• 검색 결과가 없습니다.

 1.  The Characterization of Zn-based Desulfurization Sorbents on Various Supports   

N/A
N/A
Protected

Academic year: 2022

Share " 1.  The Characterization of Zn-based Desulfurization Sorbents on Various Supports    "

Copied!
9
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

   

 * *

  

*   

(2001 6 12 , 2002 1 30 )

The Characterization of Zn-based Desulfurization Sorbents on Various Supports

Seok Chan Kang, Hee Kwon Jun, Tae Jin Lee*, Si Ok Ryu* and Jae Chang Kim

Department of Chemical Engineering, Kyungpook National University, Daegu 702-701, Korea

*Department of Chemical Engineering, Yeungnam University, Kyongsan 712-749, Korea (Received 12 June 2001; accepted 30 January 2002)

 

 (TiO2, SiO2, Al2O3)         

 !" # $% & ' () * + ,-  ./(  /0: 480oC, 12 /0: 580oC) & /(  /0: 650oC, 12 /0: 800oC) () 3 (45. 6 # $% & 78-9 : ;6 <=  >? @ AB CD C +E FGHI  !" ,-9 JKL  : ;6 ;, MH <= >? NOP QR

S5. 800oC3 T UVQL    W X! Y ZCD,  C

/ & ./36 'C , 12  ,[ ;HI @  \] ^_K` ,-aKY bcC :

;9 UVQLd eYf 'g : ;P h-A ^ i#L 0jT kl<P h-A S5.

Abstract−Zinc-based desulfurization sorbents supported on TiO2, SiO2 and Al2O3 and modified by treatment at various temperatures were prepared. Their sulfur removing capacities in a fixed-bed reactor and characteristics of their physical and chemical properties were tested during multiple cycles of sulfidation/regeneration. The best sorbent with high sulfur removing capacity and resistance to the deactivation at high and middle temperature was the alumina supported sorbent pretreated at 800oC. The active species was the zinc oxide phase coated on the external surface of the alumina support without forming the spinel structure of zinc-aluminate and the change in the physical properties was not found during repeated sulfidation and regeneration.

Key words: Zinc Based Desulfurization Sorbents, Sulfur Removing Capacity, Alumina Support

1.  

IGCC

   !"#. $  % &' (

@ AB C  DE F5 GHI @8J  =#.

 ' KLM, NM, OM, PQM R ='S TU, PQM ' VWX H2S 8 YZ[ \]^  _ *`

a bcd =#[1]. e /0 f *g  ppmh+ i jk TU H2Sl YJ  =' GH =`,  PQ m

*' no `p` @M q r s*g t1 u]v# b

cd =#.  8 8w Fe2O3, TiO2, Al2O3, SiO2, CuO R%

x y, zikI ++7 {r .j y, zikI  

*' Qr |} =#[2-15]. ~` ++7r {r€  ` p`' ‚[ ƒi„  …† @,  -‡ ˆ‰Š‹ w ~O

 8 Q' PŽ v o#. TU, n/ -‡  

‘W( 650oC, /0 800oC) _ ‘W( 500oC’, /0 600oC’) “”] r• _ Z[I –+—˜

 /0I ()U *@ ™ ++7 Œ {r 8 Qr )U v|_ =#.

š Q' PQM  8› ++7 TiO2, Al2O3, SiO2

 ž l ƒi —Ÿ x ++7 +’   &r #†

[ Œ /0 Z[I microreactorl ¢£ t¡*œ -. Œ 

To whom correspondence should be addressed.

E-mail: kjchang@bh.knu.ac.kr

(2)

 40 3 2002 6

¤% 2 )i l ¥¦*œ#.  Z[ § Œ ƒi %

I    &, ¨ Œ & ƒi„ Q© —˜ 26*@

™£ Œ /0  —ª 8 XRD, SEM, Porosimeter, BET t¡ |}«#.

2.  

2-1.  

š Q 1" ' ¬O bcv kO ­j  &*œ

#. Fig. 1 F' “„ x 250-300 mesh  ZnO powder„ x

 ®@ TiO2, SiO2, Al2O3(Ignited) ++7l  {r  ¯@k

“° Bentonitel {r*g 4? Ball mill %I Y± ²³ ­ j—´#. ¯@k “° E µ 17 wt%h+ {r J  =' ¶

 bcd =` {r· ¸rJ¹ ‚[ ;]º bulk density„ average pore diameterr 3ž* BET-surface area„ Mercury

pore volume ¸r*' E»I F#'  %l “¼ *g š Q

' 3 wt% *œ#. ½¾ £ ` ­jkI –@k “

° _ *` Ethylene GlycolI b¿¾ {r*g -À  ŽE 1 mm ®@ ÁB(extrusion)—Â#. ~O muffle furnacel 1*g 3-5oC/min à , 250oC   1—Ä r· ?I Y

*œ>, ? Y" ­jkI #— grinderl 1*g ?Å  700-1,200oC 12—Ä ž*œ#. Æ Ã , ' 3oC/min ÇÇU ן  ƒ¨I µži*œ PQ mI A+

*c *œ#. ž—´  ÈÉ% 7(Sieve)l 1*g 

É®@l 250-300µm

[I Ìr*œ#.

2-2. 

š Q 1 -‡ G:' Í microreactorl 1*œ

>, ÄÎ Ï ' Fig. 2 `p«#. -‡@ /Ð Ñ ‘»

I Ò+ Ó' ԑ –O(Quartz tube)l 1*œ> -‡@ +Õ

1 cm#. t¡ 1"  Ö 1 gI 1*œ space velocity ' s 5,000 hr1l –+*g %  Á[q* Œ channelingI µži

*œ#. -‡@ „ B line ¸@ ‡×I A+*@ ™*

g 120oC –+*œ -‡@ Bl Ød `Ù' rÚ' T.C.D. r GÛ" G.C(Gas Chromatography)l 1*g f 8?Ü# ÉÝ ?Ô*

¹ 9M}«#. Æ ?Ô 1" column Þ rÚ  Ñ

I A+*@ ™*g Porapak Tr 45" 1/8in teflon tubel 1*œ

#. ß rÚ & Table 1 `pà>  r 650oC

' /0  l 800oC t—*œ  t¡ &a ¤¤*œ

#. _ t¡ E  Œ /0  l  480oC, 580oC

*g |*œ#.  B H2S á r -‡@  á

„ Ý< 15,000 ppm < Æ _Î*œ> 2) rÚ Оl âO

• -‡@  l /0  h+ Ã —Â> /0   ã*

¾ }• О äÕI _ǘ 3-5 vol% zžl å– О r Úl 1*g /0 -‡I —|*œ#. š Q' æ 

% æ /0  çª }«I Æl 1 cycle ÄÒ*œ ßè

œ#.

3. 

3-1. Structure of sorbents

Table 2' ziPQ% ++7 TiO2, SiO2, Al2O3 ­j

…a ¨}' é ê  &l bPF@ ™£ ziPQ% ++7

­j Œ &— ë &2„ ž  l ãO*œI Æ `p`' 

 &l powder XRD ?ÔI ¢£ ìíFî#.

Fig. 1. A schematic diagram of preparation for Zn-base sorbents.

Fig. 2. A schematic diagram of experimental apparatus.

Table 1. Experimental conditions for Zn-based sorbents

Sulfidation Regeneration Temperature(oC)

Pressure(atm) Flow rate(ml/min) Gas composition(vol%)

High: 650 Middle: 480

1 50 H2S 1.500 H2 11.700

CO 9.6 00 CO2 5.200 N2 balance

High: 800 Middle: 580

1 50 O2 3-5 N2 balance

(3)

TiO2l ++7 1 PQM (ZT) E, Zn% Ti 8

ë &2„ ž  …a ZnTiO3(zinc meta-titanate), Zn2Ti3O8 (zinc sesquit-titanate) ~O Zn2TiO4(zinc ortho-titanate) ïr+ ðñ  &r j"#. …a š Q' Zn% Ti 8 ë &

2l 1.0% 1.5 2ò ó —Ÿ ­j  ž  l 700oC, 850oC, 1,000oC  9*œ#. 700oC ž ZT  E ZnO„ TiO2 ô y, zik ZnO„ TiO2 ?O}]   

&l ¨* =õI b  =#. ~` ž  r 850oC o<

E ô y, zik ç5 Zn2TiO4 &l ³ =õI © öJ  => ë &2r 1.0< E' Zn2TiO4  & ÷g

*+ ø ùg TiO2r ©ö}«#.

SiO2l ++7 1 PQM (ZS) E, Zn% Si 8

ë &2l 1.0% 1.5 2ò ó  —Ÿ ­j  ž  l 700oC, 800oC, 1,000oC  9*g ~Æ `p^   &l ì íFî#. Table 2 F'“„ x 700oC Œ 800oC ž ZS  E ë &2 ©Mú ZnO„ SiO2ô y, zik ­ j …† *`  j &l ¨*+ ø* ZnO„ SiO2 ?O}

]  I ³ =#. ~` ž  r 1,000oC< E' ­j o Zn2SiO4„ ùg SiO2r ©ö}«#.

Al2O3l ++7 1 PQM (ZA) E Zn% Al ë

&2l 0.5„ 1.0 2ò ó —´  ž  l 800oC, 1,000oC, 1,200oC  9*g ~Æ `p^  &l ìíFî#. Table 2

 F' “„ x 800oC ž E ZnO„ Al2O3 ?O}

]  I * =õI b  =>, 1,000oC ž E

ô y, zik <Ñ ZnAl2O4 &l ³ =+’, 57

 é ê  & ¨ ÷g*+ ø #· ZnO„ Al2O3r ? O" Ê  &l ³ =õI ©öJ  =#. *+’ 1,200oC

 ž E 0.5 2ò ó ë &2 < Æ' ç5 ZnAl2O4 

&l ³ 1.0 ë &2< E' 8Ñ? ZnAl2O4  &

„ åû ü· ZnO  &r åû `pýI b  =#.

„ x  %l ¢£ ô r+ y, zik ­j ’º]v ZT, ZS, ZA

ž   þ ‘» ÿõI b  =#. š Q' ++7 Œ ž

  l ƒi —Ÿ #†   &l rv   8 2 6 Ìr t¡I |*œ#. ZT„ ZS º E Zn/++7 ë

&2l 1.5 > ZA º E 0.5 *œ#.

3-2. Sulfur removing capacity

oC _ E

480oC |*œ>, /0  E' 650oC  <

Æ' 800oC 480oC  ' 580oC t—*œ#. Fig. 3

ziPQ% ++7 TiO2l 1.5 2ò ó ë &2l 1*g ­j

  700oC(ZT-700), 850oC(ZT-850), 1,000oC(ZT-1,000) ž  

8 ?òI `p ¶, r × , /0 I 1 cycle Ä ÒI Æ -. l `p ¶#. 23.1% `p Ì ZT

I `p ¶#.  t¡ & ZT-700  E -.

 ¸r …a ‚[ 21-19% sÄ 3ž* =+’ *+

' Ó#. -•, ZT-850  E -‡ @ 22.3%   10 cycle

' 14.6%  ‚[ 8 3žò 35% `p >

ZT-1,000

r 10 cycle' 7.7%  u]d ‚ 8 3žò 57%

`p #. Fig. 3(b)' _ t¡ & 480oC  Œ 580oC Table 2. XRD patterns of Zn-based sorbents before reaction

Sorbent Phase

1C.T.(oC)

2M.R. 700 800 850 1,000 1,200

ZT 1.0 ZnO, TiO2 Zn2TiO4, *TiO2 Zn2TiO4, *TiO2

1.5 ZnO, TiO2 Zn2TiO4 Zn2TiO4

ZS 1.0 ZnO, SiO2 ZnO, SiO2 Zn2SiO4, *SiO2

1.5 ZnO, SiO2 ZnO, SiO2 Zn2SiO4, *SiO2

ZA 0.5 ZnO, Al2O3 ZnO, *ZnAl2O4,Al2O3 ZnAl2O4

1.0 ZnO, Al2O3 ZnO, *ZnAl2O4,Al2O3 ZnAl2O4, *ZnO

1C.T.: calcination temperature

2M.R.: Zn/support(Ti, Si, Al) mole ratio

*: small peak

Fig. 3. Sulfur removing capacity of ZT sorbents at high(a) and middle(b) temperature.

(4)

 40 3 2002 6

 E 2 cycle' 16%  26  ‚[I F+

’ 10 cycle' 9%  `p` ‚[ 8 3žò 44%

 >, ZT-850  E 2 cycle' 13%  l F#r

10 cycle' 5%  `p` ‚ 8 3žò 62% 

l F =#. e,  &  XRD ?Ô ZT-850% x

[I F#r 10 cycle' 3%  u]d ‚ 8 3

žò 75%l F =#. „ x  #† ž   …a 

 …a H§ 3žåI b  =>  t¡ & F#

_ t¡ & 3žò ®¾ `p` =#. ZT-700  E, ô t¡ & ßô #† ô  2£ o8 

3žòI F =#.

, %H ã —ÄI r+ Mz" ‚[% ãO -‡

@ B á r  á  ã J Æ h+ 57 ‚[I r+

 Z[I Ìr J  ='S,  E  ’PŠa _ t

23.1% rhê 22-23%l `p =#. %H Mz" ‚

[ _F#  #' ¶I c*•   %' ‚

[ Mz 1" %  @@r _ t¡ & F# 

 t¡ & ®#' tI b  => ZT MV ' 5

O …a %Hh+ ‚[ §r `+’   & Œ

& & ©Mú  å" ßè y, PQ -‡ ÷g åI b  =#.

Fig. 4' ziPQ% ++7 SiO2„ ë &2l 1.5 2òó

­j , 700oC(ZS-700), 800oC(ZS-800), 1,000oC(ZS-1,000) ž

  …a & ZS º  Œ _ t¡ &

p ¶#.  t¡ & ZS-700% ZS-800  E

-. r ¸r}] 57 22-23% w" ‚[I F

 =>, ZS-1,000  E' 2 )i' ©ö}+ Óî

` 57 6-7%  ‚[I F =#. e Fig. 4(b)

„ ãO 2 cycle' 18-19%  F#r 10 cycle' 13%  `p` 3žò 28-30%  u]I   =#. e

ZS-1,000

ZS-800

I -.  ©M ú F =+’, ZS-1,000  E 

' 18%l `p _ ' 3%  f 

 óI +#. ' ZT „ ãO  -‡ y,PQ /å I  *> _ '  -‡ PQ Ö 

 F# þ /åI b  =#.

Fig. 5' ziPQ% ++7 Al2O3 8 ë &2l 0.5 2òó

 ­j , 800oC(ZA-800), 1,000oC(ZA-1,000), 1,200oC(ZA-1,200)

‚[I 26 ~#. 17% `p Ì ZA  &

#. T H ZA-800 ' Œ _ t¡ ‘W

[ 3ž no ©ö}+ Óî 15-16% ‚[I % _

8%   :l F => _' ‚[ @

2-3%

Fig. 4. Sulfur removing capacity of ZS sorbents at high(a) and middle(b) temperature.

Fig. 5. Sulfur removing capacity of ZA sorbents at high(a) and middle(b) temperature.

(5)

„ x 17%  l F =` ZA-1,000  E' 9%

ö}+ Óî#.  5O ž  ¸r …† Z[ 3

ž' Table 2 F! ž  r ¸r"¹ ZnAl2O4  &

r ¸r*' no 9¤"  =>, 1,200oC ž" E

 ßè   &r ZnAl2O4l ³@ Æ# ° o Z [ Fg Ò+ Ó'#.

3-3. Characterization of Sorbents 3-3-1. XRD

Fig. 6 5É $% ïr+ ž & & ZT 

8 _ t¡ ‘W  Œ /0  XRD  %

#. ZT-700  E -‡5  %' ZnO, TiO2r Ò" ?I 

³ => Zn2TiO4R ­j" é ê ? ©ö}+ ÓõI Table 2

 &*œ#.   %' ZnS, TiO2r Ò '®l *

 =õI   =>  -‡ ZnO' ©ö}+ Óî#. e 580oC /0   %l F• -‡5 '®„ Ý<*¾ ZnO, TiO2r Ò '®

(I &J  = ž· Zn2TiO4 '®r ©ö}]+>  -‡ sulfide

` Ñzk sulfate '®' ©ö}+ Óî#. e ZT-850, ZT-1,000

 E -‡5 Ò"   &' Zn2TiO4œ,  -‡ ZnO, TiO2' ©ö}+ Óî#.  Ò" ¨' ZnS, TiO2œ>

/0   % -‡5 „ x+’ · ZnO„ TiO2r ©ö }«#.  t¡ & XRD  %º _ t¡  %º

% Y <:* =#. #’ ZT-700  E  t¡ &

 /0  r 800oC ž  F# @ Æ# -‡5 ¨

ZnO, TiO2 ?O" o )Pr+ ø* /0  é ê Zn2TiO4 l ¨*' ¶ `p #. …a  t¡ &' _%

% x -‡ ˆ‰Š‹I …*¾ "#.   % Ñ+ ZnO, TiO2

r é ê ­joI ¨*@ ™£' 800 C o  ž &

 !åI b  =#. e,  y,PQ _„ x

 Ñ TiO2„ ?O}] /*Y`(ZT-700), é ê spinel & ­joI ¨*Y` ©M ú ' H2S„ -‡*g ZnS oI ¨åI b  => TiO2' ‚ -‡ © g *+ Ó' ¶ `p #.

Fig. 7A' ž   …a &" ZS(mole ratio 1.5) º 

 ‘W Œ /0  XRD  %#. -‡5 ZS-700, ZS-800 ' ZnO, SiO2r ?O" o /*>  

  -‡ ZnO' `p`+ Ó y, PQ 8Ñ? ZnS ƒ¨}

«õI b  =#. e SiO2' 5 -‡ ÷g*+ Óî#. /0 

 ßè ZnS' ZnO ƒi}«> -‡5 „ Ý<  

%l -«#. _ % /0  ZT-700, ZS-800

 -‡5 Ò '®' Table 2 $%! Zn2SiO4«> 

  ZnS Ò '®„ åû  -‡ Zn2SiO4'®r

©ö}«#. _ Œ /0  ZS-1,000 8 XRD  

%l Fig. 7B `p«'S Ò '®r Zn2SiO4'®(I ©öJ 

=#.  .Ñ? $%! ZS-1,000 '  t¡ &

 57 ‚[ 18%œ> _ t¡ &' 3% `

' 72%, _' 12%’ -‡ ÷gõI #. /, ­ j" Zn2SiO4

÷g J  =õI `p Ò => 7 650oCF#   l –+£0 åI #. e  /0 & ZnO „ SiO2

Ò '®’I ©öJ  =#' t /0 £ š1 -‡5 o Zn2SiO4 })Pr+ ø* =õI FgÒ = ­joI 

³@ ™£' ] 1,000oCo  r !åI bc Ò =#.

Fig. 8 ž   …† ZA º  -‡ &

Fig. 6. XRD patterns of ZT sorbents after sulfidation(a)/regeneration(b) at middle temperature.

Fig. 7A. XRD patterns of ZS sorbents after sulfidation(a)/regeneration(b) at high temperature.

(6)

 40 3 2002 6

 -‡5 ZnO, Al2O3¨ ?O}] /åI b  =>

 8Ñ? ZnO' ZnS ƒ* Al2O3'  ÷g * + Ó' ¶ `p #. e /0  zž„  -‡ sulfide

` Ñzk sulfate 0 ú -‡ 5 o )P3I b  =#.

ZA-1,000  E -‡5 ¨' ô Î< zik ?O}]  /*@ *+’ ô kÐ ­jo ZnAl2O4e /* =õI b  =#.  ZnAl2O4 ­jo _ ’ PŠ

a  & `p` ='S, ZnAl2O4r ‰Ð¹ ‚[

3ž*'  %„ åû y,PQ ­joI J E ‚ -

‡ ÷g * =+ ÓõI b  =#. /, 5É $% 8 ZA- 1,000

’ Î< zik ¨l * => `2+ 47%' ­joI 

* =õI Ä b  =#. ~O 8Ñ? o ZnAl2O4

 XRD  %r Ý<åI b  =#. …a š Q  &

 Œ D( ?™@' ZnAl2O4oI ¨J E' 5 -‡

 úõI b  =#.

3-3-2. SEM Morphologies and surface area

Fig. 9' ZA-800  (a)Œ _(b) t¡ & -‡5,

 SEM Morphologiesl `p =#. -‡ 5  É®@'

 300-400 nm  <*¾ `p` =>  -‡

' ‚ £ É®@r 2-33 o 45}] `p` =

#. e  /0 -‡ ' -‡ 5 É ®@ F# sÄ 

¾ ¨€I b  =#. _ -‡'  E„ Ü 6r+ É®@r 2-33 45}«õI b  =#. ~` /0 

 Morphologiesl ©ö£ F•  /0%' ãO š1 ®@

)Pr+ ø* 45" ol –+*' ¶ `p 'S 

  %' Siriwardane R[5] ÒG% x — y, oxide ¨

r y, sulfide ¨ ƒ*• ' 45*¾ } 800oC

 /0}• 45" ' #— ×*• (1 o

 kO &r / }+’, _ E' 4?: ø

/0  Æ#(580oC) yž sulfide £ 45" r oxide o ƒ*°a kO & 7•  Æ -‡5  ) Pr+ ø* 45" ol –+*' ¶ 8Î"#. b³` + +7r P tO9(ZS)` pp:(ZT)++7 PQM 

x noI ©öJ  =«#.

 Œ _ -‡5,  º 8 2 ›•I one point BET A  7*œ, ~  %l Table 3 `p«#. ZA- 800  E  t¡ & -‡5 :(5.1 m2/g)„ 26 Fig. 7B. XRD patterns of ZS-1000 after sulfidation(a)/regeneration(b) at

middle temperature.

Fig. 8. XRD patterns of ZA sorbents after sulfidation(a)/regeneration(b) at high temperature.

Fig. 9. SEM morphologies of ZA-800 before/after reaction at high(a) and middle(b) temperature.

(7)

£ 10 cycle ' ›• ƒil ©öJ  ú+’ _ 10 cycle -. t¡ ' ›• 23 ¸rõI b  =«>

 _ t¡ &* 2 ›• ¸r noº ++7 © Mú ZT, ZS, ZA  ßô Ý<*¾ <]` =#. 

2 ›• ¸r' . SEM t¡  % `p`' _ /0 4 5" —ª ¨ @ ¸r no 8Î "#.

3-3-3. Mercury porosimeter SEM, One point BET

45, ×  kO ƒ¨I ©öJ  =«` -. t

wI Ž 9¤ J  ú«#. …a  ;<   @

 ®@ Œ @ Ñ'l -‡5,   º 8£ bP Fî#.

Fig. 10  º  Œ _ t¡ & -‡5% 2

cycle, 10 cycle/0 º @ ®@ 8 = @ Ñ

'l `p«#. ZT-850  E  10 cycle -. t¡ 

@ ®@r P+> @ Ñ'r 25-30% 3ž* =#. _

x  %l F => -. r ¸rå …a @ ®@ ?

r >?£d _ @ ®@ ?l FgÒ =#. ZS-800  E  t¡ & 10 cycle /0   %l F• -‡5%

26£ ƒil ©öJ  ú#. *+’ _ t¡ & /0 

 @ ®@r -‡5% 26£  Æ >? _ @ ®@ ?l

³ => ~ ®@r ]v ¶I b  = @ Ñ' -.

r ¸rå …a ZT „ Ü6r+ _ H§ 3

ž* =õI   =#. ZA-800  E  10 cycle 

  %l -‡5% 26£ F• @®@ Œ @ Ñ'r ƒi*+ Ó Table 3. Surface area of Zn-based sorbents before/after reaction by BET

at high and middle temperature

Surface area(m2/g)

Sorbent *C. T.(oC) Fresh High temp.

(10 cycle)

Middle temp.

2 cycle 10 cycle

ZT 700 6.9 7.3 11.70 09.5

1,000 3.3 4.1 8.0 -

ZS 700 4.5 6.3 13.90 14.5

1,000 3.2 5.5 - 05.7

ZA 800 5.1 5.8 10.40 11.1

*C.T.(oC): calcination temperature

Fig. 10. Cumulative pore volume as a function of pore diameter for various sorbents after selected cycles at high(a) and middle(b) temperature.

(8)

 40 3 2002 6

 => _ 10 cycle  @ ®@' _ ?l

³ =+’ @ Ñ' E ZT ` ZS „' ãO ƒi*+

ÓõI b  =#. TU, _ t¡ & ZT ` ZS  E

 -.  ¸r …a M, @ Ñ'r 3ž* =`, b

³` E' ô æ@  V æ@ -. t¡  A ƒir

©ö}+ Óî#.

 % , ’ PŠa _ -.  …† ‚[

3ž no  kO Ð TU = @ Ñ'„ B ©M r =õI b  =#. /, Œ /0 -. t¡ v|}• =

no ©ö}+ Ó' ¶ `p #.   %' ZS Œ ZT

 E Œ /0  45% × }D }• Y8

@ E„ þ ï @ 0 9¤} Table 3 Œ Fig. 10

 F! 2 ›• ¸r Œ @ Ñ' 3žl 1*, -‡

k &z ,  ‘»I ± %Hh+ ‚" ‚· 3žl

–*' ¶ F#. TU, %H Mz" ‚[ 3ž*

¶ @ ®@ ƒi 8 -‡k &z , r 57 ‚ , 

‘»I : =õI `p =#.

3-4. The effect of metal loadings

y, PQ Ö% ++7 Ö …† Z Œ wI 26*

@ ™£ ZT Œ ZS  Zn/++7 2òI ZA„ x 0.5 

—Ÿ ‚[I & *œ#. Fig. 11 F! _ t¡ &

 ZT, ZS ô  ßô Zn/++7 2r 1.5< Æ F# 

‚[I F =+’, -.  ¸r …† w ®¾ ¸

[% 26£  Æ TiO2„ SiO2l 1 ' -.  …† ‚[ s 16% 3ž* =+’ b³` E 3ž no ©

`l 1 E 95% o y, PQ %H ã*@5

-‡ ¶ `p +’, TiO2l 1  E 80% ©ö

}« SiO2l 1  E 68% `p #. ' b³`

l ++7 1 r SiO2e' TiO2l 1 F# 

 ZI r+' ¶I * -. t¡ Ýw 45, ×

3ž noI C *' ¶ `p #.

4.  

PQM  ++7 1}' TiO2, SiO2, Al2O3l 1*g

[I 26*œ#. ++7 ðñ„ 5O …a ' .j z ikI ¨ *Y` ++7 PQ zik(ZnO) ++" ¨

r & }«#. ZT  E 850oC o .j zik

Zn2TiO4l ¨*œ ZS, ZA  E 1,000oC o .j zik Zn2SiO4, ZnAl2O4l  ¨*œ#. .j zik _ Ù

Ž Zn2TiO4’ ‚[ @g *œ Zn2SiO4, ZnAl2O4' š Q

 D( ?™@ Œ -‡   Ñ$  8Î}«#. G

 ž*¾ }• ++7 y, PQ " ¨ l -¾ }'S ppŠP Œ tO9 ++7l 1 ' - .  ¸r …† = @ Ñ' 3ž no% åû 2 )i n o ©ö}«` b³` ++7l 1 ZA-800 ' 

Œ _ ßô  no ©ö }+ Óî#. e ++7 ð ñ ©M ú H}' _ /0  45 no Œ ›• ¸r no Ž ‚[ Œ 2 )i ‘»I :+ Óî#.  ' ãO, µð ðIH( á „ B á r xP+' H) 7

·’ åœ> ' %H µð ðIHh+ @@ / -

‡ , r %H  …a A §l Fg Ò =õI r P ‚ , § @ *œ#.

š Q' Ñ zÉ(Ñ 87K+@L(G7) <D

|}«MŠ#. Q2 +( 3NOŠ#.



1. Schrodt, J. T., Hilton, G. B. and Rogge, C. A.: Fuel, 54, 269(1975).

2. Jun, H. K., Lee, T. J., Ryu, S. O. and Kim, J. C.: Ind. Eng. Chem.

Res., 40, 3547(2001).

3. Gibson, J. B. and Harrison, D. P.: Ind. Eng. Chem. Prod. Res. Dev., 19, 231(1980).

4. Lew, S., Jothimurugesan, K. and Flytzani-Stephanopoulos, M.: Ind.

Eng. Chem. Res., 28, 535(1989).

5. Siriwardane, R.V., Poston, J. A. and Evans, G. Jr.: Ind. Eng. Chem.

Res., 33, 2810(1994).

6. Tamhankar, S. S., Bagajewicz, M., Gavalas, G. R., Sharma, P. K. and Flytzani-Stephanopoulos, M.: Ind. Eng. Chem. Prod. Res. Dev., 25, 429 (1986).

7. Lew, S., Sarofim, A. F. and Flytzani-Stephanopoulos, M.: Ind. Eng.

Chem. Res., 31, 1890(1992).

8. Woods, M. C., Gangwal, S. K., Jothimurugensan, K. and Harrison, D. P.: Ind. Eng. Chem. Res., 29, 1160(1990).

Fig. 11. Sulfur removing capacity of ZT and ZS sorbents with Zn/support ratio of 0.5 at middle temperature.

(9)

9. Gupta, R. P., Gangwal, S. K. and Jain, S. C.: Energy Fuels, 6, 21(1992).

10. Jothimurugesan, K. and Gangwal, S. K.: Ind. Eng. Chem. Res., 37, 1929(1998).

11. Ibarra, J. V., Cilleruelo, C., Garcia, E., Pineda, M. and Palacios, J. M.:

Vibrational Spectroscopy, 16, 1(1998).

12. Siriwardane, R. V., Poston, J. A. and Evans, G., Jr.: Ind. Eng. Chem.

Res., 33, 2810(1994).

13. Khare, G. P. and Cass, B. W.: U.S. Patent, 5,439,867(1995).

14. Kidd, D. R., Delzer, G. A., Kubicek, D. H. and Schubert, P. F.: U.S.

Patent, 5,358,921(1994).

15. Khare, G. P.: U.S. Patent, 5,306,685(1994).

참조

관련 문서

12) Maestu I, Gómez-Aldaraví L, Torregrosa MD, Camps C, Llorca C, Bosch C, Gómez J, Giner V, Oltra A, Albert A. Gemcitabine and low dose carboplatin in the treatment of

Levi’s ® jeans were work pants.. Male workers wore them

By Edward Lear • Adapted for ReadingA–Z Illustrated by

3,4 It was shown, that the bimetallic Co-containing catalysts promoted by noble metals and supported on alumina have the high activity, selectivity and resistance to coke

Although the surface areas of the η-alumina catalysts decreased drastically and monotonically with increasing calcination temperature in the range of 500-800 o C, the

Whereas dibromides with ester and ketone in acetonitrile at room temperature were debrominated to provide the correspond ­ ing alkenes in high yields (entries 1-7),

The objective of this study was to examine the effects of high and low chilling temperature on the water-holding capacity (WHC) and tenderness of hot-boned breast meat

The topics include mechanical properties of high strength steels at elevated temperature and after fire exposure, creep response of high strength steel at elevated