• 검색 결과가 없습니다.

 1.  Preparation of Ammonium Cerium(IV) Nitrate from Cerium(III) Hydroxide  

N/A
N/A
Protected

Academic year: 2022

Share " 1.  Preparation of Ammonium Cerium(IV) Nitrate from Cerium(III) Hydroxide   "

Copied!
6
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

(III)  (IV) 

    *

,  

305-350    30

*  

590-711    720 (2002 12 16! "#, 2003 3 5! $%)

Preparation of Ammonium Cerium(IV) Nitrate from Cerium(III) Hydroxide

Ho-Sung Yoon, Chul-Joo Kim, Jin-Young Lee, Sung-Don Kim, Joon-Soo Kim and Seung-Joon Yoo*

Division of Minerals Utilization and Materials, Korea Institute of Geoscience and Mineral Resources, 30 Gajeong-dong, Yuseong-gu, Daejeon 305-350, Korea

*College of Environmental & Chemical Engineering, Seonam University, 720 Kwangchi-dong, Namwon, Chonbuk 590-711, Korea (Received 16 December 2002; accepted 5 March 2003)

 

 ! " #$%  &, '() * '(+,  -. /0 123 %456 7, XRD, SEM #$% TGA 893 :5; <= >? *  @ %43 A56B. 4  3  C 

" 70-100 g/l,   7 mol/l,  & 2.5L&, MNOP) 65oC * '(+ 15-30 min.,Q 7, R   <= STJ (NH4)2[Ce(NO3)6]OxH2O(x=6-8)U V3 W  XQB.

Abstract−Synthetic process of ammonium cerium nitrate from cerium hydroxide was presented and influences of concen- tration and acidity of starting solution, addition quantity of ammonium nitrate, reaction temperature, reaction time on the yield of ammonium cerium nitrate are discussed. The shape and composition of crystal were determined by SEM, thermogravimetry- differential thermal, x-ray diffraction and chemical analysis. The optimum synthesizing conditions of ammonium cerium nitrate were discribed as follows: rare earth concentration of starting solution 70-100 g/l, acidity of starting solution 7 mol/l, addition quantity of ammonium nitrate 2-3 equivalent, the condition of rotary evaporation 65oC and reaction time 15-30 min. It was also known that the chemical formulae of ammonium cerium nitrate was (NH4)2[Ce(NO3)6] · xH2O(x=6-8) from TGA.

Key words: Ammonium Cerium Nitrate, Cerium Hydroxide, Crystallization

1.  

1936 Smith [1]    

    !"  # $% & %

'( )*+ ,, -. /012  34

 56789 7:;< => ?6 @A, acetonitrile $7B! C

 D-5678< EF+G H 7B9 I JD

 J $+6; .K.

L I M5 N !O 7B P QR6S T UV )* WXY UV Z[ \ ]^4) _. '`

9 aX 7+Y HK[2]. &. TFT-LCD )*b4 cdef

TFT )*g hi j( )*b49 kl\=m kl nopqrs

 *t uvw6 x. yb49 kl `z{ kl|q

< }7+Y H ,, kl|q ~{9 €%)P 

 }7 K.  (NH4)2Ce(NO3)69 Ce(IV)< Ce(III) ‚+^

9 klI %ƒ„ …† `zƒ‡ %ˆ{ }7 K. ‰Š

‹_ PDP UV\=! ,( \={< Cr/Cu/Cr 3cŒ 

+G H6 @A kl|q }7 j$Ž i9 

 $ ‘’ 1V G“ ” •– K[3]. W-m

—  ˜.  I {  m

™sš % ›œ)*[4] WXY carbonyl compounds  56 D  %[5]  ~ I 7. J7›ž ~

$Ÿ+Y HŽ,  F ˜  ž $Ÿ +1 ¡ Y HK. i9 ‰Š  $< ¢£> ¤<¥ ”

•–+G  _. 1VP < j. ¦4K.

To whom correspondence should be addressed.

E-mail: hsyoon@kigam.re.kr

(2)

.§ f ¨©ª ƒ’I ~;Y H c« ¨©ªt \¬­D

9 «<‹9 ˜XY HŽ, ¨©ªUV ­D ®X6¯ D°

O% 6¯ ±² i 2000 –6'( ¨©ª 4­ $³ I ´)M9 f $µn¶! M· ˜ )¸ <¹; µY H ¦4K. i9 ‰Š –7%t _º. ¨©ª ˜   

¨©ª 4­ »K cd )¸I ³ D  ¼G½ ¥ ” } { K.

W-¾ ¿ 9 nÀ ¨©ª 4­P bastnasite'( › :Á³I ÃÄ ›X R$ 7B[6, 7]'( )* $%

I ³ {   7B )* Š  Å< .

 )*ƒ, ³ 7B ;g  Æ;,  Å

<", JÇ; T Jƒd  F ÈÉ Ê‰I YËÌŽ, XRD, SEM WXY TGA ›ÍI ´ 34 ÎÏ T

* _. YËI $ŸÌK.

2. 

2-1.   

¿ 9 ³ D  }7 $% nÀ ¨©ª 4­

(ReFCO3)P c« Ѝ È­ bastnasitet ›:Á³ Ñ

³7B'( ÒÂ\Ó  ›X R$ 7B'(

)*ÌK[6, 7]. Table 1 7B *I mÔ#Y HŽ, ¨©

ªOž c  M" 99.8%9 YÕ; M5 7BÖI ×

$ HK. ¿ 9 }7 ,   }7D  ¿ Y Õ;%ˆ ƒØI }7ÌK. ¨©ª Æ; Ù4 ICPt 7Ì

Ž,  34 ÎÏ SEMI 7 ˜ËÌK. 

 Ú›Í ÃÐ T 34 TG-DTAg XRDt 7ÌK.

2-2. 

\ 3!9 ÛµÌÜ[8-11], 3< ¨©ªO'( › X R$ M57B'( 3< $% )*+ ,, t

³ {  I )*ÌK.

2-2-1. $%(Ce(OH)3) %

9  4< ÝÇ6 @A 3< $%

(III)I 4< $%(IV) %ƒ„ .K. 3< $%

 % € _6 c ™³+^ Þß 4< $%

 \‚ K. i9  ච¿ 9 3< $%

% b6~áÓ  $Ÿ+âK. b6 ~á" ¤<¥$ã 3< $% %< äX ¼G1Ž, &. b6 åæI ?ß  3< $% $7B! çè^I éêë i %t äX

Gmß ¥ $ HK. ¿ 9 b6 ~á compressort 7. ì íb6t }7ÌŽ b6~ᘠî k6t ïY $t ðX¾

9 4" b6~á"9; b6åæ 76 \ñ ΍+;ã

ÌK. Photo 1 3<g 4< $%I mÔ#Y H ,, 3<

$% ò »i2I ó ^ 4< $% È2I óY HôI × $ HK.

2-2-2. (H2[Ce(NO3)6]) $7B )*

xg C åÓ % $%(Ce(OH)4) 4"I 7 B Å<(Ce(OH)4/HNO3 mole ratio 1 : 6)M9  $7BI )*ÌŽ,  Æ; T  $7B ; ¤ª$g N

  WXY $t Å<M9 *õÌK.

2-2-3.  $7B'( ((NH4)2[Ce(NO3)6])

 )*

 $7B #  Æ;(CeO2: 30-150 g/l) i 4"

I ³ 7B Å< Æí34% !4I ÃÉ^ /01 2 (IV) 34 ΍+ ,, Æí34% ö… –ì

9 Ÿ. 3!,  34% \ µ¹. 78

¤  P ÷. ÆíD J ø3+ ”I × $ HâK.  i9 Gù 4; 78 ¤ Š úz . 34%< ¼G½

 34I ÑI $ HK. W-m Æí ƒd ûY &.

8  üç <Ú P. % O _" å³  A)ý þ

_ÿ+âK. i9 R\¤ 6t 7. ìÁ<Ú b4I ;á

¦I $ŸÌK. ì9 Ç;< Ø 50oC 4;9 

 Å< 4<  $7B 6 ƒ?Ž, Gù 4; 78<

¤ Š  34 +âK.  Š 34 Y/B

›X T *t ´ (IV) 34I ÑI $ HâŽ, Photo 2 4< $%I  7:ƒ –Ïg 4< 

 7B I Å< Ñ /012 I

» ~Y HK.  34 ›X B ¨©ª Æ;t Ù4M9  34 $I ÑI $ HâK.

3.

3-1.

3-1-1. ³ 7B Æ; T ; ʉ

Fig. 1 ³ 7B  Æ;t 30 g/l9 150 g/l %ƒ‡^9  Å<"I  Æ; i 2.5 " Å<. Š R\¤

69 Ç; 70oC 1ƒd ìÁ<Ú Ñ  3 Table 1. Composition of cerium-containing solution separated by double

salt precipitation

Element Ce La Pr Nd

Content 2.92% 81 ppm < 1 ppm 10 ppm

Photo 1. Configuration of cerium hydroxide(III) and (IV).

Photo. 2. Configuration of cerium nitrate solution and ammonium cerium nitrate.

(3)

 41 3 2003 6

4 $I mÔ#Y HK.  3! ^,  Æ;< 30 g/l

9  34 +1 ¡Ž,  Æ;< ¤<

¥$ã $ ý‹ ¤<  Æ;< 100 g/l –9  34 $ 96% – ;± ”I × $ Hâ K. Fig. 2  Æ; 100 g/l, I 2.5 " Å<. Š ³ 7B ;t 1 mol/l9 9 mol/l %ƒ‡^9 R\¤ 69 Ç; 70oC 1ƒd ìÁ<Ú Ñ  34 $

I mÔ#Y HK.  YÕ; $% YÇ9 

Þß 7:+6 @A 8ö  ; 4<  7BI ÑI $ H ,, Fig. 2  ^ 7B ;< 1 mol/l  ;9 3 4 ΍+1 ¡ôI × $ HK. ¿ *9 7B ; 3 mol/l

–9 ; ¤< i 34 $ ¤< ”I × $ H âŽ, ;< 7 mol/l9  34 $ 96% ;

±ÌK. -. 3!'(  $7B #  Æ; ¤< 

 34΍ J V;t ¤<ƒ‡Ž, &. ³ 7B ;

¤< 7B # NH4+Ç I ¤<ƒ‡¾9  3 4I 7ß  $ ¤< ”i }{ K.

3-1-2.  Å<" ʉ

Fig. 3 ³ 7B #  Æ;< 100 g/l, ; 7 mol/l9 

 Å<"I 1 "9 3 " %ƒ‡^9 R\¤ 69 Ç

; 70oC 1ƒd ìÁ<Ú Ñ  34 $I mÔ#Y H ,,  Å<" ¤<M i $ ¤<

”I × $ HâŽ, -. 5 9 Ûµ. g C J D ¤< P. NH4+Ç ¤<  ”i }{ K.

3-1-3. JÇ; T Jƒd ʉ

Fig. 4 9 Ûµ  *9 R\¤ 6t 7. ìÁ

<ڃ JÇ;   34 $I mÔ#Y H ,, JÇ; 30oC9 34 $ 81% Ÿ+ ,,  @ 

34 ò ™2I óŽ á ­†  ”I × $ Hâ

Ž, JÇ; 50-70oC9 $ 93-96% ¤<ÌŽ,  *

Fig. 1. Relationship between yield of CAN and cerium concentration.

Fig. 2. Relationship between yield of CAN and acidity of cerium nitrate solution.

Fig. 3. Relationship between yield of CAN and amount of ammonium nitrate.

Fig. 4. Relationship between yield of CAN and reaction temperature.

(4)

9 Ñ  34 /012I óŽ ­†I  ” I × $ HâK. -. 3!'(  34΍ J

Ç;< ¤<M i 7ß G“ $ HôI × $ HK. W-m

JÇ;  34 2 %g ­† 5 _. PI :3

6 x:9 1VP < j¥ ” }{ K.

Fig. 5 ìÁ<ڃ Jƒd   34 $

I mÔ#Y H ,,  FJ 4 *9 8ö

 ß Ÿ+Ž 10› ж 90% $I »Ž,  Š 20 ж  J ùXß Ÿ+G 96% $I »PK. i9 -. 3!' (  34 ΍ J 4 * G1^ 8ö  ß Ÿ+ ”I × $ HâK.

3-2.   !

3-2-1. XRD ›Í

Fig. 6 6  Æ;%   Å<" 1 ",  ìÁ<ÚÇ; 70oC9 )*  XRD ›Í 3!t mÔ

#Y H ,,  34 k< Ò ƒØµP ¿

YÕ;%ˆ 99.9% I Yk }7ÌK.  3

! ³ 7B #  Æ;< O¥$ã 2θ< 15 ®9 ~k

intensity< ¤<Ž, i9 6  Æ;< OM i ΍+

 34 ‰–+ ”I × $ HâK.

Fig. 7  Æ; 70 g/l 7B  Å<"

I %ƒ‡^9 ìÁ<ÚÇ; 75oC )*  XRD

›Í3!t mÔ#Y H ,,  Å<" 1 " »K 2 "9 ΍  ~kP 2θ< 15 ®9 k intensity< ¤< ”I × $ HâŽ, i9  Å<"

¤<  34 ʉI ÈÉ ”I × $ HK. W -m  Å<" 3 "9 34 ƒØµ! º Ø d K ß mÔm ”I × $ HŽ, i9  Å<"

2 " õ. ”I × $ HâK.

Fig. 8  Æ; 70 g/l,  Å<" 2 "  7 BI ìÁ<ڃ Ç; % i ΍  34I XRD ›Í. 3!9 Ç;< ¤<M i  34

 ‰–+Y Hm, 70oC –9 34 Ø:1 ”I × $ HŽ, i9 ¿  *9 65oC9 34–Ï< <’ Ý . ”I × $ HâK.

3-2-2. SEM ˜Ë

Photo 3 SEMI 7 6  Æ; %  á Î

Ït ˜Ë. 3!9 á ÎÏ  Æ; % ! ʉI "

1 ¡m,  Æ;< OM i á k6< ¤< ”I

× $ HâK. -. 5  $7B I Å<

ìÁ<Ú ÑG1  x J$ ¦

Fig. 5. Relationship between yield of CAN and reaction temperature.

Fig. 6. XRD pattern of ammonium cerium nitrate with the concentra- tion of cerium.

Fig. 7. XRD pattern of ammonium cerium nitrate prepared for differ- ent addition quantity of ammonium nitrate.

Fig. 8. XRD pattern of ammonium cerium nitrate prepared for differ- ent temperature.

(5)

 41 3 2003 6

9 × $ HÜ ³ 7B  Æ;(>50 g/l) T ;(>3 mol/l)  3 4 ΍ <#. Öf ;±  34%< ¼G1 ”I × $ HâŽ, i9 ³ 7B#  Æ; ¤<  3 4 ƒ $(nuclei) $ ¤<t 6ƒ‡6 @A ø á k6

< O.KY }{ K.

3-2-3.  ڛ: ÃÐYË

Fig. 9  *9 )*  TG-DTA ›Í3!

t mÔ#Y HK. DTA %… TG %… ß&¦ :  ÿ

 'Ú kt <1Y HK. ( )* k  ›:+

6 ƒ? D ›:+G )Ã+ Ç;+x 200-250oC9 mÔm

Ž, ÿ )* 'Ú k N2O3< ›:+ Ç;+xP 250-305oC9 mÔm ”I × $ HK. ÿ )* 'Ú k Š9 TGAg DTA

%… Ç; í! ,ŸŽ i9  ›:< -\> 

¼G.ôI × $ HK.  ›: Kô! C ÿ ef t ÃÉ^9 G/K[12].

(NH4)2[Ce(NO3)6] 0 CeO2Á4(N2O3) 0 CeO2 (1)

Table 2 ƒ{ ß% 6 f  *

ºt mÔ#Y HK.  3! ^, ° f 

 * ߺ CeO2: N2O3: H2O< 31.4 : 55.5 : 13.1 mÔ m ,, ¿ 9 Ñ  Ú›Í 3!t 1

. * ߺ CeO2: N2O3: H2O< 27.9 : 35.0 : 37.19 

 * ߺ °Ég ¦É< ‹t »Y HôI ×

$ HŽ, 2> D _. ߺ ‹< kß mÔmY HK. 

 200-250oC }9 34$< ›:+ ,, Fig. 99 34

$< ›:+ Ç; +x9 ÿ ÎÏ ›: %…  ”I ×

$ HK. -. 3!'( ¿ *9 )* 

D ›: Kô! C ÿ ÎÏ ›:3t 4MY HKY }{

K.  # 34$ ›:g ›:` (1) ( efP

 ›:ƒ D )Ã< Ѓ GmŽ, i9 ¿ 

9 )*  34 %ˆ` (NH4)2[Ce(NO3)6]Á xH2O(x=6-8)P ”I × $ HK.

4. 

¿ 9 $%(III)I ³ {   7B )

* Š  Å< . YÕ;  )*ƒ, ³ 7 B ;g Æ; WXY  Å<", JÇ; T Jƒd

Photo 3. Shape of ammonium cerium nitrate by SEM.

Table 2. Composition of ammonium cerium nitrate(%)

Composition H2O N2O3 CeO2

Determination results 37.1 35.0 27.9

Theoretical calculation results 13.1 55.5 31.4

Fig. 9. TG-DTA curves of ammonium cerium nitrate.

(6)

 F ÈÉ Ê‰I YËÌŽ, XRD, SEM WX Y TGA ›ÍI ´ 34 ÎÏ T * _. YËI $Ÿ

Kô! C 3°I ÑâK. 4< $%I  7:. 

(IV) $7B'(  Å< .  )*ƒ

R$I Y5.  F* ³ D   Æ; 70-100 g/l, ³ 7B ; 7 mol/l,  Å<" 2.5 ", ìÁ<Ú Ç;

65oC T Jƒd 15-30 min.⎠-. *9 

 34 $ 96% âK. &.  34 Ú›Í Ã ÐI YË. 3! %ˆ` (NH4)2[Ce(NO3)6]ÁxH2O(x=6-8)P ”I ×

$ HâK.

 

1. Smith, G. F., Sullivan, V. R. and Frank, G., “Preparation of Ceric Ammonium Nitrate,” Ind. Eng. Chem., Anal. Ed., 8, 449-451(1936).

2. Hwu, J. R. and King, K. Y., “Versatile Reagent Ceric Ammonium Nitrate in Modern Chemical Synthesis,” Current Science, 81(8), 1043-1053(2001).

3. Baek, K. J., “Application Status and Trend of Lanthanides in IC and FPD,” Proceedings of Symposium on the Materials Development for Rare Earth, Korea Institute of Geoscience & Mineral Resources, December, Daejeon(2001).

4. Ungar, T., Dragomir-Cernatescu, I., Louer, D. and Audebrand, N.,

“Dislocation and Crystallite Size Distribution in Nanocrystalline CeO2 Obtained from Ammonium Cerium(IV)-Nitrate Solution,” J. of Phys- ics and Chemistry of Solids, 62, 1935-1941(2001).

5. Cho, L. Y. and Romero, J. R., “Chemical and Electrochemical Oxi-

dative Dimerization of Carbonyl Compounds by Cerium(IV) Salts. A Comparative Study,” Tetrahedron Letters, 36(48), 8757-8760(1995).

6. Yoon, H. S., Kim, S. D., Kim, C. J. and Kim, J. S., “Decomposition and Sulfuric Acid-Leaching of Bastnasite by Oxidation Roasting,” J.

of The Korean Institute of Mineral and Energy Resources Engineer, 35(4), 349-355(1998).

7. Kim, J. S. and Yoon, H. S., “Separation of Cerium by Ion-Sieve Method,” Korean Patent No. 0228057(1999).

8. Yoon, H. S., Kim, S. D., Kim, C. J., Lee, J. Y. and Kim, J. S., “Sep- aration of Cerium from Sulfuric Acid-Leached Solution of Oxida- tion Roasted-Bastnasite Ore by Double Salts Precipitation,” Theories and Applications of Chemical Engineering, 7(1), 893-896(2001).

9. Yoon, H. S., Kim, S. D., Kim, C. J., Lee, J. Y. and Kim, J. S., “Prep- aration of Cerium Hydroxide from the Solution Contained Cerium Complex Anion,” Theories and Applications of Chemical Engineer- ing, 7(1), 897-900(2001).

10. Yoon, H. S., Kim, C. J., Kim, S. D. and Kim, J. S., “Preparation of High Grade Cerium Compounds,” Technical Report of Mocie, 1999 R-ME01-P-03(2001).

11. Yoon, H. S., Kim, C. J., Kim, S. D., Lee, J. Y. and Kim, J. S., “Prep- aration of Ammonium Cerium(IV) Nitrate from Cerium(IV) Nitrate Solution,” Theories and Applications of Chemical Engineering, 8(1), 2217-2220(2002).

12. Gao S. G., He S. Y. and Jiang X. W., “Study on Thermal Decompo- sition Reaction of Heavy Rare Earth Nitrate Hydrate,” J. of Rare Earths, 8, 277-282(1990).

참조

관련 문서

It considers the energy use of the different components that are involved in the distribution and viewing of video content: data centres and content delivery networks

[r]

Levi’s ® jeans were work pants.. Male workers wore them

The proposal of the cell theory as the birth of contemporary cell biology Microscopic studies of plant tissues by Schleiden and of animal tissues by Microscopic studies of

Effect of Alamine336 concentration on the extraction of me- tals from the mixed solutions of Pt(IV) Pd(II) and Rh(III) at diffierent HCl concentration in the presence of SnCl

2.2.1. Preparation of the standard solution To prepare the standard solution of sodium saccharin, aspartame, and acesulfame K, a reference stock of.. 1000 mg/L

Water oxidation driven by a catalyst has been reported in two ways: excess addition of cerium ammonium nitrate (CAN) into the solution of highly acidic solution of catalyst leads

By using substoichiometric amount of ammonium nitrate supported on silica sulfuric acid, active benzylic alcohols (with electron-donating groups on aromatic rings) were