• 검색 결과가 없습니다.

Studies in Preparation and the Properties of Composites Inorganic Pigments by Utilizing Dry-Impact Blending Method

N/A
N/A
Protected

Academic year: 2022

Share "Studies in Preparation and the Properties of Composites Inorganic Pigments by Utilizing Dry-Impact Blending Method"

Copied!
12
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

744 HWAHAK KONGHAK Vol. 39, No. 6, December, 2001, pp. 744-749

(Journal of the Korean Institute of Chemical Engineers)

š ÏÏb»j šÏ‚  ZVnò~ B– 5 bWö &‚ ’

–&;Á"ÿê

;ö&v Bæ"

(2001j 8ú 14¢ 7>, 2001j 9ú 20¢ j)

Studies in Preparation and the Properties of Composites Inorganic Pigments by Utilizing Dry-Impact Blending Method

Jun-Hyung Choand Dong-Jin Min

Dept. of Paper Science & Engineering, Kangwon National University, Chunchon 200-701, Korea (Received 14 August 2001; accepted 20 September 2001)

º £

 ’öBº Bæ êÏb‚ ÒÏ> ®º ZVnòž TiO2, CaCO3, clay¢ š ÏÏb»j šÏ~ VËW 

ê¢ J~ FB Îã¶f ¶ã¶¢ '‚ Vj‚ b~& ªÚ~ &**çj šÏ~ "‚ ;*VKö ~š

V¢ ۚ FÿW 5 ª~Wš BF>î 7' Wîê Ö>Žj r > ®î. ªÚ~ nòJê 5 B檢ö~ 'Ϛ

B–ö ’ 5 BB V²¢ {&† > ®j ©b‚ ÒòB.

Abstract−In this paper the functional composite-pigment was prepared by dry impact-blending method, using inorganic materials used for paper coating such as TiO2, CaCO3, and clay. Dry impact-blending is used for making new functional mate- rial by surface modification and composition. After considering particle size of inorganic pigment, selected core powder and fine powder were mixed at a suitable mixing ratio. When powder was electrified, the fine particles of them could be adhered on the larger ones called ‘core particles’ by static electricity, and then formed an ordered mixture. Afterward, these were susceptible to be composited by impact force resulting from very high-speed air circulation. Composite pigment formed was tested with powder physics tester and resulted in improvement of both fluidity and flushing. It also resulted in excellent optical property. Since design of particle pigment and application to a field of paper can be come true, it is thought that complementation in terms of both prin- ciple and application is possible, and that R&D for the production of various functional paper products can be activated.

Key words: Composite-Pigment, Impact-Blending, Paper-Coating, Core Particles, Fine Particles

1. B †

z>º ÿö ‚[ z ®*, VË, WËj ö~ ®. šö ¦ w~ Òò B–~ öò, 7*B®b‚B~ ªÚö &šBê îR&

öB  .ã¶~ B–f šÏö ôf &š Îjæ ®. š º «¶ãj ·² Žb‚Ž ªö~ bÒ'Áz' VËj ¸"–, 2«šç~ 㶢 ¾Ò(‚šBî)~ ·‚ VËW  ã

¶‚ JêÁcŽb‚Ž ¦&&~z¢ &^R > ®V r^š.

š‚ .ªÚ ª¢~ BB" B*ö ¦w~ ·‚ ªÚ ¾ÒV

žÞ, nò, ^¢, ~Þ, ¯’, ªÖB š ®. 6‚ ‚šBî»

f Vš «¶~ Wîj BF, ËçÒ > ®b–  Òò& <º

 &æ bÒ' ßWj f *Úö G;† > ®Ú ‚" "Ïj

ªÖB ›«¶ ‚šö š ›«¶f 皂 bW(<rW, îV, &*W

[3], ãê, ¦OW, ê*W )j æò 㶢 ¦OB ›«¶~ ß

Wj BF~º O»" ›«¶ ‚šö ßWš ž «¶~ *ç‡ 6º Ϛ‡j z+, š–B n;‚ bïj ;W~º O»(Capsulez»)š

®. ‚šBî~ ª~º Fig. 1öBf ?š Coatingö ~‚ Bî, Topo- chemical'ž Bî, Mechanochemical'ž Bî, Capsulezö ~‚ B î, ö.æ šÏö ~‚ Bî, Ž*>wö ~‚ Bî‚ U&æ “ Ïb‚ &êB.

To whom correspondence should be addressed.

E-mail: jhcho@cc.kangwon.ac.kr

(2)

 ’öB ÒÏB ‚šBîË~ž hybridization systemf “w÷K

š ;‚ ã¶~ ¢ªÖVF”ö V.~ ªÚ~ ‚šBîj Vê ' ÏÏKj šÏšB š, VçªÖêöB ¯~º ©š ßûš–, ›

 öÒº ³V~ 7 ÏÏ»š¢ † > ®[5]. š VFf î‚Ú BîªÚ~ B–ö šÏ> ®. žêª¢öB tonerö OïÒ, ¶W ª, &*BÚB j ‚šBî~ ï–, ¶VßW, *VßWj –;†

> ®b–, ò®ª¢öBº FÖö Ƕj «®º ";ö šÏ>

 ®, zË®ª¢öBº TiO2~ “W" ¶žF NÎ"¢ šÏ

Ë®ö ÒÏ>º VËW ªÚ¢ BÛ'b‚ ÚÚš ¶žF N Z V ªÚ, ‡FW ªÚ, “ªÚ, ҂Wbî ŽFªÚ, Fïª Ú(ïÒ)  VËW~ NêzB B®BBš šÚæ ®. ¾ jç B檢ö 'ÏB Òf& ìº ©b‚ 6>– šö &‚ ¢^

ê *Z‚ çš¾ š > Nf~ .jþj ۚ  &ËWj {

ž‚ : ®[7, 8, 10]. jç š»ö ~‚ ªÚ B–& B檢

öBº 'Ï>æ p~V r^ö š® ’öB~ 'Ϛ Zí 7 º~–,  Ö"¢ Æ&‚ &NB ª¢~  ;~ ªÚ BB ö 'ÏF > ®j ©b‚ 6B[9].

2. þ

2-1. BæÏ nò~ ‚šBî Fig. 2

«>º ªÚº ¶ã¶f Îã¶~ «ê jNš £ 10V šçš >º

©b‚ F~&b–, ¶ã¶º j7š ¸f ò¢ Î㶺 j7š

Ôf ò¢ F~&.  šFº ‚V ²*ö ~š B>º ;‚

³V~ 7 «¶ö &šæº ÏÏKj Î"'b‚ šÏ† > ®V r

^š. Fig. 2~ O.M. dizerö R«B Îã¶f ¶ã¶º  dizer ²

*b‚ B>º bÁªÖ·Ïb‚ ordered mixture¢ ;W~[10- 13] š©j ¢;ï êï~ hybridizerö /~&. Hybridizerö  /B ordered mixtureº Vç 7(V 5 ®‚W &Ê )ö ªÖÊ

šB «¶¢ 2Z~æ pj ;ê~ ÏÏKj "ڂ ~º Vê'Á

' ö.æ¢ «¶ö ¦~ *(3-10 min)ö ;z¾Ò¢ ¯~

&,  ê ÷V‚ ³~² ²>~ BîªÚ¢ B–~&[10].

þ ò‚B Î㶺 polyethylene" BæÏ clay 5 CaCO3j ÒÏ

~&b– ¶ã¶º TiO2¢ ÒÏ~&(Table 1). Hybridizer~ zšî

¾f Fig. 3ö ¾æÚî. O.M. dizerº Îã¶f ¶ã¶¢ ª¶*~

žK, >–šBÊ~ ¾, ;*VK j šÏ~ ordered mixture(Îã

¶ "æö ¶ã¶š ¶Î~² –÷>Ú®º ç)‚ B–~ š©

j hybridizerö /~ ‚V& ;~² ²*† r B~º {»K, ÏÏK, öK b‚ Î㶠‚šö ¶ã¶¢ ‚šBî~º öҚ.

ªÚ~ –BBº TiO2¢ polyethylene, clay, CaCO3ö «¶’V¢

'ς Vj‚ BîVb–[15-16], šr ‚šBî ‚V~ ²*

Ú~ «ê 5 Wîš Úá² æ~º&¢ rjV *šB clay¢ ‚V

²*³ê 5,000, 7,000, 9,000, 11,000, 13,000 rpmb‚ æzB ë

Bî¾Ò‚ clay¢ TiO2

¶ã¶f Îã¶~ Vjº  (1)j ۚ Ö;B[10].

îïj=Î㶠: ¶ã¶ = D3 γD: 4(D+d)2d

(1)

2-2. BîªÚ~ bWG;

‚šBîB ªÚ~ bWj G;~V *š ªÚbWG;V(multi- tester)¢ šÏ~ n', ªÖê, w÷ê, »Z', bulk &ê  Carr æ>(FÿWæ>f ª~Wæ>)~ ’W¶ò& >º “Ïj G;~&

. Ò ‚šBîÎ ªÚ~ FÿW" 7Kö ~‚ FÂ~  100:400 D d( + )2

D3 --- γd

γD ---

= Fig. 1. Surface modification methods of powder.

Fig. 2. Hybridization system.

Table 1. Powder of papermaking and plastic pigment

Division Powder Shape of particle Species Particle size(%) Specific gravity

Core particle Polyethylene Rounded Plastic pigment 80%≤8µm 10.918

Clay Plate Two grade 90%≤2µm 2.61

CaCO3 Rounded PCC 90%≤4µm 2.71

Fine particle TiOY Rounded Rutile 0090%≤2.25µm 4.21

(3)

746 –&;Á"ÿê

z B39² B6^ 2001j 12ú

šê¢ ï&~º ª~Wæ>¢ êÖ~  bW~ ßWæz¢ –Ò~

&.

2-3. ZVnò¢ šÏ‚ êæ B–

ê ö悺 ïï 70 g/m2~ žêÏæ¢ ÒÏ~& êÏ nò

‚º polyethylene" clay, CaCO3j 7' Wîj jv~V *šB b

‚ ©" BîÎ nò¢ ÒÏ~&. :žz‚º *Ò Bæëêö B ¢>'b‚ ÒÏ> ®º S/Bê ršNW ¢sÊ(.^CFz KSL 207)¢ ÒÏ® >ÏW :žz‚º CMC(carboxyl methyl cellulose)¢ Ò ÖBf CMC& bö ¾ Ÿj rræ ³v>j ‚ ê š χj &

³ v>V‚ TÎ ê³ v>Î. &³b‚ v>ʚB bªÚ f hybridizeröB BîB ªÚ¢ ;šê ·&‚ BB® Î&‚ ê 10 ª* ¾ ªÖÎ. ê‡~ Vf Î V–šj ÿ¢~² J;,

æ Bîò~ Vjò 10%¢ V&b‚ bjN 5 «~ö V¢

ê‡j B–~&. pHº 0.5% NaOH χj šÏ~ 9.4‚ ê

‡j –;~&. pHº pH-meter(Mettler Delta 340)j ÒÏ~ G;

~&. êæ B–º ê‡j >¶ÿ K-Control Coater¢ šÏ~

ê öæö ޚ êj ~&b– êïf 7-9 g/m2b‚ –.~&.

êê êæº 105oC~ ³B~ š–VöB 30.* ³š–

V. Ò Elepho-3000 series VV¢ šÏ~ B–B êæ¢ b

ªÚ¢ Òς êæf BîªÚ¢ Òς êæ‚ ªÒ~ Wï ê, ®R«ê, Ö¦ê¢ G;~&[19]. BîªÚ¢ Òς êæº Chromameter CT-300 VV¢ šÏ~ 7' Wîj G;~&.

3. Ö" 5 V

3-1. ªÚbW G;Ö" jv

Table 1ö B~&~ Îã¶(CaCO3, clay, polyethylene)f ¶ã¶(TiO2)

¢ «¶ã" j7 8j J~ êÖB 7ïj‚ V~ ‚šBî

~&(Fig. 4).

âöB r > ®š Î㶠‚šö ¶ã¶ž TiO2& ¾ «&^

®º ©j &V† > ®î. Hybridization systemöB ‚šBî~ V

 Ξf ’;~ «¶;çb‚ >Ú ®æò 7öBê 6çž clay

~ ãÖ BîÎ"& ¾ ¾æÒ.

' òö V¢ FÿW" ª~W~ “Ïö š>º bWj G;~

 Fig. 5ö ¾æÚî. ¢>'b‚ «¶~ ;çš ’;š– «ê& –

«¶¢>ƒ FÿW" ª~Wš ±² ¾z. ¾ TiO2¾" «¶;

º ’;šæò µm ’V& jò nm ’V‚ .>ƒ ªÚ~ *>'ž

š jò 6皖¾ CaCO3f ?š ®‚ ;ç¢>ƒ ªÚbWš

±æ prj r > ®î.

Fig. 3. Mechanism of hybridizer.

Fig. 4. SEM photographs of (a), (b), (c) particles prepared from hybridiza- tion system.

(a) Surface modification of CaCO3(CaCO3: TiO2=62 : 38) (b) Surface modification of Clay(Clay : TiO2=62 : 38) (c) Surface modification of Polyethylene(PE : TiO2=76 : 24)

(4)

Fig. 6

~‚. {»êº FÿW" &ê>º– {»ê& ·jî>ƒ FÿW

š ±jæº ã˚ ®. Bî b®j rf jvš " r {»ê 8š 6²~&. š©f ¶Î‚ bulk &ê& Ã&~ {&Ï* bulk &

êº 6²~º ©j ~~º–, ‚Þb‚º hybridizer ¾Òö ~š «

¶& ãz> ’;z>Ú FÿWš BF>îrj Қ &.

Fig. 6~ (b)º n'~ ï&‚š. b~ n'f «¶& ã zNö V¢ «¶¢Ò~ w÷š B~ n'š ’² ¾z. n

'f ¢;‚ ï6*ö ªÚ¢ ¿~Vj r 9šº ªÚz~ 'ê

¢ n'š¢ ~º– ªÚ~ w÷Wš ¸–¾ ^~–¾ «¶;ç

ãz>Úê Bî~ Î"‚ ž~ 6²~– b ãzö Vž F ÿW ®ï~ ^B¢ BF† > ®î.

Fig. 6~ (c)º w÷ê~ ï&‚š. Hybridizer ¾Ò‚ ãzB «

¶º «¶‚š~ bÒÁz' Wî~ Ã&‚ w÷ê& Ã&~ š‚

žš FÿWš ¾†r. ¾ Bî¾Ò‚ ãÖ Bî¾Ò¢ Û~  㶠‚š~ Wîj BFB FÿW~ Ëçj êΆ > ®² >î.

ªÚbW G;V‚ ''~ “Ïj >~z~ ‚« ï&† > ®º Carr æ>~ 8b‚ FÿWj Fig. 6~ (d)ö ;Ò~&. š ¾*ö B r > ®š b¾Ò‚ ªÚ~ ãÖ «¶ãš ·jî>ƒ, «¶

;çš 6皖¾ ®'¢>ƒ FÿWš ¾†ræò Bî¾Ò‚

ãÖº BîÎ"‚ žš «êª& –&šæ «¶;çš ¢šæ

šB FÿWš BF>î.

3-2. BîªÚ~ 7' Wî

Fig. 7öº Chromameter CT-300b‚ clay ë" clayö TiO2¢ b~

ò& CV 8š z ôš ¾zb¾ šº TiO2~ 'Ë r^ž ©b‚ C

&r[17-18]. ¾ bªÚf ‚šBî¾Ò‚ BîªÚf~ 8~

Nšº *&~² &–¢ š ®. ?f Vj‚ b‚ ªÚf B î‚ ªÚ& š¾" Nš& ¾º ©f hybridizer~ ‚V²*³ê(rpm)

¢ ¸"šB ‚šBî" ÿö «¶~ ¢zf ’;z& ê¯>V r^b‚ 'B.

Fig. 8f clayf CaCO3¢ Î㶂 ~ TiO2¢ ¶ã¶‚ F~

hybridizer~ ‚V ²*³ê(rpm)æzö V¢ B–‚ Bî ªÚ¢ ÒÏ

‚ êæÚ~ '« 7' Wîš ÚᲠ殺&¢ G;‚ Ö"¢

¾æÞ ©š. Fig. 8~ Ö¦ê ¾*(a)öB CaCO3Bî ªÚº rpm

š Ã&~ê Ö¦êº ’² æz~æº pb¾, clay Bî ªÚº b Fig. 5. Measurement of powder properties on each samples.

Fig. 6. (a) Pressure compaction, (b) Angle of repose, (c) Conglomerence, (d) Carr Index at a difference clay particles size(Clay : TiO2=62 : 38).

(5)

748 –&;Á"ÿê

z B39² B6^ 2001j 12ú

‚ 12,500 rpm šçöBº  >~&  ÎÚæº ©j " > ®º

– šº ã¶(3µm)~ ãÖ  ¶Ú 7ïš ·V r^ö rpmš ¢

;>& šçb‚ ¸jæšB ³V~ 7 B~º ÂV~ö ~š B îÎ"& B&‚ ·Ï~æ Ⴀ©b‚ 'B. Ò Fig. 8~ W ïê ¾*(b)¾ ®R«ê ¾*(c)öBê šf j݂ ãËj " >

®. *KÎN šš¾ jÏ.6 Î"¢ áV *šBº ‚V ²*³ê

¢ 5,000-7,000 rpmb‚ F~ VV¢ Ú'~º ©š '.† ©b

‚ '>–, 6‚ CaCO3 Bî ªÚ clay Bî ªÚ& R ¸f

BîÎ"¢ ¾æÚî. š©f TiO2f clay~ –š ¾ º ©j ~

~– &&~ BæªÚ¢ ¦&&~& ¸f ÎN~ VËW ªÚ‚

B–~º– 7º‚ V.¶ò‚ žÏ† > ®.

4. Ö †

«¶& ãzNö V¢ w÷W˚ Ã&~ ªÚ~ b {»ê, n', w÷ê, ªÖê& ¸j^ FÿWš &~>î. ¾ «¶¢

hybridizer systemb‚ ‚šBî¾Ò~ ªÚ~ ïêËçj êÎ~

TiO2¢ b~ clay¢ VËzÒ r ^B>~ FÿW~ &~¢

BF† > ®î. 6‚ *Ò ªÚ~ >Ç 5 &Ë ^B& >~ F ÿW 5 ª~W ®ïj šÖ† > ®º 7º‚ & F ©b‚ ' B. ' òö Vž Carr æ>(ª~W 5 FÿWæ>)º ªÚ~ «

'ž bWj ï&~º «æ>‚B, «¶;çš ®‚ CaCO3"

G'6çž clayº ‚šBîš ’;zö &rfæV r^ö Carr æ>

ê ¸² ¾N ©b‚ 'B.

Ò ªÚ ¶Ú~ ïê¢ G;‚ Ö" «êBڂ clayö TiO2~ Bîf «êBÚ~æ pf clayö &‚ Bî ¸f Wïê¢ áj

> ®î. 6‚ b‚ ªÚf Bî¾Ò‚ ªÚ¢ ÒÏ~ êæ~

7' bWj G;‚ Ö", clay& CaCO3ö jš 7' BFÎ"&

Ö>®.

‚šBî ‚V²*³ê(rpm)¢ æzÎ Ö" clayf CaCO3~ ã Ö 5,300 rpm" 12,500 rpm ҚöB Bî¾Ò‚ ò& Ö>‚ 7

' Wîj ¾æî. zÊޚ" «¶ã šöB Jš " r 5,300 rpm b‚ ¾Ò~º 㚠'.‚ ©b‚ ÒòB. Ò clay& CaCO3ö jš Bî Î"& z Ö>~² ¾æÒ. š¢ ۚ ‚šBî¾ÒB clay& BæÖëö šÏ>îj r 7' Wî 5 jÏ.6 Î"¢ z ôš V&† > ®j ©b‚ ÒòB. 6‚  ’¢ ۚ “Ú ª Ú B– ëÚ~ VFBB" î‚Ú Ë {~ &ËWš BF >

®j ©b‚ ªCB. šf ?š ªÚnò~ Jê 5 B檢ö~ ' Ϛ 'b‚ *F > ®V r^ö ê'b‚º öÒ' Gš"

wÏ GšöB~ jš &Ë~ ·‚ VËW æ~B® B–ö 

’ 5 BB V²¢ {&† > ®j ©b‚ 'B.

ÒÏV^

D : mean particle diameter of core particles [µm]

d : mean particle diameter of fine particles [µm]

γD : true specific gravity of core pairticles γd : true specific gravity of fine pairticles

^^ò

1. Honda, H., Kimura, M., Honda, F., Mastsuno, T. and Koishi, M.: Physic- ochemical and Engineering Aspects, 82(1994).

2. Honda, H. and Koishi, M.: Journal of Chromatography, 609(1992).

3. Van de Ven, T. G. M.: “Colloidal hydrodynamics,” Academic Press(1998).

4. Yokoyama, T., Urayama, K. and Naito, M.: Kona, 5, 59(1987).

5. Alonso, M., Satoh, M. and Miyanami, K.: Powder Tech., 59, 45(1989).

6. Gutcho, M.: Noyes Data Corp., U.S.A(1972).

7. Cho, J. H. and Min, D. J.: Theories and Applications of Chem. Eng., 6, 3569(2000).

8. Cho, J. H., Min, D. J., Lee, J. M. and Hmamda, K.: Theories and Applications of Chem. Eng., 19, 13(2001).

9. Thiel, W. J., Lai, F. and Hersey, J. A.: Powder Technol., 28(1981).

Fig. 7. Brightness comparison by Chromameter CT-300.

Fig. 8. Optical property at a different rpm of rotor.

(a) Scattering index, (b) Brightness index, (c) Opacity index

(6)

10. Cho, J. H., Min, D. J., Ushijima, Y. and Yoo, T. I.: Workshop Series of Chem. Eng. 2001-01.

11. Egermann, H.: Powder Technol., 36(1983).

12. Thiel, W. J., Lai, F. and Hersey, J. A.: Powder Technol., 28(1981).

13. Thiel, W. J.: Powder Technol., 33(1982).

14. Iinoya, K., Masuda, H. and Watanabe, K.: Instrumentation and Con-

trol, Mercel Dekker, Inc., New York, 195(1998).

15. Howard, G. J.: J. Appl. Polym. Sci., 21, 17(1977).

16. Crooks, M. J. and Ho, R.: Powder Technol., 14(1976).

17. Howard, G. J.: Tappi J., 66(6), 87(1983).

18. Voiliot, C., Gravier, M. and Ramaz, A.: Tappi J., 73(5), 191(1990).

19. I’Ansom, S. and Eghterafi, A.: Tappi Journal, 169(1992).

(7)

744 HWAHAK KONGHAK Vol. 39, No. 6, December, 2001, pp. 744-749

(Journal of the Korean Institute of Chemical Engineers)

š ÏÏb»j šÏ‚  ZVnò~ B– 5 bWö &‚ ’

–&;Á"ÿê

;ö&v Bæ"

(2001j 8ú 14¢ 7>, 2001j 9ú 20¢ j)

Studies in Preparation and the Properties of Composites Inorganic Pigments by Utilizing Dry-Impact Blending Method

Jun-Hyung Choand Dong-Jin Min

Dept. of Paper Science & Engineering, Kangwon National University, Chunchon 200-701, Korea (Received 14 August 2001; accepted 20 September 2001)

º £

 ’öBº Bæ êÏb‚ ÒÏ> ®º ZVnòž TiO2, CaCO3, clay¢ š ÏÏb»j šÏ~ VËW 

ê¢ J~ FB Îã¶f ¶ã¶¢ '‚ Vj‚ b~& ªÚ~ &**çj šÏ~ "‚ ;*VKö ~š

V¢ ۚ FÿW 5 ª~Wš BF>î 7' Wîê Ö>Žj r > ®î. ªÚ~ nòJê 5 B檢ö~ 'Ϛ

B–ö ’ 5 BB V²¢ {&† > ®j ©b‚ ÒòB.

Abstract−In this paper the functional composite-pigment was prepared by dry impact-blending method, using inorganic materials used for paper coating such as TiO2, CaCO3, and clay. Dry impact-blending is used for making new functional mate- rial by surface modification and composition. After considering particle size of inorganic pigment, selected core powder and fine powder were mixed at a suitable mixing ratio. When powder was electrified, the fine particles of them could be adhered on the larger ones called ‘core particles’ by static electricity, and then formed an ordered mixture. Afterward, these were susceptible to be composited by impact force resulting from very high-speed air circulation. Composite pigment formed was tested with powder physics tester and resulted in improvement of both fluidity and flushing. It also resulted in excellent optical property. Since design of particle pigment and application to a field of paper can be come true, it is thought that complementation in terms of both prin- ciple and application is possible, and that R&D for the production of various functional paper products can be activated.

Key words: Composite-Pigment, Impact-Blending, Paper-Coating, Core Particles, Fine Particles

1. B †

z>º ÿö ‚[ z ®*, VË, WËj ö~ ®. šö ¦ w~ Òò B–~ öò, 7*B®b‚B~ ªÚö &šBê îR&

öB  .ã¶~ B–f šÏö ôf &š Îjæ ®. š º «¶ãj ·² Žb‚Ž ªö~ bÒ'Áz' VËj ¸"–, 2«šç~ 㶢 ¾Ò(‚šBî)~ ·‚ VËW  ã

¶‚ JêÁcŽb‚Ž ¦&&~z¢ &^R > ®V r^š.

š‚ .ªÚ ª¢~ BB" B*ö ¦w~ ·‚ ªÚ ¾ÒV

žÞ, nò, ^¢, ~Þ, ¯’, ªÖB š ®. 6‚ ‚šBî»

f Vš «¶~ Wîj BF, ËçÒ > ®b–  Òò& <º

 &æ bÒ' ßWj f *Úö G;† > ®Ú ‚" "Ïj

ªÖB ›«¶ ‚šö š ›«¶f 皂 bW(<rW, îV, &*W

[3], ãê, ¦OW, ê*W )j æò 㶢 ¦OB ›«¶~ ß

Wj BF~º O»" ›«¶ ‚šö ßWš ž «¶~ *ç‡ 6º Ϛ‡j z+, š–B n;‚ bïj ;W~º O»(Capsulez»)š

®. ‚šBî~ ª~º Fig. 1öBf ?š Coatingö ~‚ Bî, Topo- chemical'ž Bî, Mechanochemical'ž Bî, Capsulezö ~‚ B î, ö.æ šÏö ~‚ Bî, Ž*>wö ~‚ Bî‚ U&æ “ Ïb‚ &êB.

To whom correspondence should be addressed.

E-mail: jhcho@cc.kangwon.ac.kr

(8)

 ’öB ÒÏB ‚šBîË~ž hybridization systemf “w÷K

š ;‚ ã¶~ ¢ªÖVF”ö V.~ ªÚ~ ‚šBîj Vê ' ÏÏKj šÏšB š, VçªÖêöB ¯~º ©š ßûš–, ›

 öÒº ³V~ 7 ÏÏ»š¢ † > ®[5]. š VFf î‚Ú BîªÚ~ B–ö šÏ> ®. žêª¢öB tonerö OïÒ, ¶W ª, &*BÚB j ‚šBî~ ï–, ¶VßW, *VßWj –;†

> ®b–, ò®ª¢öBº FÖö Ƕj «®º ";ö šÏ>

 ®, zË®ª¢öBº TiO2~ “W" ¶žF NÎ"¢ šÏ

Ë®ö ÒÏ>º VËW ªÚ¢ BÛ'b‚ ÚÚš ¶žF N Z V ªÚ, ‡FW ªÚ, “ªÚ, ҂Wbî ŽFªÚ, Fïª Ú(ïÒ)  VËW~ NêzB B®BBš šÚæ ®. ¾ jç B檢ö 'ÏB Òf& ìº ©b‚ 6>– šö &‚ ¢^

ê *Z‚ çš¾ š > Nf~ .jþj ۚ  &ËWj {

ž‚ : ®[7, 8, 10]. jç š»ö ~‚ ªÚ B–& B檢

öBº 'Ï>æ p~V r^ö š® ’öB~ 'Ϛ Zí 7 º~–,  Ö"¢ Æ&‚ &NB ª¢~  ;~ ªÚ BB ö 'ÏF > ®j ©b‚ 6B[9].

2. þ

2-1. BæÏ nò~ ‚šBî Fig. 2

«>º ªÚº ¶ã¶f Îã¶~ «ê jNš £ 10V šçš >º

©b‚ F~&b–, ¶ã¶º j7š ¸f ò¢ Î㶺 j7š

Ôf ò¢ F~&.  šFº ‚V ²*ö ~š B>º ;‚

³V~ 7 «¶ö &šæº ÏÏKj Î"'b‚ šÏ† > ®V r

^š. Fig. 2~ O.M. dizerö R«B Îã¶f ¶ã¶º  dizer ²

*b‚ B>º bÁªÖ·Ïb‚ ordered mixture¢ ;W~[10- 13] š©j ¢;ï êï~ hybridizerö /~&. Hybridizerö  /B ordered mixtureº Vç 7(V 5 ®‚W &Ê )ö ªÖÊ

šB «¶¢ 2Z~æ pj ;ê~ ÏÏKj "ڂ ~º Vê'Á

' ö.æ¢ «¶ö ¦~ *(3-10 min)ö ;z¾Ò¢ ¯~

&,  ê ÷V‚ ³~² ²>~ BîªÚ¢ B–~&[10].

þ ò‚B Î㶺 polyethylene" BæÏ clay 5 CaCO3j ÒÏ

~&b– ¶ã¶º TiO2¢ ÒÏ~&(Table 1). Hybridizer~ zšî

¾f Fig. 3ö ¾æÚî. O.M. dizerº Îã¶f ¶ã¶¢ ª¶*~

žK, >–šBÊ~ ¾, ;*VK j šÏ~ ordered mixture(Îã

¶ "æö ¶ã¶š ¶Î~² –÷>Ú®º ç)‚ B–~ š©

j hybridizerö /~ ‚V& ;~² ²*† r B~º {»K, ÏÏK, öK b‚ Î㶠‚šö ¶ã¶¢ ‚šBî~º öҚ.

ªÚ~ –BBº TiO2¢ polyethylene, clay, CaCO3ö «¶’V¢

'ς Vj‚ BîVb–[15-16], šr ‚šBî ‚V~ ²*

Ú~ «ê 5 Wîš Úá² æ~º&¢ rjV *šB clay¢ ‚V

²*³ê 5,000, 7,000, 9,000, 11,000, 13,000 rpmb‚ æzB ë

Bî¾Ò‚ clay¢ TiO2

¶ã¶f Îã¶~ Vjº  (1)j ۚ Ö;B[10].

îïj=Î㶠: ¶ã¶ = D3 γD: 4(D+d)2d

(1)

2-2. BîªÚ~ bWG;

‚šBîB ªÚ~ bWj G;~V *š ªÚbWG;V(multi- tester)¢ šÏ~ n', ªÖê, w÷ê, »Z', bulk &ê  Carr æ>(FÿWæ>f ª~Wæ>)~ ’W¶ò& >º “Ïj G;~&

. Ò ‚šBîÎ ªÚ~ FÿW" 7Kö ~‚ FÂ~  100:400 D d( + )2

D3 --- γd

γD ---

= Fig. 1. Surface modification methods of powder.

Fig. 2. Hybridization system.

Table 1. Powder of papermaking and plastic pigment

Division Powder Shape of particle Species Particle size(%) Specific gravity

Core particle Polyethylene Rounded Plastic pigment 80%≤8µm 10.918

Clay Plate Two grade 90%≤2µm 2.61

CaCO3 Rounded PCC 90%≤4µm 2.71

Fine particle TiOY Rounded Rutile 0090%≤2.25µm 4.21

(9)

746 –&;Á"ÿê

z B39² B6^ 2001j 12ú

šê¢ ï&~º ª~Wæ>¢ êÖ~  bW~ ßWæz¢ –Ò~

&.

2-3. ZVnò¢ šÏ‚ êæ B–

ê ö悺 ïï 70 g/m2~ žêÏæ¢ ÒÏ~& êÏ nò

‚º polyethylene" clay, CaCO3j 7' Wîj jv~V *šB b

‚ ©" BîÎ nò¢ ÒÏ~&. :žz‚º *Ò Bæëêö B ¢>'b‚ ÒÏ> ®º S/Bê ršNW ¢sÊ(.^CFz KSL 207)¢ ÒÏ® >ÏW :žz‚º CMC(carboxyl methyl cellulose)¢ Ò ÖBf CMC& bö ¾ Ÿj rræ ³v>j ‚ ê š χj &

³ v>V‚ TÎ ê³ v>Î. &³b‚ v>ʚB bªÚ f hybridizeröB BîB ªÚ¢ ;šê ·&‚ BB® Î&‚ ê 10 ª* ¾ ªÖÎ. ê‡~ Vf Î V–šj ÿ¢~² J;,

æ Bîò~ Vjò 10%¢ V&b‚ bjN 5 «~ö V¢

ê‡j B–~&. pHº 0.5% NaOH χj šÏ~ 9.4‚ ê

‡j –;~&. pHº pH-meter(Mettler Delta 340)j ÒÏ~ G;

~&. êæ B–º ê‡j >¶ÿ K-Control Coater¢ šÏ~

ê öæö ޚ êj ~&b– êïf 7-9 g/m2b‚ –.~&.

êê êæº 105oC~ ³B~ š–VöB 30.* ³š–

V. Ò Elepho-3000 series VV¢ šÏ~ B–B êæ¢ b

ªÚ¢ Òς êæf BîªÚ¢ Òς êæ‚ ªÒ~ Wï ê, ®R«ê, Ö¦ê¢ G;~&[19]. BîªÚ¢ Òς êæº Chromameter CT-300 VV¢ šÏ~ 7' Wîj G;~&.

3. Ö" 5 V

3-1. ªÚbW G;Ö" jv

Table 1ö B~&~ Îã¶(CaCO3, clay, polyethylene)f ¶ã¶(TiO2)

¢ «¶ã" j7 8j J~ êÖB 7ïj‚ V~ ‚šBî

~&(Fig. 4).

âöB r > ®š Î㶠‚šö ¶ã¶ž TiO2& ¾ «&^

®º ©j &V† > ®î. Hybridization systemöB ‚šBî~ V

 Ξf ’;~ «¶;çb‚ >Ú ®æò 7öBê 6çž clay

~ ãÖ BîÎ"& ¾ ¾æÒ.

' òö V¢ FÿW" ª~W~ “Ïö š>º bWj G;~

 Fig. 5ö ¾æÚî. ¢>'b‚ «¶~ ;çš ’;š– «ê& –

«¶¢>ƒ FÿW" ª~Wš ±² ¾z. ¾ TiO2¾" «¶;

º ’;šæò µm ’V& jò nm ’V‚ .>ƒ ªÚ~ *>'ž

š jò 6皖¾ CaCO3f ?š ®‚ ;ç¢>ƒ ªÚbWš

±æ prj r > ®î.

Fig. 3. Mechanism of hybridizer.

Fig. 4. SEM photographs of (a), (b), (c) particles prepared from hybridiza- tion system.

(a) Surface modification of CaCO3(CaCO3: TiO2=62 : 38) (b) Surface modification of Clay(Clay : TiO2=62 : 38) (c) Surface modification of Polyethylene(PE : TiO2=76 : 24)

(10)

Fig. 6

~‚. {»êº FÿW" &ê>º– {»ê& ·jî>ƒ FÿW

š ±jæº ã˚ ®. Bî b®j rf jvš " r {»ê 8š 6²~&. š©f ¶Î‚ bulk &ê& Ã&~ {&Ï* bulk &

êº 6²~º ©j ~~º–, ‚Þb‚º hybridizer ¾Òö ~š «

¶& ãz> ’;z>Ú FÿWš BF>îrj Қ &.

Fig. 6~ (b)º n'~ ï&‚š. b~ n'f «¶& ã zNö V¢ «¶¢Ò~ w÷š B~ n'š ’² ¾z. n

'f ¢;‚ ï6*ö ªÚ¢ ¿~Vj r 9šº ªÚz~ 'ê

¢ n'š¢ ~º– ªÚ~ w÷Wš ¸–¾ ^~–¾ «¶;ç

ãz>Úê Bî~ Î"‚ ž~ 6²~– b ãzö Vž F ÿW ®ï~ ^B¢ BF† > ®î.

Fig. 6~ (c)º w÷ê~ ï&‚š. Hybridizer ¾Ò‚ ãzB «

¶º «¶‚š~ bÒÁz' Wî~ Ã&‚ w÷ê& Ã&~ š‚

žš FÿWš ¾†r. ¾ Bî¾Ò‚ ãÖ Bî¾Ò¢ Û~  㶠‚š~ Wîj BFB FÿW~ Ëçj êΆ > ®² >î.

ªÚbW G;V‚ ''~ “Ïj >~z~ ‚« ï&† > ®º Carr æ>~ 8b‚ FÿWj Fig. 6~ (d)ö ;Ò~&. š ¾*ö B r > ®š b¾Ò‚ ªÚ~ ãÖ «¶ãš ·jî>ƒ, «¶

;çš 6皖¾ ®'¢>ƒ FÿWš ¾†ræò Bî¾Ò‚

ãÖº BîÎ"‚ žš «êª& –&šæ «¶;çš ¢šæ

šB FÿWš BF>î.

3-2. BîªÚ~ 7' Wî

Fig. 7öº Chromameter CT-300b‚ clay ë" clayö TiO2¢ b~

ò& CV 8š z ôš ¾zb¾ šº TiO2~ 'Ë r^ž ©b‚ C

&r[17-18]. ¾ bªÚf ‚šBî¾Ò‚ BîªÚf~ 8~

Nšº *&~² &–¢ š ®. ?f Vj‚ b‚ ªÚf B î‚ ªÚ& š¾" Nš& ¾º ©f hybridizer~ ‚V²*³ê(rpm)

¢ ¸"šB ‚šBî" ÿö «¶~ ¢zf ’;z& ê¯>V r^b‚ 'B.

Fig. 8f clayf CaCO3¢ Î㶂 ~ TiO2¢ ¶ã¶‚ F~

hybridizer~ ‚V ²*³ê(rpm)æzö V¢ B–‚ Bî ªÚ¢ ÒÏ

‚ êæÚ~ '« 7' Wîš ÚᲠ殺&¢ G;‚ Ö"¢

¾æÞ ©š. Fig. 8~ Ö¦ê ¾*(a)öB CaCO3Bî ªÚº rpm

š Ã&~ê Ö¦êº ’² æz~æº pb¾, clay Bî ªÚº b Fig. 5. Measurement of powder properties on each samples.

Fig. 6. (a) Pressure compaction, (b) Angle of repose, (c) Conglomerence, (d) Carr Index at a difference clay particles size(Clay : TiO2=62 : 38).

(11)

748 –&;Á"ÿê

z B39² B6^ 2001j 12ú

‚ 12,500 rpm šçöBº  >~&  ÎÚæº ©j " > ®º

– šº ã¶(3µm)~ ãÖ  ¶Ú 7ïš ·V r^ö rpmš ¢

;>& šçb‚ ¸jæšB ³V~ 7 B~º ÂV~ö ~š B îÎ"& B&‚ ·Ï~æ Ⴀ©b‚ 'B. Ò Fig. 8~ W ïê ¾*(b)¾ ®R«ê ¾*(c)öBê šf j݂ ãËj " >

®. *KÎN šš¾ jÏ.6 Î"¢ áV *šBº ‚V ²*³ê

¢ 5,000-7,000 rpmb‚ F~ VV¢ Ú'~º ©š '.† ©b

‚ '>–, 6‚ CaCO3 Bî ªÚ clay Bî ªÚ& R ¸f

BîÎ"¢ ¾æÚî. š©f TiO2f clay~ –š ¾ º ©j ~

~– &&~ BæªÚ¢ ¦&&~& ¸f ÎN~ VËW ªÚ‚

B–~º– 7º‚ V.¶ò‚ žÏ† > ®.

4. Ö †

«¶& ãzNö V¢ w÷W˚ Ã&~ ªÚ~ b {»ê, n', w÷ê, ªÖê& ¸j^ FÿWš &~>î. ¾ «¶¢

hybridizer systemb‚ ‚šBî¾Ò~ ªÚ~ ïêËçj êÎ~

TiO2¢ b~ clay¢ VËzÒ r ^B>~ FÿW~ &~¢

BF† > ®î. 6‚ *Ò ªÚ~ >Ç 5 &Ë ^B& >~ F ÿW 5 ª~W ®ïj šÖ† > ®º 7º‚ & F ©b‚ ' B. ' òö Vž Carr æ>(ª~W 5 FÿWæ>)º ªÚ~ «

'ž bWj ï&~º «æ>‚B, «¶;çš ®‚ CaCO3"

G'6çž clayº ‚šBîš ’;zö &rfæV r^ö Carr æ>

ê ¸² ¾N ©b‚ 'B.

Ò ªÚ ¶Ú~ ïê¢ G;‚ Ö" «êBڂ clayö TiO2~ Bîf «êBÚ~æ pf clayö &‚ Bî ¸f Wïê¢ áj

> ®î. 6‚ b‚ ªÚf Bî¾Ò‚ ªÚ¢ ÒÏ~ êæ~

7' bWj G;‚ Ö", clay& CaCO3ö jš 7' BFÎ"&

Ö>®.

‚šBî ‚V²*³ê(rpm)¢ æzÎ Ö" clayf CaCO3~ ã Ö 5,300 rpm" 12,500 rpm ҚöB Bî¾Ò‚ ò& Ö>‚ 7

' Wîj ¾æî. zÊޚ" «¶ã šöB Jš " r 5,300 rpm b‚ ¾Ò~º 㚠'.‚ ©b‚ ÒòB. Ò clay& CaCO3ö jš Bî Î"& z Ö>~² ¾æÒ. š¢ ۚ ‚šBî¾ÒB clay& BæÖëö šÏ>îj r 7' Wî 5 jÏ.6 Î"¢ z ôš V&† > ®j ©b‚ ÒòB. 6‚  ’¢ ۚ “Ú ª Ú B– ëÚ~ VFBB" î‚Ú Ë {~ &ËWš BF >

®j ©b‚ ªCB. šf ?š ªÚnò~ Jê 5 B檢ö~ ' Ϛ 'b‚ *F > ®V r^ö ê'b‚º öÒ' Gš"

wÏ GšöB~ jš &Ë~ ·‚ VËW æ~B® B–ö 

’ 5 BB V²¢ {&† > ®j ©b‚ 'B.

ÒÏV^

D : mean particle diameter of core particles [µm]

d : mean particle diameter of fine particles [µm]

γD : true specific gravity of core pairticles γd : true specific gravity of fine pairticles

^^ò

1. Honda, H., Kimura, M., Honda, F., Mastsuno, T. and Koishi, M.: Physic- ochemical and Engineering Aspects, 82(1994).

2. Honda, H. and Koishi, M.: Journal of Chromatography, 609(1992).

3. Van de Ven, T. G. M.: “Colloidal hydrodynamics,” Academic Press(1998).

4. Yokoyama, T., Urayama, K. and Naito, M.: Kona, 5, 59(1987).

5. Alonso, M., Satoh, M. and Miyanami, K.: Powder Tech., 59, 45(1989).

6. Gutcho, M.: Noyes Data Corp., U.S.A(1972).

7. Cho, J. H. and Min, D. J.: Theories and Applications of Chem. Eng., 6, 3569(2000).

8. Cho, J. H., Min, D. J., Lee, J. M. and Hmamda, K.: Theories and Applications of Chem. Eng., 19, 13(2001).

9. Thiel, W. J., Lai, F. and Hersey, J. A.: Powder Technol., 28(1981).

Fig. 7. Brightness comparison by Chromameter CT-300.

Fig. 8. Optical property at a different rpm of rotor.

(a) Scattering index, (b) Brightness index, (c) Opacity index

(12)

10. Cho, J. H., Min, D. J., Ushijima, Y. and Yoo, T. I.: Workshop Series of Chem. Eng. 2001-01.

11. Egermann, H.: Powder Technol., 36(1983).

12. Thiel, W. J., Lai, F. and Hersey, J. A.: Powder Technol., 28(1981).

13. Thiel, W. J.: Powder Technol., 33(1982).

14. Iinoya, K., Masuda, H. and Watanabe, K.: Instrumentation and Con-

trol, Mercel Dekker, Inc., New York, 195(1998).

15. Howard, G. J.: J. Appl. Polym. Sci., 21, 17(1977).

16. Crooks, M. J. and Ho, R.: Powder Technol., 14(1976).

17. Howard, G. J.: Tappi J., 66(6), 87(1983).

18. Voiliot, C., Gravier, M. and Ramaz, A.: Tappi J., 73(5), 191(1990).

19. I’Ansom, S. and Eghterafi, A.: Tappi Journal, 169(1992).

참조

관련 문서

It considers the energy use of the different components that are involved in the distribution and viewing of video content: data centres and content delivery networks

• 이명의 치료에 대한 매커니즘과 디지털 음향 기술에 대한 상업적으로의 급속한 발전으로 인해 치료 옵션은 증가했 지만, 선택 가이드 라인은 거의 없음.. •

12) Maestu I, Gómez-Aldaraví L, Torregrosa MD, Camps C, Llorca C, Bosch C, Gómez J, Giner V, Oltra A, Albert A. Gemcitabine and low dose carboplatin in the treatment of

has succeeded in the development of the manufacturing method of a Ni fine powder for the internal electrode of multi-layer ceramic capacitors (MLCC) by a chemical vapor

Levi’s ® jeans were work pants.. Male workers wore them

ABSTRACT This study is on the properties of inorganic porous calcium silicate material made from silica powder through the autoclaving curing, the results of this study

1-4 A large amount of PANI-inorganic composites have been synthesized and studied to enhance the overall properties and broadening the practical applications in the past

The char- acteristics of development according to each added amount of the vegetable food (dry bean-curd residue and corn powder) were investigated to minimize the dangers