ  @,œ$Ô Ã„ Œ X È$. ´¬œáÐ ÅÐ ¬p ÔDÔ 3ð19 µm„ 4

´ È|° áÐ Uq< áÐ ÅÐ ¬p ÔDÔ Table 1

 Ðx˜Ì œ˜@$.

õAm™)FÕ~" p\Ô ¸ Ü0\  Å „ 33 wt%œ U˜, ´¬œáЄ \°˜@|

Ø 8 å\Ô ÅXô Ô ¸ Ü0\˜ Ñ p¼ TPP ´¬œáÐ ÅÐ 8˜Ô Aå„ @p˜p D

/ / / / / / / / /

(a) (b) (c) /

/ / / / / / / /

/ (d)/ (e)

)LJXUH SEM images of TPP microcapsules prepared by varying ratio of mixed surfactants; F127 : SDBS = (a) 1 : 0 (A-1), (b) 1 : 2 (A-2), (c) 1 : 1 (A-3), (d) 2 : 1 (A-4), and (e) 0 : 1 (A-5).#

(6)

Polymer (Korea), Vol. 28, No. 5, 2004 Microencapsulation of a Phosphate Flame Retardant  

žVâ, \28Ì \5x, 2004„ ¸ Ü0\˜ ´¬œáД #

˜, $„ ɘ@$. |©\ `”\˜ Th< Šј °´€ AA F127 : SDBS = 1¹1< 12 wt%œ U

˜ TPP ¨ „ 25 wt% (Figure 6(a), C-1)\ 40 wt%

(Figure 6(b), C-2)œ °H˜, ´¬œáЄ \°˜@

|° SEM aU ˜´ áÐ ÅИ ¬p O è4œ

¼ Ä]˜@$. ´Œ TPP ¨ ´ 33 wt%œ ÅXô

 (Figure 5(b), B-2)€ TXôŒ$. 8ü\ 4/

´ TPP ¨ „ 25 wt% (Figure 6(a), C-1)œ ÅXô

 Ô ´¬œáЄ Uq˜ û˜@$. ´Ô Å\

¸ Ü0\ Ñ4$ @A|œ P˜ - X

/ / / / / / /

(a) (b)

/ / / / / / / /

(c) (d)

)LJXUH SEM images of TPP microcapsules prepared by varying mixed surfactant concentration based on the TPP + epoxy resin at a constant ratio of mixed surfactant (F127 : SDBS = 1 : 1); (a) 5 wt% (B-1), (b) 12 wt% (B-2), (c) 15 wt% (B-3), and (d) 20 wt% (B-4).#

/ / / / / / /

(a) (b)

)LJXUH SEM images of microcapsules prepared by varying TPP contents based on the TPP + epoxy resin; (a) 25 wt% (C-1) and (b) 40 wt% (C-2).#

(7)

  Baek et al. Polymer (Korea), Vol. 28, No. 5, 2004/

  qýD# 1# žVâ, \28Ì \5x, 2004„/

˜ Ñ´ |° ´œ ¸´ Ü0\¼ ,¨˜Ô - X

˜ Äð€ P@ $ð ҄x ÅЀ ÅÐD ‘ „ pA|œ \è$. 8,Ø TPP ¨ ´ 33 wt%

( B-4) PÔ 40 wt% ( C-2)@ Å` ýð ¬U

˜ ´¬œáÐ Åм Uqô„ Œ X È$. Pœ

TPP ¨ ´ 33 wt%\ 40 wt%œ Ý@X„ ýð áÐ ÅИ ¬p@ Ý@X° ¬p Ä,@ Sô„ Œ X È

$ (Table 1).

TPP ¨ ˜ Ý@ p¼ \°Xô ´¬œáÐ (C-1, B-2, C-2)˜ TGA Ä] ð<Ô Figure 7 4,<$.

Figure 7(a)„ 4´ ÅXô TPP˜ ¨ ´ 25 wt%

\ 40 wt%œ Ý@`X Q PÌ@ Ý@X° ´Ô  - ÄÐ ,¨Xô ¸ Ü0\˜ ¨ ´ 1hA

¸ Q PÌ A-„ ðU¨„ Œ X È$. 8ü\ 4/

´ - ÄÐ ¨`\ ¸ Ü0\˜ р 25 wt%

Å ( C-1) ½ 12 wt%, 33 wt% Å ( B-2)

 ½ 24 wt%, 8ì 40 wt% Å ( C-2) ½ 37

wt%@ Q PÌ@ ¼ôØ° ÅXô ¸ Ü0\¼ 100% áĘ Ô û˜ Ȍ„ Œ X È$. ´œ¨ ¸

 Ü0\˜ ´¬œáД èh€ AA 48%, 73%, 8 ì 93%´° ¸ Ü0\˜ Å ´ 40 wt%¸ ýð Dô  @T TPP ¨` ´ 37 wt%œ\ @å Ҁ á Д èh„ 4,<Ô Ã„ Œ X È$. Pœ Figure 7(b)

\ 4,</´ Q ” !`˜ 8Ä (derivation) 8 ØD¼ õ´ D˜ ì$„ ½Ì •¸  X È$.

%-Ý

,|¸ ¸ Ü0\ (TPP)€ áÐ Ìì¸ ¸6½ Ř - X ¼ ´éœ ´¬œáÐ”Ô -`

” O in-situ Q©Õ ˜´\ ÉX|° ´¬œ

áÐ Åм q5A|œ \°˜@$. ´Œ 0Í< Äð

˜ D´ ˜œ -`” p`< in-situ Q©Õ ˜

˜, $Q”ô ¬°˜ ´¬œáИ 踄 \˜@

$. ¸ Ü0\¼ ,¨˜Ô ´¬œáЀ DSC€ TGA

¼ ´é˜, áÐ Uq O 4A ùq„ •¸˜@|° ù È áÐ Ìì¸ - X  ˜´ ,|¸ TPP˜

iÜ h@ Ý@XÔ Ã|œ ô4q´ åh„ Œ X È$. Pœ ´¬œáÐ ÅИ (´„ TEM Ä]

˜´ $Q”ô ¬°¼ VÔ ´¬œáÐĄ •¸˜@

$. T´hq `”\ (F127)€ Œ´hq `”\ (SDBS)

˜ |© Th´ 1¹1¼ Œ, 8ì |©\ `”\˜ Ñ

´ Ý@ X \°\ ´¬œáЀ ÅЀ ÅÐD

‘ D´ \˜ Š˜|° ¬U˜ è4œ ¼ Ø

„ Œ X È$. Pœ ¸ Ü0\˜ Å ´ 40 wt%¸ ýð Dô  @T TPP ¨` ´ 37 wt%œ\

@å Ҁ áД èh (93 %)„ û„ X È$.

)Õ}8 0¬Ô œ­<™p` @˜ ­@

U0¬$ì (MI-9911-00-0044)< œ­™`¥ì(˜

2003„  œ­21ì O (<)\¼è @8¼ 0¬

̘  ˜´ ´(ô Ã|œ ´ Š€ Pì¼  ý$.

7DEDKDGBDL

1. C. S. Park and W. W. Cheong, Rubber Technology, 1, 1 (2000).

2. B. Y. Go, E. S. Kim, and Y. S. Park, Flame Retardants, KISTI (2002).

3. J. E. Vandegaer, Microencapsulation : Processes and App- lications, Plenum Press, New York, 1974.

4. S. Benita, ed., Microencapsulation : Methods and Industrial )LJXUH (a) TGA curves and (b) TGA derivation curves of

TPP microcapsules prepared by varying TPP contents based on the TPP + epoxy resin; 25 wt% (C-1), 33 wt% (B-2), 40 wt% (C-2).#

Weight (%)

# 3# 533# 733# 933# ;33#

Temperature (Ž) (a)

453 433

;3 93 73 53 3

Derivation Weight (%/×)

# 3# 533# 733# 933# ;33#

Temperature (Ž) (b)

413 31;

319 317 315 313

(8)

Polymer (Korea), Vol. 28, No. 5, 2004 Microencapsulation of a Phosphate Flame Retardant  

žVâ, \28Ì \5x, 2004„ ¸ Ü0\˜ ´¬œáД #

Applications, Marcel Dekker, New York, 1996.

5. E. M. Woo and H. K. Hseih, Polymer, 39, 1 (1998).

6. K. Y. Choi, K. S. Min, and T. Chang, Polymer(Korea), 15, 548 (1991).

7. I. H. Kim, J. B. Seo, and Y. J. Kim, Polymer(Korea), 26, 400 (2002).

8. S. J. Park, S. H. Kim, J. R. Lee, H. B. Lee, and S. K. Hong, Polymer(Korea), 26, 326 (2002).

9. R. Arshady, Colloid Polym. Sci., 270, 717 (1992).

10. K. Landfester, F. Tiarks, H. Hentze, and M. Antonietti, Macromol. Chem. Phys., 201, 1 (2000).

11. K. Landfester, Macromol. Rapid Commun., 22, 896 (2001).

12. B. Erdem, E. D. Sudol, B. L. Dimonie, and M. S. El Aasser, J.

Polym. Sci., Part A: Polym. Chem., 38, 4419 (2000).

13. B. Erdem, E. D. Sudol, B. L. Dimonie, and M. S. El Aasser, J.

Polym. Sci., Part A: Polym. Chem., 38, 4431 (2000).

14. B. Erdem, E. D. Sudol, B. L. Dimonie, and M. S. El Aasser, J.

Polym. Sci., Part A: Polym. Chem., 38, 4441 (2000).

15. C. J. Mcdonald, K. J. Bouck, A. B. Chaput, and C. J. Stevens, Macromol., 33, 1593 (2000).

16. H. K. Hsein and E. M. Woo, Polymer Physics, 34, 2591 (1996).

17. Z. Z. Yang, Y. Z. Xu, D. L. Zhao, and M. Xu, Colloid Polym.

Sci., 278, 1164 (2000).

18. Z. Z. Yang, Y. Z. Xu, D. L. Zhao, and M. Xu, Colloid Polym.

Sci., 278, 1103 (2000).

19. Z. Z. Yang, Y. Z. Xu, D. L. Zhao, and M. Xu, Macronol.

Rapid Commun., 21, 574 (2000).

20. Z. Z. Yang, Y. Z. Xu, D. Qiu, and H. Bu, Macromol. Rapid Commun., 22, 792 (2001).

21. Z. Z. Yang and D. Qiu, J. Li, Macromol. Rapid Commun., 23, 479 (2002).

22. A. Wegmann, J. Coat. Tech., 65, 827 (1993).

23. J. H. Sung, D. K. Shin, J. G. Lee, and J. H. Kim, Appl. Chem., 3, 1 (1999).

24. E. W. Wittbecker and P. W. Morgon, J. Polym. Sci., 40, 299 (1959).

25. J. Falbe ed., Surfactants in Consumer Products: Theory, Technology and Application, Springer-Verlag, New York, 1987.

26. K. Ogino and M. Abe eds., Mixed Surfactant Systems, Marcel Dekker, New York, 1993.

/

참조

관련 문서

rubber lining [12] and epoxy resin coating [13,14]. The effect of ultrasonic amplitude on cavitation erosion properties of epoxy coatings was described elsewhere [15]. If

• 대부분의 치료법은 환자의 이명 청력 및 소리의 편안함에 대한 보 고를 토대로

• 이명의 치료에 대한 매커니즘과 디지털 음향 기술에 대한 상업적으로의 급속한 발전으로 인해 치료 옵션은 증가했 지만, 선택 가이드 라인은 거의 없음.. •

“Every unobstructed point of a wavefront, at a given instant in time, serves as a source of secondary wavelets (with the same frequency as that of the primary wave).. The

“Every unobstructed point of a wavefront, at a given instant in time, serves as a source of secondary wavelets (with the same frequency as that of the primary wave). The

12) Maestu I, Gómez-Aldaraví L, Torregrosa MD, Camps C, Llorca C, Bosch C, Gómez J, Giner V, Oltra A, Albert A. Gemcitabine and low dose carboplatin in the treatment of

Levi’s ® jeans were work pants.. Male workers wore them

We observe that experimental parameters such as concentration of monomer and type of solvent can control formation of the microcapsule.. We expect that this approach can