• 검색 결과가 없습니다.

Preparation of p-Toluene Sulfonic acid Using Reactive Distillation

N/A
N/A
Protected

Academic year: 2022

Share "Preparation of p-Toluene Sulfonic acid Using Reactive Distillation"

Copied!
7
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

  p-  

  *

 

*   

(2002 5 22 , 2002 8 7 )

Preparation of p-Toluene Sulfonic acid Using Reactive Distillation

Joohyoung Kim, Chaeyong Lim, Myungwan Han and Beom-Sik Kim*

Department of Chemical Engineering, Chungnam National University, Daejeon 305-764, Korea

*Chemical Process and Engineering Center, KRICT, Daejeon 305-600, Korea (Received 22 May 2002; accepted 7 August 2002)

 

! :$;<. = >?( @A!   /0 @B;C D; E/ p-TSA!  FG H >

?! I J. KL  kineticsM    H >?! 2  $?! N J,O ! PQ,- RST

Abstract−The sulfonation of toluene to produce p-toluene sulfonic acid (p-TSA) is strongly limited by chemical equilib- rium. Therefore, in chemical process industry, excess sulfonic acid is used in order to increase the reaction yield. However, this causes an environmental problem. We propose a new process using reactive distillation to increase the reaction yield and get pure p-TSA. The first step was to study the reaction kinetics and chemical equilibrium. In this work, we explored the feasi- bility of using a reactive distillation column for the preparation of p-TSA based on the simulation of the new column and kinetic data obtained by experiments.

Key words: Reactive, Distillation, Sulfonation, Toluene, Toluene Sulfonic Acid

1.  

       

-    !" # $%& '(.

  )* + , - ./ 0 1 234 5 6 '7 89 : ;< = > ?

@A BCD !(. EF  >3 %1  GH

MTBE, IJKLM>N, JKLM>N, O>P 66, JQ RS

TU V4 W '([3-8]. XY   Z [W\

Doherty] Malone : ^ _`?a([9].

bcd efU4 gh ijk lm\ `, n`, #o, lpL=, qr sp=V t u , v_ wHmx y vz{  lm, |3}(. bcd efU\ (~ 4 € 4 '(.

(1) bcd efU\ Tp $Um m4 9p& ‚ Oƒ„ …

] †> 89  >c‡ˆ '(. ‰Š,  ‹4 Œ> *

- Ž U4 |3-  894 > ‘ ‹4 ’

“ ”‚ ’ U1• , |3?& '(. –—O >— @A

%˜Ž ™ U> HT- <@š=’ u}(. y bcd ef U4 = *- (~ †\ 4 s3› 'O

(2)

> \ œA ž- Ÿ  ¡> œA ¢W& ‰Š, 

> ‡O £/ ¤ $ Tpm> ¥K¦ @j> '(. >§ )

W4 ¨© *:  ª4 >3-  894 Tpm

>3- m4 ZŸ = (. ®,  ¯1>

>c‡ˆ &°  ijk efU4 ./ , ZŸ TU› '(.

m 2 9p ijk ± ² ³9  ³ v´

 µ¶& ³ %$ U4 µ¶-, ijk lm ·¸ ‘

4 “r,  - ³% m> =?& ³¹

 &°  ijk efU> =º '(. >] †\ GH4 * :, » Z , ef   œG¼ W - q½¾ CH3C6H5+H2SO4↔CH3C6H4SO3H H+ 2O

CH3C6H5+SO3→CH3C6H4SO3H

To whom correspondence should be addressed.

E-mail: mwhan@cnu.ac.kr

(2)

 40 5 2002 10

4 ¿W‡ LC >3- À Á ŽÃ4 ¯p&  ÄÅ4

- > ÄÅ [ …Æ ÇÈ4 p& Ÿ % ] 8 9 % W4 É(. y >ÊË ‡­ ÇÈ4 …Æ 

³ ÇÈ4 p, Ç| - »    3 ƒ˜p 4 ÂÌÉ(.

2.  

 efU = iÍ = ./  ”‚ 

bcd4 Î& Ž U4 ϶- > ‡O Ð hÑ b cd efU4 (. > @A ; \ ’Ò > Ӛ T p} m :, > ¦.4 Ô~Ñ ‹> ÕK¦ > Ö ) ¦?a(. y > ¨© *: U4 Ž ×

Ë ?& > @A =Ø v U> Ž ÙFË Ú ‰Š U Û

’ Ö š= HT?a(. ‰Š, » Z , =#} \ m  2 9p bcd Ü_Ž U4 ZŸ ×- U bc d> ·¸- p-bcd efU4 =› ' Ð É(. >  GÝ  Fig. 1 Oƒ+a(. ³ , OÞ { bcd m>

2 >cß bcd m àlm>7 á- % , m 4 = > ’â(. % %$ bcd\ ( ³

 < “Ë }(. ³ $ = ãÒ4 ä‡ Tp} p-bcd e fU4 &°  = (. ‰Š, » åæ\ ] hç 2

’ ‡O ©l >(. -, 2 entrainer m

 bcd ãÒ , m4 =:+ қ4 Ë }(.  Ù W\ ãÒ , m4 è‹ = é ‡êë 

> 'O > \ >] †\ W> :[> ?a(& › '(.

  GH\  (~ )•W4 ì(. Aà 

’ ’â •¦ íK»(. ®, (~ ’ pîº '  @•ïW4 ¿k¦ íK»(.

1. > ‡ð ' 1ãÒ ’ ‡ð ' 1 ã Ò> vñ?‡u (. > ³ òó4 ¼ ‘, 1 ô  ãÒ4

¼ “ > ’â(. >Ó • òó @• ï = 4 Ô

(. »  , š=’ õO ./ ¯ ’â ãÒ  hç ÂÌ?

‡u (.

2. y Ÿ ] Ÿ  2’  ö> ?‡u (. ÷ W

‡ Ÿ ’ øù úr > ‡O { z4 = * : ³) û’ ¦O/Ë üˆu  )4 ’¦Ë ?‡ E. 3 š=4 ýË }(. * @• ïW4 » ¿k?a(r 

 ô  ãÒ,  ãÒ,  Ÿ W  Â̒ >c‡ˆu (.

(~  ./ þ• *-  Ÿ  qE‚ 0 %89 é

>ÿ ÄÅ4 - \ š| - -u (. > …

Æ  Ç| -  þ• 0 1ï4 X (. >Á

 pilot test €  4 . Ç scale-upË }(.

3. Kinetic data

3-1.   

» ÄÅ , |3} `\ Junsei| =Ø bcd, , U4 | 3É7, p-bcd efU\ Aldrich Chem.| =Ø4 |3É& I

±\ J.T.Baker| =Ø HPLC(&pâ ¾{ û ̖)34 >

3É(. -, \ ŽÃ4 é +$ q½mx |3 (.

À Gilson Liquid Chromatograph >3É& \ Phenomenx ULTRACARB 5µ ODS>7 Âw Ultraviolet(UV) Absorbance Detector >3É(. y UV .\ 254 nm &

É(. >% |3} I± m !Ÿ\ 1.05 ml/min, 0.45 ml/

min É(. o µ¶Ž\ 5µl sample loop >3- Ë µ¶- À4 É(.

3-2.   

bcd\ ì;p /<  ef 4 (. bcd\  U 3p>¦¿ efU\ U Ë 3: (.  [\ ±

 ²> õ‡4 & í '(. bcd ef \ 100- 200oC , ‡O7, p-bcd efU4 µ Tpm 9p7 ²Ž

ortho-, meta- >px{W4   íêˆ '([1]. » Z

,   m, U, bcd n  í& > 89   Á bcd n  hÑ ;<‹, p-TSA(bcd efU) 89

% › '(. Ž p> °mx(bcd, A) Ž +

$ q½mx(, I) Ž4 Table 1 Oƒ„  2 q½¾4

=& – Ž4 LC µ¶ (. ’¦ Ž p> ° mx(p-bcd efU, R) Ž +$ q½mx(, I) Ž4 Table 2 Oƒ„ 2- q½¾4 =& Ž4 LC À (. -, \ é>ÿ ’¦& ŽÃ4 ¯p \ Fig. 2] 3 OƒO'(. ÄÅ./ Fig. 4] 5 Oƒ+a(. Fig. 4 Ÿ  0 89 é>ÿ  * ÄÅ./, 15 ml vial4 O 

 T- > ô ,  ï ‰Š ô    (. > [ LC >3- ÀÉ(. m\ bcd(A0) U (B0)4 (0.04 mol, 0.06 mol), (0.04 mol, 0.05 mol), (0.04 mol, 0.04 mol), (0.05 mol, 0.04 mol), (0.06 mol, 0.04 mol) 2 •U- 30oC, 50oC, 70oC, 90oC  ô  , 1 z#  (. -,  z 1 z\ 89   é  z> ?‡, [} >(.

> ÄÅ\  ô  ‰ 2 ÄÅÉ(. -,  ô  PID ô  ¡ |3- Ë !¦ (.  o !

"} I±4 Ž ϶- 4 o “ê É(. o

;{ xŽ(WT)4 - – v , Ž o #É& WT

 $ } bcd> ÙFË ?ß sample ÙF bcd

4 r WT ÙF bcd 4 › '(. Sample 0.2 g q½ o(, WI) 0.05 g %‡, LCÀ4 (. LCÀ4  Fig. 1. Schematic diagram of the proposed process.

(3)

- \ r2$ÿ 2 & sample &K ' q½ o

 (WI) 2'- bcd(A) 4  (. ‰Š, WT &K '

 bcd(A) 4 í 'ß WT &K' 4 Û~ ϶}

bcd(A) , (r O)¦ Çä ;<} >(.

Fig. 5 500 ml , ’* ', ô  ¡, , á,  ô, *;+ p} ”‚  åæ>(. > ”‚ 

 åæ4 >3- Ä= ] 2’ ‡O¦

ÄÅ4 - MåNÉ(.

3-3.     

o(bcd+U+I±) ¿, Á LC À- >û r

4 íK+&, o r2(AI/AA)  (. Ÿ  % ÄÅ\ 

z 1, 3, 5, 10, 15 #  ô  30, 50, 70, 90oC ,  É (. LC À r2 Relative Calibration Curve ,  "•‚ 

¶- o 2(bcd  (MA)/  (MI)) 4 'Ë ?

&, o W‡' bcd 4 •U (. o &K' bcd

 \ MA= 2-(MI/MWT) í ’ '(. ²2} bcd(A1)\

 bcd(A0) , .K' bcd(A0−A1=A2)4 /  †(.

Table 1. Toluene/Benzene mole ratio Standard material(I)

MI(Benzene, mol)

Pure material of component(A) MA(Toluene, mol)

Standard material(I) WI(Benzene, g)

Pure material of component(A) WA(Toluene, g)

1 0.01 0.09 0.7811 8.2926

2 0.02 0.08 1.5622 7.3712

3 0.03 0.07 2.3433 6.4498

4 0.04 0.06 3.1244 5.5284

5 0.05 0.05 3.9055 4.6070

6 0.06 0.04 4.6866 3.6856

7 0.07 0.03 5.4677 2.7642

8 0.08 0.02 6.2488 1.8428

9 0.09 0.01 7.0299 0.9214

Table 2. p-TSA/Benzene mole ratio Standard material(I)

MI(Benzene, mol)

Pure material of component(R) MR(p-TSA, mol)

Standard material(I) WI(Benzene, g)

Pure material of component(R) WR(p-TSA, g)

1 0.001 0.009 0.07811 1.71198

2 0.002 0.008 0.15622 1.52176

3 0.003 0.007 0.23433 1.33154

4 0.005 0.005 0.39055 0.95110

5 0.007 0.003 0.54677 0.57066

6 0.008 0.002 0.62488 0.38044

7 0.009 0.001 0.70299 0.19022

Fig. 2. Toluene/Benzene relative calibration curve.

Fig. 3. p-TSA/Benzene relative calibration curve.

Fig. 4 Experimental apparatus for the determination of kinetic data

(4)

 40 5 2002 10

‰Š, ’¦ i‚ > 89   ›    z>

@ Á (~ 89% ‚4 >3, 89% •U› '(.

(7)

-,, R0, S0, B0  bcd efU, m, U n >(.

3-4. Kinetic data 

 ¾$ÿ o #r o v  U, m, bcd, bc d efU> ÙFË }(. LC - À> ’â mx\ bc d bcd efU>(. GC TCD |3 @A )¦ bcd¿4

À› ’ 'a(. Fig. 2, 3 relative calibration curve bcd/

  2] bcd/ r 2, p-TSA/  2] p-TSA/

 r 2  Oƒ0  Regression ‚4 ¿W&, 1Á r

 2$ÿ  2 é >3› '(.

ÄÅ [ …Æ (~ †\ ‚4 p, =#É(.

(8)

(9)

(10)

bcd ef \ ’Ò U Tpm p-TSA> m

 m4 9pr > mW\  , =2?  ’

É(. >] †> ’hÑ Ž U4 |3h ‰ 89

KX (R0+A1)(S0+A1) A2

( )(B0–A1) ---

=

CH3C6H5( )A +H2SO4( )B k1

k1

⇔p TSA R– ( )′ +H2O S( ) H2SO4( )B +H2O S( ) k2

k2

⇔H2SO4⋅H2O BS( ) p TSA R′– ( )+H2O S( ) k3

k3

⇔p TSA– ⋅H2O R′S( ) Fig. 5. Reactive semibatch distillation system.

1. PID controller 5. Condenser

2. Hot plate 6. Funnel

3. Circulator 7. Insulator

4. Ball column 8. Phase separator

Fig. 6. Experimenal and simulation results for the determination of equilibrium constant.

(5)

>4 þ3› '(.

Fig. 6\  ô  30oC, 50oC, 70oC, 90oC , U/bcd  2’ 0.6667, 0.8, 1.0, 1.25, 1.5 n ¼  p-TSA/bcd ÄÅ ö =#} ÇÈ Ç| [ ö4 -µ& '(. >% , =#}

ÇÈ> U |3Ž ‰ p-TSA Tp ‹4 ^ ÷› '~4 4 '(. Fig. 7\ ô  303 K, 323 K, 343 K, 363 K , ‡­ Ä Åö Ç| [ , ‡­ 89% ö 2.5, 0.035, 0.0012, 0.000045 Ì lnKö4 5› 'a(.

Fig. 8\ Ÿ  %  *- \ é>ÿ ’¦&   

 U/bcd 2 1 -  ô  30oC, 50oC, 70oC, 90oC

,  z 1, 3, 5, 10, 15  p-TSA/bcd ÄÅö =#}

ÇÈ Ç| [ ö4 Oƒ+& '(. Fig. 9  ô  323 K, 343 K, 363 K]  z 1, 3, 5, 10, 15 , ‡­ ÄÅö Ç| [ 

‡0 Ÿ  % ö 6, 5, 4.5 Ì In kö4 › 'a(.

ÇȂ (8), (9), (10)4 Y Ÿ  % ‚4 - Ç|6–74

>3 Ç| [] ÄÅ  [ Fig. 6 Oƒ+a& Fig. 7 , 89 %  ô  ãj4 Arrhenius‚ (k=koexp(−E/RT))4

|3- 89:(. >Ó 89% ;Ã , ko=4.482, E=1072.12(cal/

mol)>a(. y Ÿ  % Ò Arrhenius ‚ 9< #- œG

¼  öW4 É((Fig. 8, 9). >Ó ko=59.39, E=1165.35(cal/mol) Fig. 7. Equilibrium constant with reaction temperatures.

Fig. 8. Experimental and simulation results for the determination of kinetic constants.

Fig. 9. Arrhenius plot for kinetic constants.

(6)

 40 5 2002 10

 Oƒ=(. ® µ Ÿ ‚\

 qE› '(. -, xA, xB, xR, xS bcd, U, bcd ef U, m n   Oƒ0(. >Ó ‚ (9), (10) Ÿ  %  ô  ] ù"(& ’- ö4 |3É(. > >W mx >

  ô ’ ÄÅ ô ( ?@ Œ Ӛ>(. ‚ (9)  

> ABË ‡O& 89\ Tpm« '  ’É(.

® m> Tr U m> … Tp?  :(. >Ó

Ÿ %  4,  89 %  12,000 ’É(. ‰Š,

U\  : Tp} m - ef  C-¦ D

 m 9< ýË ? Ӛ ef  ;<‹4 Œ>

*:, Ž U> Ü_Ë Ú4 í '(. ® m> ãÒ , =?¦ ¤r – ¿E :˜ U> F Ü_Ë }(.

>\ E. , ÄÅ[ 0 @Å  / >(. ‚ (10)\

œA úG  ’É(. ‰Š, ‚ (10)\ ;{ ûË ã j4 $/¦ ¤  - Ÿ  % ö4 œA ¯Ë ’

É(. >ÊË :­ œG¼ W4 …Æ Ç| [ Fig. 6

8 Oƒ„ …] †> ÄÅ[] x /Ú4 4 'a(.

4.   

Ä= ’ ’â ¦ íK *:, ”‚ 

’ !3([9]. Fig. 5 Oƒ„ ”‚  åæ4 >3-

 ÄÅ4 É(. bcd 100 ml  µ¶& ³

% , U4 2 ml/min Ÿ  50 ml µ¶É(. >Ó  Tp } m bcd> ³ %$ Hw?‡ %?‡ m> % $

I> 4 5› 'a(.  $ ô  bcd 2

110oC , 1 %J- bcd efU> Tp? 4 5› ' a(.  z4 30 & o É4 Ó ³$ ù bcd efU> Tp? 4 4 'a& '4 KLr bcd

bcd efU\ %?a(. > ÄÅ4 - ef > 

 3› '4   A 4 í 'a7 y 2

0 % - m4 ãÒ , = 4 4 'a(.

5.     

 Ç| * Aspen Plus[2] >3- p-TSA = 

  Ç| É(. M, N×} …] †>  Ç|

Ü_ é>ÿ kinetic data] %89 é>ÿ>(. %89 é>ÿ b cd, U, m : é>ÿ’ Aspen é>ÿ O>å ¹.?‡ '

ß > s3É(. bcd efU  ¾ 89 é>ÿ » Z

 "PãÒ , % ¾{ ÙF &2 mx>ß > Q

#, Antoine ‚ œG¼ hÑ š= :[É(. -,

;{ )  10) É& 1)\ á, 10)\ F2 Oƒ+

a(. O)¦  ³ Ç| ï\ Table 3 Oƒ+a(. y 

³\  ) , 89   (& ’É(.

5-1.    

£o v bcd> 9), U\ 2) ×?  É(.

‰Š, U\ &2 mx>ß )4 €+ê Þ& bcd\ ¹ 2 mx>ß )4 € %JË }(. >] †> £o 

- × > è‹> Œ(. Fig. 10 ³ +  pW n   6Ü4 Oƒ+a(. ãÒ , m> ;D =?‡  ) , m n ’  0 ’RË ? 4 4 '(. ‰Š, Ò

> S=?‡  ‹4 ¬ ’ T '(. U ;<‹

\ 99.99%>%4 Oƒ+a(.  UV , =Ø pW  [

r k xAxB 1 K----xRxS

=

k 4.751 1665.35 ---RT

– 

 

= exp

K 4.482 1072.12

---RT

– 

 

exp

=

Table 3. Simulation input data

No. of total stage 10(including condenser and reboiler) No. of feed(H2SO4/toluene) 2/9

Feed rate(H2SO4/toluene) 10/12 mol/hr

Feed temperature 25oC

Pressure(feed/column) 1/1 atm

Reflux ratio 3

Distillate 2 mol/hr

Fig. 10. Column composition profile of the reactive distillation process.

Table 4. Result of components mole flow Component Feed 1

(mol/hr)

Feed 2 (mol/hr)

Distillate (%)

Bottom (%)

p-TSA 0.0 0.0 00.00 99.690

Toluene 0.0 12.00 16.47 0.31

H2SO4 10.00 0.0 00.01 0.00

H2O 0.0 0.0 83.52 0.00

Total flow(mol/hr) 10.00 12.00 11.97 10.030

Fig. 11. Reaction rate for p-TSA.

(7)

Table 4 Oƒ+a(. ³% =? mv  bcd> ‡ú   (` 13%) %> \ % , ;D m bcd> ?¦ ¤

 Ӛ>(. Fig. 11\   p-TSA TpŸ  Oƒ0 >

(. > ãÒ $, ® 2, 3, 4, 5) , µ ‡O 4 4 '(. > ) ,  894 ’ɍ Ӛ>(. Ä=  ) , { z> / D-  89 ;D  ¦ ¤

(& r ãÒ\ )W¦ 5º >(. ®, 89  

 é X { z> / D @A ) holdup4 ’

“O  ) ’ ‘ :[› '(.

6.  

» Z , bcd ef  kinetic data  *:, 

ô ] m U/bcd 2 ¼ ‘ ‡­ Tpm

n  À& =#} kinetic model : •U} [ ö4 2'

É(. > ÇÈ\ U4 Ž |3h ‰  89 %  ¼

 ^ OƒY 'a(. > ÇÈ4 >3- (~ †> µ

Ÿ ‚4 É(.

-, xA, xB, xR, xS bcd, U, bcd efU, m ‹4

 Oƒ0(. > é>ÿ …Æ  ÇÈ4 p&, Ç|

 [ ZŸ m =] U ;<‹4  100%W¦

ŒZÑ, y ”‚ ./   3 ’âp 4 MåNhÑ &°  p-bcd efU =   

[ GH ƒ˜p4 5 › 'a(. (~ Z µ= » 

 [ X’ º >(.

 

> Z \F) ¦Ò A  ¦£ Z(2001-1- 30700-003-1) ¦£ ?a]^(.

 !"

1. Morrison, R. T. and Boyd, R. N.: “Organic Chemistry,” 6th, Pren- tice-Hall, Inc., New York(1992).

2. Aspen Plus User Guide, Version 10.1, Aspen Technology, Inc.

3. Agreda, V. H. and Partin, L. R.: U.S. Patent 4,435,595.

4. Agreda, V. H., Partin, L. R., Heise, W. H.: Chem. Eng. Prog., 86, 40(1990).

5. Komatsu, H.: J. Chem. Eng. Japan 10, 200(1977).

6. Jaswal, I. and Pugi, K.: US patent 3,900,450(1975).

7. Smith, L. A.: U. S. Patent 4,978,807(1990).

8. Masamoto, J. and Matsuzaki, K.: J. Chem. Eng. Japan, 27, 1(1994).

9. Doherty, M. F. and Malone, M. F.: Conceptual Design of Distillation Systems, McGraw-Hill, New York(2001).

r k xAxB 1 K----xRxS

=

k 4.751 1665.35 ---RT

– 

 

exp

=

K 4.482 1072.12

---RT

– 

 

= exp

참조

관련 문서

• 대부분의 치료법은 환자의 이명 청력 및 소리의 편안함에 대한 보 고를 토대로

• 이명의 치료에 대한 매커니즘과 디지털 음향 기술에 대한 상업적으로의 급속한 발전으로 인해 치료 옵션은 증가했 지만, 선택 가이드 라인은 거의 없음.. •

결핵균에 감염된 사람의 일부에서만 결핵이 발병하는데 어떤 사람에서 결핵이 발병하는지 그 자세한 기전은 알려져 있지 않지만 결핵균의 독성(virulence)이 강하거나 결핵균에

12) Maestu I, Gómez-Aldaraví L, Torregrosa MD, Camps C, Llorca C, Bosch C, Gómez J, Giner V, Oltra A, Albert A. Gemcitabine and low dose carboplatin in the treatment of

Levi’s ® jeans were work pants.. Male workers wore them

Home delivery of newspapers will end. with so many people getting their information online, there may not be a need for traditional newspapers at all.

Motivated by the work mentioned above, and keep the interesting of the row and column determinant theory of quaternion matrix, we in this paper aim to consider a series

Miller and coworker have recently reported the preparation of vinyl sulfides from sulfoxides using the silylating reagent in the presence of amine bases.2 We also