• 검색 결과가 없습니다.

 1.  Optimal Scheduling of Non-Sequential Multipurpose Batch Processeswith Various Intermediate Storage Policies  

N/A
N/A
Protected

Academic year: 2022

Share " 1.  Optimal Scheduling of Non-Sequential Multipurpose Batch Processeswith Various Intermediate Storage Policies  "

Copied!
7
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

      

 

 *

 ,   

* 

(1999 10 25 , 2000 4 4 )

Optimal Scheduling of Non-Sequential Multipurpose Batch Processes with Various Intermediate Storage Policies

Sang Beom Kim, Ho-Kyung Lee, In-Beum Lee and Euy Soo Lee*

Automation Research Center, Dept. of Chemical Engineering, POSTECH,

*Department of Chemical Engineering, Dongguk University, (Received 25 October 1999; accepted 4 April 2000)

 

            !  "# $ %&

'(# ) .     *+  ,-. /0 1 )* ) ,23 2 4 5 678 9: ) ;< => . 8, ? @AB # CD  EF# GHI 1 )* ) ,2.  

 # JHK 1 ? )* L0 4 2 MN "KOP . 4 $ QR ST2 UVW

   XK 1 ? YVZ ! B[\ ]^ B # )*\ L0 _`T2 11 ab c W d

%. 0 )e f# gK h ab igj d%4 k?Bl. '(m no%pqrsS(Mixed Integer Linear Programming, MILP) qt2 abuvTw, x 3Z y) gzD )j '( Eg{# |}.

Abstract−In this paper, we present mathematical models for optimal scheduling of non-sequential multipurpose batch pro- cesses under various intermediate storage policies. Compared with multiproduct processes, in non-sequential multipurpose batch processes, the production routes of products may be different from one another and may be backward direction. Conse- quently, in order to reduce idle time of units and to raise the efficiency of process, we have to make operation sequences of products in each unit differently by considering processing route of each product with a given intermediate storage policy. The basic concept of our approach for these problems is as follows. Firstly, we represented the starting and finishing time of a task in each unit with two coordinates for a given storage policy. One is based on products, and the other is based on sequences.

Then, we matched the variables used in the two coordinates into one with binary variables and logical constraints. We formu- lated these problems as MILP(Mixed Integer Linear Programming) models and apply them to three examples to show the effectiveness of the model.

Key words: Scheduling, Multipurpose Batch Process, Intermediate Storage Policies, MILP

E-mail: iblee@postech.ac.kr

1.  

        

     !"# $ % &' () * + !". ,-,    $.  / 01

23+,  1 45 67 8#  9:' ;<

=>? =# @A B CD EF GH="[6].

IJKLM     N OP "Q  

R "SK  LM T !LU, "SK  

(   VM OP " AWK(sequential) R XAWK (non-sequential) LM T !"[11].

"Q   # YZ   VMD I=7 [C , (  \7 8 ]#  Q^_ A ` Ya b".

@A B "# e Bf YZ  I=' K/\# = -  c3 A B=# e g". hi 10jk 

"Q   4K @AB C# l 0Tmn

 opq 0T\9r sLU, , G t uq  1 6

(2)

7 8 /=# Gk v ;< Nw Ox (  @

yzk {=+, 4Q@yzk(makespan) 4 | }# 

@ A B C "~ C l €\‚"[3-5, 10].

 X "SK   "Q R# ƒ3 ( „"

 VMD M "…7 [C , (  \7 8 ]# 

WK. "Q R# ƒ3 XAW  # †N‰  ‡ˆ

Š‹ t !". Œ' "Q  # +=h Žt \# † N‰ ‡ˆLM .  k ‘  @ ’“ 6

7 8# (   ‡ˆR Gk v ;< Nw +

Q  •"# @ A B CD –— ˜™=+ 9š

h' ›". œ M "SK   @ A B C#

, GH1R H t žT=+ "Q  X Ÿ5KLM 0T D l  9hh ¡="D 4¢ n9 £¤ 6¥ OP "SK

 @yzk {R I{¦ C "~ C l €

\‚"[1-2, 7-9].

Pinto_ Grossmann[9] "SK   I{¦ C 0§

k ¨(continuous time representation) / ©¢ªLM« 7

Š k ¨ Dh# { k { ¬˜=+m =­

". MoonR Hrymak[7] ` "SK  4Q @yzk 4

|}# ®7 I{¦ C 8 MILP Y¯  ° !". ,

-, n IJK. "SK  " 7•"# "Q R 

=' (   ‡ˆ N‰ I AWK ± 5ŸLM

² ³ IJK. XAWK  " h# Ž´".

BokR Park[1], Fuchino µ[2], ParkR Jung[8]  ¶ -D 

  †N‰  ‡ˆ Š‹=# IJK. XAW "SK 

@yzk {R 4K I{¦ C " ‚h±, Gk v

;< Nw +=h Ž´]-, UIS(Unlimited Intermediate Storage) Nw D=­".

_ b 7Š "SK   5 0Tn "Q 

R =' (   ‡ˆ N‰ I AWK ± 5Ÿ

LM ²]-[7, 9], XAWK  " ‚"+ hPt UIS Nw- vD ·# VF± +² ³[1-2, 8], "Q  _ b

"¸ Gk v ;< Nw + 4K @A B C# 

¹ºh " 9»° ·".

¼ C SK 7Š "Q  ½GKLM 0T\9» "

¸ Gk v ;< Nw Ox IJK. XAW "SK  

 4K @ A B 8 ¾K Y¯ ¿€=+,  Y¯

/ À9»  4Q@yzk 4 | Á !# @

A B=# e".  8 5Ÿ LM (   V MD M " ³ ÂP AWK ‡ˆ, †N‰ ‡ˆ ªÃ Š‹=#

XAW "SK   ÄM "~".

_ 5Ÿ    Å, Y¯É H (Q Ê Ë 7Ìn

ÍÎ=tÏ =Ð". 3 # Gk v ;< Nw G UIS, ZW(Zero Wait), NIS(No Intermediate Storage), FIS(Finite Intermediate Storage) N w 5 4K @ A B !# ÑÒ ÓÔ{¦ Y¯

=+, 4 #  Y¯ 3¿ Ä K/, , BR Õª LM«  Y¯ ’/1 •.".

2.

2-1.  

¼ C #  Ö@ ®{ =- ± !# XAW "SK 

  "~". "Q  R "SK   

@A B C W X×=7 8 Fig. 1R b  2Ǖ

tÏ =m. Fig. 1 •# °_ b Ø Dh  A, B, C# (( 

 VMD "…U,  AD  1→2→3 ]# AWK  ‡ˆ

 Ù#Ú J  B#  3→2→1 A †N‰ ‡ˆ DhU, 

 C#  1 ]Û  3LM k Å "  2 ]# ‡ˆ

 D»".

"Q   # YZ   VMD I=7 [C

/ ’“ &' á9h' ›". Fig. 2(a) # Fig. 1 -âi 

Table 1R b @ k DhU UIS NwLM ;<›"+ [, Y

→B→C)M  c3\# VF ãä (Gantt) Wä -âåLU, Fig. 2(b) # UIS Nw 4Q@yz

k 4 . VF ãä Wä -âå".

‡ˆ  év c3=È   k &' ‘9 1

‰Ÿ\# e ç !". _ b XAW "SK  

Fig. 1. Illustrative example.

Table 1. Data for illustrative example Unit

Product

Unit 1 Unit 2 Unit 3

Processing times

A 3 8 4

B 7 5 2

C 6 4 7

Fig. 2. (a) Schedule for the same production sequence(A→→→→B→→→C) in all→ units, and (b) Optimal schedule for Fig. 1 under UIS policy.

(3)

 39 1 2001 2

 / ’“ 45M 67 8# (   VM_ Gk

…' B À9”± ".

2-2.  

¼ C " +m =# C  =È "ëR b". NDh 

 M¿  / "+ [, Fig. 1R b  

5 •((  =7 8 ]#  Q^_ A, ( 

„" c3 Dì  Q^)_ Table 1R b  @ k Úí, ,3+ /\# v  ;<Nw(UIS, ZW, NIS, FIS) À 9hÈ, SKª . 4Q@yzk 4 |Á !# ( 

î [ €=# îk(transfer time)R   c3 

Æï H\# pXk(setup time) @ k ªÃ ðªñ +

=­".

2-3.     

c3 A(sequence) -âò". Y¯É H ½ÒR Ê , ( Q 7Ì  =È "ëR b".

(a) ½Ò

I : c3  ½Ò

J : /  ½Ò

K :

Ij :  j c3\#  ½Ò Ji :  i c3=#Ú /\#  ½Ò Kj :

Ò(|Ij|=|Kj|)

(b) H Ê Ë E¿Ê

Xijk :  iD  j kóôM c3\È 1 -õh VF# 0 SXikj' :  iD  j § v kóôM v\È 1 -õh# 0 tij :  j  i @ k

TSij :  iD  j c3ö [ @ Ö k TFij :  iD  j c3ö [ @ yz k TSUkj:  j kóôM c3\#  @ Ö k TFUkj:  j kóôM c3\#  @ yz k LFT : D -G ÷-# @ yz k(Latest Finishing Time) EST : D év Ö=# @ Ö k(Earliest Starting Time)

3.     !    "#

| }# @ A B C ¾K Y¯ w=+m ". Ü 2Ǽ °_ b XAW "SK   ’“K. @ 8

a "…' ” ".  8 / ©¢ N Pinto_ Grossmann [9] w N ¢] eLM, év À9» Gk v ;<N w OP (   9h# Ö@ @ yzk R 

 7pLM (( ¨ Å, » Ê  /  a ¨ /

› Ê n G £{ !# en M 0B(matching)}' ›".

év YZ Gk v ;< Nw ùKLM K/\#  ú

û ü(assignment constraints) 2ǕtÏ =m.

 /\#  j c3\#  ½Ò IjP+ [, 

½Ò §=#  i#  j ú›  c3 A KjG 9> 

(1)

Z  Dh ± c3 !LdM "ëR b û ü

1=' ›".

(2)

 (1)R (2) "Q   ú üR X× [ ( 

c3\#  Q^_ D "…7 [C  T=7 8

 Ox  c3 A -â7 8 Ê Xikj jD ' ›".

 ( v ;<Nw 5  @yzk _ 

7pLM ¨ Å 0B}# N 2ǕtÏ =m.

3-1. UIS       

UIS Nw VF# v /  ·# VFM  ®{

@ ÷i  "ë ®{ M 9D+ [ "ë ® { D "x  c3=+ !# GP+ =¶Pt ¨ ®{

 @G.  vM •+ "ë @ Ý ! 7 [C , SLM . h\# k ‘I !". UIS Nw 5 @ ÖR yzk R c3 A 7pLM ¨=È "

ëR b".

[ @ Ö kR yz k  # "ëR b £{D 1".

(3)

(4)

 (3)   (2)   Ö@ A k ú\# 

 i  -õh n “0” \dM Bf kóôM c3\#

 @k± -â' ›".  (4)#   ÓÝ Ö@

yz\9”± "ë Ö@ Ýö !ë -âò".

ó  7pLM @ ÖR yzk ¨ •m.

(5) (6)

 (5)# ®{ j  i @ Ö kR yzk  £{

 -âU,  (6) (j_)i#  i  VMŸ j®{ "ë ®

 @ Ö !ë -âò".

  (3)-(6) ù _  7pLM ¨› @k Ê

[

(7) (8)

 (7)R (8)  iD  j kóôM c3\# VF ± êµ

 ¸Ê “0” \È  7pLM ¨› @ kR  7p LM ¨› @ k I}+ ,Œh Ž VF # ¸Ê

r !# q UM . y|\9  œ û gh Ž

ÖR yzk µLM ¨\9 !7 [C  (7)R (8) Ó

K. e9  G 9> =-± /=È =#   !".

Xikj

k

Kj =1 j, iIj

Xikj

k

Ij =1 j, kKj

TFUkj TSUkj tijXikj

i

Ij j, kKj

+

=

TSUkj≥TFU(k 1 )j ∀, k∈Kj tijXikj

i

Ij

TFij=TSij+tij i∀,j∈Ji TSi j( )i≥TFij ∀, j∈Ji

U 1 X( – ikj)

– ≤TSij–TSUkj≤U 1 X( – ikj) i∀, j∈Ji, k∈Kj U 1 X( – ikj)

– ≤TFij–TFUkj≤U 1 X( – ikj) i∀, j∈Ji, k∈Kj

(4)

SKª  4Q@yzk 4 |P+ [ UIS Nw 5

j# 

 j D -G Ý\# @ -âU, k1 D év Ý

\# @ -âò".

SKª Min MS=LFT−EST

ûü j

ûü j

 (1)-(8) ûü

8 Y¯ SKª _ ûü Ya ÓÔU, 0§ Ê _ 

» Ê  ªÃ /=# ÑÒ ÓÔ{¦ CD ›".

3-2. ZW       

ZW Nw UIS NwR# ƒ3 (   Gk vD ·+,

 ‡ˆŸ  ®{ @ ÷i  h · °M "ë 

µLM ¨\‚  7p ¨ (6) "ëR b µ ü LM °' ›".

(9) Ü UIS Nw 5 Y¯  (6)  (9)M 5=È ZW Nw LM ;<\# "SK   4K@A B Y¯ ›".

3-3. NIS       

NIS Nw VF# ( ®{   Gk  v v

D ·7 [C , ¨ ®{ @ ÷¶Pt "ë ®{ D

@G. VF # "ë ®{M 9Dh ¡=+ ¨ ®{ Gk 

 •  57=# NLM ;<›". OP, UIS- ZW Nw R# ƒ3 ( „"  ‡ˆŸ "ë ®{ @ Ÿ +=

¨ ®{ Ö@ Qz=+ "ë ®{ @LM 9 e.h,

ÂÈ ¨ ®{ 57 e.h B”± ".  8 û

ü 3=È "ëR b".

UIS- ZW # µ‚  (3)R (5)# NIS b VF ¨ ®{

@ Qz\¶Pt 57=# k  !7 [C "ëR b

 êµLM °' ›".

(10)

(11)

`, vD ·7 [C   @ yzkR "ë 

# 굂  (6) ZW N  (9)c µ ›".

 (  @ ‡ˆ ¨ ®{ @ŸR "ë ®{

@ Ÿ X×=# û ü -âÈ "ëR b".

(12)

 (12) ( j_)iD g=# ®{# "Q  R ƒ3 Y Z „" M "…7 [C iD °È (j_)it OP °' ›".

 (12)#  iD  (j_)i

 j @ yz k  ‡ˆŸ "ë ®{ (j_)i (k−1) óôM c3\#  @ yz k Å9” ª -âò". 

(12) VFt  “1”. VF ± <‰ g' \+, -õh

VF# q UM . y|\9  œ <‰ gh Ž' ›

".

UIS Nw 5 Y¯  (3), (5)-(6)  (9)-(11)M °o+,

 (12) ¶=È NIS Nw 5 4K@A B Y¯ ›".

3-4. FIS      FIS

 j § Gk v j' , ®{  c3\# ±

v !"+ D". OP, v ðª  j VF#

,  c3\+ i   ‡ˆŸ "ë c3 ®{ M

9D+ [ "ë ®{ D X9 !"È °M "ë M  9 !h±, "ë D @ =+ !"È ,  / Dì [ºh Gk v D/ ê OP Gk  vM •

v=]-, ,Œh ¡ VF# ¨  57”± ". -õh G k vD ·#  VF# Ü NIS NR I=' @›"

+ D".

XAW "SK  FIS NLM @\# VF vD !#

 j  iD @ yzö [ I9 !# 4Dh Ÿ 3

=È "ëR b".

"ë  j+1 X9!+, vt X9!# VF

"ë  j+1 X9!+, v# W!# VF

"ë  j+1 @G+, v# X9!# VF

"ë  j+1 @G+, vt W!# VF

8 4Dh VFG  óô_ a óô VF ®{ j @ yz

›  v ]h Ž+ °M "ë ®{ M 9 ! +, Ø óô VF# Gk v  v=' \U, óô VF

# ¨ ®{ 57=+ !"D "ë ®{ - v G év X

# !LM 9D' ›".

FIS Nw 5 @ yz ¨ [ "Q  R "

SK   D W$ "Q   # YZ

  ‡ˆ I=7 [C Ó"Ó#(First Input First Output)

3M ;<\#  a óô_ b Ÿ ø5 I9-h Ž#". "

 $=È Gk vD W !"È J% "ë ®{  (j_)it 

@ GdM ¨  j @ ÷È ®Aq v / D ì ê± +=È ›".  X "SK   VF# j

[C a óô_ b Ÿ € !". OP, v ðª

 ®{ @ yz k 8 4Dh Ÿ Ya K/ Dì  3K û üLM ¨”± ".

év  j § v j'P [ v Gk  v

ê B=# Ê SXikj' 5 û ü "ëR b".

(13)

 (13) v ðª  j kóôM c3D ÷i  i#

v j' vö t !+ & t !ë -âU, vD 

$ =- ' v ·ë g=7t ".

 v ðª  j c3D ÷i  v j'_ "

ë  (j_)i / ê OP ¨  @ ÷( !#h 57 e.h ê B=# û ü "ëR b".

(14)

(15)

(16) LFT TFU

kjj

≥ EST TSUk

1j

TSi j

( )i=TFij ∀, j∈Ji

TFUkj TSUkj tijXikj

i

Ij j, kKj

≥ +

TFij≥TSij+tij ∀, j∈Ji

TFij TFU(k 1 )j

( )i U 1 Xik j

( )i

( – )

– ∀j, j∈Ji, k∈Kj 1+

Xik j

( )i

Xikj≥SXikj′ i∈Ij, k∈Kj

TFij≥TFU(k 1 )j′–U 1 SX( – ikj′) i∈ j, kI∈Kj

TFij′ TFU(k′1)( )ji U 2 S

k

Kj Xikj′

– –Xij′( )ji

 

  i∈Ij′,k′∈K( )ji

≥ –

U 1 S

k

Kj′ Xikj′

 – 

  TSij′–TFij U 1 S

k

Kj′ Xikj′

 – 

 

≤ i∈Ij′

(5)

 39 1 2001 2

(17)

 (14)# ®{ j c3D ÷i  Gk v v=+

=È év v\9 !  v ÷- vD X9 !9” ª

 g=U,  (15)# Gk v v\9 !  "ë ®{

M 9D+ [ "ë ®{  ÓÝ Ö@ ÷-” ª g

".  (16)  j c3D ÷i  iD v v\# V

}7 8 û ü".  (17) ®{ j c3›  v

 ]h Ž+ °M "ë ®{M 9 VF "ë ®{

ÓÝ Ö@ ÷- D X9 !9”ª D3)".

 Gk v v\# VF #  (14)-(16) û *LU,  (17)  œ û gh Ž' ›". JÈ, v v\h Ž+

°M "ë ®{M 9D# VF #  (14)-(16) y|\9  œ

<‰ gh Ž+  (17)± û *' ›".

œ VF # vD ·# "x nR I=' "ë 

D/ ê± +=# VFD \U, ±I YZ  v /

=h Ž' \È Bf NIS N VF_ I BR ' ›".

_ b "Q   # YZ  (j_)i®{D b7 [C ¨ ®{  j @ ÷È ®Aq v / Dì  ê± +=È \‚h±, "SK   # ( „" (j_)i

®{D M "…7 [C v_ "ë  (j_)i D/ ê 

 +” "# $ WD !".

 v ðª=h Ž# -õh ®{n 5# NIS Nw /\# ûü ,5M /=È ›".

4. $ %

 ,9 , BR •­". MILP C -#Ú / solver#

GAMS/OSLU, IBM RS/6000(Y¯ 350) š&./0 /=­".

4-1.  1

¿M  9»  5  Y¯ K/=­". 5Ÿ  Fig. 3 R bLU @k Úí# Table 2 -â‚". ParkR Jung[8]

=#Ú ,1 JÈ, ¼ C  Y¯ ¶ -D 4Q @

yzk 4 | }# @A B !"# $ "…".

X× 8 Fig. 4 # ¼ C  Y¯ / B UIS Nw 5 4K @ A_ 4Q@yzk ãä WäM -â

‚". ParkR Jung[8] ² @yzk “170”‚h± 

D -s".

4-2.  2

Fig. 5 -âi  4¿,  4¿M  9»  5  Y¯

 K/=­". @ k Úí# Table 3 e /²LU, ( v

 ;<Nw K/=  BR Table 4R 5 -â‚".

TFij TFU(k′1)j

( )i U 1 S

k

Kj Xikj′Xik′( )ji

 + 

 i∈Ij′, k′ Kj

( )i

≥ –

Fig. 3. Schematic diagram for example 1.

Table 2. Data for example 1 Unit

Product

Unit 1 Unit 2 Unit 3

Processing times

P1 20 25 30

P2 15 10

P3 30 30

P4 20 15

P5 25 30

P6 35 30 20

Fig. 4. Result for UIS policy of example 1.

Table 5. Statistical result for example 2

0-1 variable Continuous variable Constraint Makespan CPU(sec)

UIS 52 58 196 59 0.43

ZW 52 58 196 71 0.43

NIS 52 58 317 63 0.85

FIS 68 73 361 60 1.24

Table 4. Optimal sequence in each unit for example 2

Unit 1 Unit 2 Unit 3 Unit 4

UIS B-A-C C-B-D C-D-A-B D-A-B

ZW B-C-A C-B-D C-D-B-A D-B-A

NIS A-B-C C-B-D C-A-D-B D-A-B

FIS B-A-C B-C-D C-D-B-A D-B-A

Table 3. Data for example 2 Unit

Product

Unit 1 Unit 2 Unit 3 Unit 4

Processing times

A 15 8 12

B 10 20 5 13

C 20 7 9

D 7 17 5

Fig. 5. Schematic diagram for example 2.

(6)

Fig. 6 FIS Nw  3 =- vD !# VF 5 4 K @ BR ãä WäM -âò e". ,æ 231 ê

"ë - vM 9Dh ¡=+ ¨  57=# k

 C# "ë ®{.  2D @ G+ vD X9!7 [C vM °M v› JÈ,  D# "ë  2_ vD Y a /G7 [C ¨  57="D vM D' \+, 

 B# v# /Gh± "ë .  4D X9!7 [C Gk v ]h Ž+ °M "ë ®{M 9D @ Ö

=# e ç !". _ b ¼ C  Y¯ "SK

  FIS Nw -â !# YZ Ÿ ¨

!ë ç !".

4-3.  3

¼ Ä # Ä 1, 2•" 4YD  6¿,  6¿M  

9»  5  Y¯ K/= •´". (  Table 6R b  VM DhU, @k Úí# Table 7 e /²

". ( v ;< Nw 5 , BR Table 8R 9 -â‚

LU, FIS Nw VF#  5 vD =- !# VF +

=­". Fig. 7 # ZW Nw 5 4K @ BR ãä WäM -â‚".

5.  

IJK. XAW "SK   Gk v ;<Nw Ox 4K @ A B C ¾K Y¯ w=­+,  Y

¯ / À9»  4Q@yzk 4 | }# @

A T=­". †N‰  ‡ˆLM .  / X’“1

 ‘7 8 ( „" "x  c3 A Dr” =# X AW "SK  u1 += À9» v ;< Nw 5

7pLM (( ¨ Å » Ê _ 3K û ü ù  a ¨ /› Ê  0B}# N /²LU, 

¾K Y¯ ÑÒ ÓÔ{¦ Ô5M ¨=­". w Y¯

ØDh Ä K/ BR ù Y¯ ’/1 •­". ¼ C #  @k  îkR @ pXk µ ªÃ

 îkR pXk µ 7KLM + Y¯ ¿€ - D” ".

Fig. 6. Result for FIS policy of example 2.

Table 6. Production paths for example 3

Flow characters Production paths

P1 Forward U1→U4→U5→U6

P2 Backward U3→U2→U1

P3 Cycle U3→U5→U2

P4 Forward U3→U4→U5

P5 Cycle U4→U6→U3→U1

P6 Backward U6→U4→U2

Table 7. Data for example 3 Unit

Product

Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 Processing times

P1 6 101 17 4

P2 8 15 5

P3 20 8 13

P4 9 5 16

P5 151 111 9 7

P6 13 5 101

Table 8. Optimal sequence in each unit for example 3

Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6

UIS P1-P5-P2 P2-P6-P3 P2-P3-P5-P4 P5-P6-P1-P4 P3-P1-P4 P6-P5-P1

ZW P1-P2-P5 P2-P3-P6 P2-P3-P5-P4 P5-P1-P6-P4 P3-P1-P4 P5-P6-P1

NIS P1-P2-P5 P2-P6-P3 P2-P3-P5-P4 P5-P6-P1-P4 P3-P1-P4 P6-P5-P1

FIS P1-P2-P5 P2-P6-P3 P2-P3-P5-P4 P5-P6-P1-P4 P3-P1-P4 P6-P5-P1

Table 9. Statistical result for example 3

0-1 Variable Continuous variable Constraint Makespan CPU(sec)

UIS 68 83 263 53 1.15

ZW 68 83 263 59 1.41

NIS 68 83 431 56 1.85

FIS 77 113 501 53 2.17

Fig. 7. Result for ZW policy of example 3.

(7)

 39 1 2001 2

& '

¼ 0T# fR¾‹® u780Th@(1999-1-307-002-3) 0TX hLM  99LdM 0TX hÀ: fR¾‹

® ;%Â".

()*

1. Bok, J-.K. and Park, S.: Ind. Eng. Chem. Res., 37, 3652(1998).

2. Fuchino, T., Muraki, M. and Hayakawa, T.: J. Chem. Eng. Japan, 25(3), 250(1992).

3. Jung, J. H., Lee, H., Yang, D. R. and Lee, I.: Computers and Chem.

Eng., 18(6), 537(1994).

4. Kim, M. S., Jung, J. H. and Lee, I.: Ind. Eng. Chem. Res., 35, 4058 (1996).

5. Ku, H. M. and Karimi, I. A.: Ind. Eng. Chem. Res., 27, 1840(1988).

6. Ku, H. M., Rajagopalan, D. and Karimi, I. A.: Chem. Eng. Prog., Aug., 35(1987).

7. Moon, S. and Hrymak, A. N.: Ind. Eng. Chem. Res., 38, 2144(1999).

8. Park, S. and Jung, J. H.: HWAHAK KONGHAK, 37, 411(1999).

9. Pinto, J. M. and Grossmann, I. E.: Ind. Eng. Chem. Res., 34, 3037 (1995).

10. Rajagopalan, D. and Karimi, I. A.: Computers and Chem. Eng., 13(1/2), 175(1989).

11. Voudouris, V. T. and Grossmann, I. E.: Computers and Chem. Eng., 20(11), 1335(1996).

참조

관련 문서

It considers the energy use of the different components that are involved in the distribution and viewing of video content: data centres and content delivery networks

Ultimately, we believe that our efforts to install pad  machines and increase community understanding of menstrual health will promote global gender  equity and ensure that

Honourary Graduands, after a special summer convocation in 1978 held by the University of Toronto, during the annual meetings of the international Federation of

12) Maestu I, Gómez-Aldaraví L, Torregrosa MD, Camps C, Llorca C, Bosch C, Gómez J, Giner V, Oltra A, Albert A. Gemcitabine and low dose carboplatin in the treatment of

Levi’s ® jeans were work pants.. Male workers wore them

The proposal of the cell theory as the birth of contemporary cell biology Microscopic studies of plant tissues by Schleiden and of animal tissues by Microscopic studies of

In order to reduce 1 mole of carbonyl function, 1 mole of hydride (0.25 mole of LiAlH4) is needed to be consumed, which is equivalent to 0.25 mole of LiAlH4 and in case of 1

• Split project into tasks and estimate time and resources required to complete each task. – Organize tasks concurrently to make optimal