• 검색 결과가 없습니다.

B. TP-specific scFv selection by using ribosome display

V. CONCLUSIONS

To obtain TP-specific scFv, antibody selection system by a ribosome display was employed. Firstly a ribosome display technique was established using anti-DNA antibody, 3D8, as a model to select antibody and then, this system was applied to TP-specific antibody. TP-peptide-TP-specific selection and enrichment by ribosome display were shown. After four rounds of selection, the selected pool was cloned into an expression vector and each clone was screened by ELISA. Four TP-specific scFv clones were selected and their sequences were analyzed. These four selected scFvs have intact scFv sequence and specific binding activity to TP-peptide and HBV DNA polymerase protein.

BIBLIOGRAPHY

1. Barbas CF, 3rd, Kang AS, Lerner RA, Benkovic SJ: Assembly of combinatorial antibody libraries on phage surfaces: the gene III site. Proc Natl Acad Sci USA 88; 7978-7982, 1991

2. Boder ET, Midelfort KS, Wittrup KD: Directed evolution of antibody fragments with monovalent femtomolar antigen-binding affinity. Proc Natl Acad Sci USA 97; 10701-10705, 2000

3. Bothmann H, Pluckthun A: Selection for a periplasmic factor improving phage display and functional periplasmic expression. Nat Biotechnol 16; 376-380, 1998

4. Clackson T, Hoogenboom HR, Griffiths AD, Winter G: Making antibody fragments using phage display libraries. Nature 352; 624-628, 1991

5. Dall'Acqua W,Carter P: Antibody engineering. Curr Opin Struct Biol 8; 443-450, 1998

6. de Kruif J, Boel E, Logtenberg T: Selection and application of human single chain Fv antibody fragments from a semi- synthetic phage antibody display

library with designed CDR3 regions. J Mol Biol 248; 97-105, 1995

7. Doi N, Yanagawa H: STABLE: protein- DNA fusion system for screening of combinatorial protein libraries in vitro. FEBS Lett 457; 227-230, 1999

8. Fedorov AN, Baldwin TO: Contribution of cotranslational folding to the rate of formation of native protein structure. Proc Natl Acad Sci USA 92; 1227-1231, 1995

9. Feldhaus MJ, Siegel RW, Opresko LK, Coleman JR, Feldhaus JM, Yeung YA, Cochran JR, Heinzelman P, Colby D, Swers J, Graff C, Wiley HS, Wittrup KD: Flow-cytometric isolation of human antibodies from a nonimmune Saccharomyces cerevisiae surface display library. Nat Biotechnol 21; 163-170, 2003

10. Ganem D: Hepadnaviridae and their replication. In Field Virology (ed. B.N.

Field, D.M. Knipe and P.M. Howley, et al) Philadelphia, Lippincott-Raven Publishers, 1996, pp 2703-2737

11. Georgiou G, Poetschke HL, Stathopoulos C, Francisco JA: Practical applications of engineering gram- negative bacterial cell surfaces. Trends

Biotechnol 11; 6-10, 1993

12. Gersuk GM, Corey MJ, Corey E, Stray JE, Kawasaki GH, Vessella RL:

High-affinity peptide ligands to prostate-specific antigen identified by polysome selection. Biochem Biophys Res Commun 232; 578-582, 1997

13. Ghadessy FJ, Ong JL, Holliger P: Directed evolution of polymerase function by compartmentalized self-replication. Proc Natl Acad Sci USA 98; 4552-4557, 2001

14. Griffiths AD, Tawfik DS: Man- made enzymes--from design to in vitro compartmentalisation. Curr Opin Biotechnol 11; 338-353, 2000

15. Hanes J, Jermutus L, Schaffitzel C, Pluckthun A: Comparison of Escherichia coli and rabbit reticulocyte ribosome display systems. FEBS Lett 450; 105-110, 1999

16. Hanes J, Jermutus L, Weber-Bornhauser S, Bosshard HR, Pluckthun A:

Ribosome display efficiently selects and evolves high-affinity antibodies in vitro from immune libraries. Proc Natl Acad Sci USA 95; 14130-14135, 1998

17. Hanes J, Pluckthun A: In vitro selection and evolution of functional proteins by using ribosome display. Proc Natl Acad Sci USA 94; 4937-4942, 1997

18. Hanes J, Schaffitzel C, Knappik A, Pluckthun A: Picomolar affinity antibodies from a fully synthetic naive library selected and evolved by ribosome display. Nat Biotechnol 18; 1287-1292, 2000

19. He M, Menges M, Groves MA, Corps E, Liu H, Bruggemann M, Taussig MJ:

Selection of a human anti-progesterone antibody fragment from a transgenic mouse library by ARM ribosome display. J Immunol Methods 231; 105-117, 1999

20. He M, Taussig MJ: Antibody-ribosome- mRNA (ARM) complexes as efficient selection particles for in vitro display and evolution of antibody combining sites. Nucleic Acids Res 25; 5132-5134, 1997

21. High S, Gorlich D, Wiedmann M, Rapoport TA, Dobberstein B: The identification of proteins in the proximity of signal-anchor sequences during their targeting to and insertion into the membrane of the ER. J Cell Biol 113;

35-44, 1991

22. Hilleman MR: Overview of the pathogenesis, prophylaxis and therapeusis of viral hepatitis B, with focus on reduction to practical applications. Vaccine 19; 1837-1848, 2001

23. Hollinger FB: Hepatitis B virus. In Field Virology (ed. B.N. Field, D.M.

Knipe and P.M. Howley, et al) Philadelphia, Lippincott-Raven Publishers, 1996, pp 2739-2807

24. Hoogenboom HR, Griffiths AD, Johnson KS, Chiswell DJ, Hudson P, Winter G: Multi-subunit proteins on the surface of filamentous phage:

methodologies for displaying antibody (Fab) heavy and light chains. Nucleic Acids Res 19; 4133-4137, 1991

25. Irving RA, Coia G, Roberts A, Nuttall SD, Hudson PJ: Ribosome display and affinity maturation: from antibodies to single V-domains and steps towards cancer therapeutics. J Immunol Methods 248; 31-45, 2001

26. Jermutus L, Honegger A, Schwesinger F, Hanes J, Pluckthun A: Tailoring in vitro evolution for protein affinity or stability. Proc Natl Acad Sci USA 98;

75-80, 2001

27. Kieke MC, Cho BK, Boder ET, Kranz DM, Wittrup KD: Isolation of anti-T cell receptor scFv mutants by yeast sur face display. Protein Eng 10; 1303-1310, 1997

28. Kurz M, Gu K, Al- Gawari A, Lohse PA: cDNA - protein fusions: covalent protein - gene conjugates for the in vitro selection of peptides and proteins.

Chembiochem 2; 666-672, 2001

29. Kwon MH, Lee MS, Hong SH, Kim KH, Shin HJ, Park S, Lee CH, Kim HI:

A visible phagemid system for the estimation of Cre- mediated recombination efficiency. J Immunol Methods 280; 165-173, 2003

30. Kwon MH, Lee MS, Kim KH, Park S, Shin HJ, Jang YJ, Kim HI: Production and characterization of an anti- idiotypic single chain Fv that recognizes an anti-DNA antibody. Immunol Invest 31; 205-218, 2002

31. Lanford RE, Kim YH, Lee H, Notvall L, Beames B: Mapping of the hepatitis B virus reverse transcriptase TP and RT domains by transcomplementation for nucleotide priming and by protein-protein interaction. J Virol 73; 1885-1893, 1999

32. Liu R, Barrick JE, Szostak JW, Roberts RW: Optimized synthesis of RNA-protein fusions for in vitro RNA-protein selection. Methods Enzymol 318; 268-293, 2000

33. Makeyev EV, Kolb VA, Spirin AS: Cell- free immunology: construction and in vitro expression of a PCR-based library encoding a single-chain antibody repertoire. FEBS Lett 444; 177-180, 1999

34. Malik AH, Lee WM: Chronic hepatitis B virus infection: treatment strategies for the next millennium. Ann Intern Med 132; 723-731, 2000

35. Marks JD, Hoogenboom HR, Bonnert TP, McCafferty J, Griffiths AD, Winter G: By-passing immunization. Human antibodies from V- gene libraries displayed on phage. J Mol Biol 222; 581-597, 1991

36. Mattheakis LC, Bhatt RR, Dower WJ: An in vitro polysome display system for identifying ligands from very large peptide libraries. Proc Natl Acad Sci USA 91; 9022-9026, 1994

37. Merican I, Guan R, Amarapuka D, Alexander MJ, Chutaputti A, Chien RN, Hasnian SS, Leung N, Lesmana L, Phiet PH, Sjalfoellah Noer HM, Sollano J,

Sun HS, Xu DZ: Chronic hepatitis B virus infection in Asian countries. J Gastroenterol Hepatol 15; 1356-1361, 2000

38. Lee MS, Kwon MH, Park S, Shin HJ, Jang YJ, Kim HI: Terminal Protein-specific scFv Production by Phage Display. Immune Network 3; 126-135, 2003

39. Nemoto N, Miyamoto-Sato E, Husimi Y, Yanagawa H: In vitro virus:

bonding of mRNA bearing puromycin at the 3'-terminal end to the C-terminal end of its encoded protein on the ribosome in vitro. FEBS Lett 414; 405-408, 1997

40. Nicholls PJ, Johnson VG, Andrew SM, Hoogenboom HR, Raus JC, Youle RJ: Characterization of single-chain antibody (sFv)-toxin fusion proteins produced in vitro in rabbit reticulocyte lysate. J Biol Chem 268; 5302-5308, 1993

41. Nieba L, Honegger A, Krebber C, Pluckthun A: Disrupting the hydrophobic patches at the antibody variable/constant domain interface: improved in vivo folding and physical characterization of an engineered scFv fragment. Protein

Eng 10; 435-444, 1997

42. Orum H, Andersen PS, Oster A, Johansen LK, Riise E, Bjornvad M, Svendsen I, Engberg J: Efficient method for constructing comprehensive murine Fab antibody libraries displayed on phage. Nucleic Acids Res 21;

4491-4498, 1993

43. Paul S: Antibody Engineering Protocols. Totowa, New Jersey, Humana Press, 1995, pp17-49

44. Perelson AS,Oster GF: Theoretical studies of clonal selection: minimal antibody repertoire size and reliability of self- non-self discrimination. J Theor Biol 81; 645-670, 1979

45. Pianko S, McHutchison J: Chronic hepatitis B: new therapies on the horizon?

Lancet 354; 1662-1663, 1999

46. Ridder R, Schmitz R, Legay F, Gram H: Generation of rabbit monoclonal antibody fragments from a combinatorial phage display library and their production in the yeast Pichia pastoris. Biotechnology (N Y) 13; 255-260, 1995

47. Roberts RW, Szostak JW: RNA-peptide fusions for the in vitro selection of peptides and proteins. Proc Natl Acad Sci USA 94; 12297-12302, 1997

48. Ryabova LA, Desplancq D, Spirin AS, Pluckthun A: Functional antibody production using cell- free translation: effects of protein disulfide isomerase and chaperones. Nat Biotechnol 15; 79-84, 1997

49. Santantonio T, Mazzola M, Iacovazzi T, Miglietta A, Guastadisegni A, Pastore G: Long-term follow-up of patients with anti- HBe/HBV DNA-positive chronic hepatitis B treated for 12 months with lamivudine. J Hepatol 32; 300-306, 2000

50. Schaffitzel C, Berger I, Postberg J, Hanes J, Lipps HJ, Pluckthun A: In vitro generated antibodies specific for telomeric guanine-quadruplex DNA react with Stylonychia lemnae macronuclei. Proc Natl Acad Sci USA 98; 8572-8577, 2001

51. Schaffitzel C ZC, Amstutz P, Luginbuhl B and Pluckthun A.: In vitro selection and evolution of protein- ligand interactions by ribosome display.

NY, Cold Spring Harbor Laboratory Press, 2001, pp 535-567

52. Seeger C, Mason WS: Hepatitis B virus biology. Microbiol Mol Biol Rev 64;

51-68, 2000

53. Tabuchi I, Soramoto S, Nemoto N, Husimi Y: An in vitro DNA virus for in vitro protein evolution. FEBS Lett 508; 309-312, 2001

54. Tawfik DS, Griffiths AD: Man- made cell- like compartments for molecular evolution. Nat Biotechnol 16; 652-656, 1998

55. Vaughan TJ, Williams AJ, Pritchard K, Osbourn JK, Pope AR, Earnshaw JC, McCafferty J, Hodits RA, Wilton J, Johnson KS: Human antibodies with sub-nanomolar affinities isolated from a large non- immunized phage display library. Nat Biotechnol 14; 309-314, 1996

56. Viviani S, Jack A, Bah E, Montesano R: [Hepatocellular carcinoma: a preventable cancer]. Epidemiol Prev 21; 129-136, 1997

57. Weber M, Bronsema V, Bartos H, Bosserhoff A, Bartenschlager R, Schaller H: Hepadnavirus P protein utilizes a tyrosine residue in the TP domain to prime reverse transcription. J Virol 68; 2994-2999, 1994

58. Winter G, Griffiths AD, Hawkins RE, Hoogenboom HR: Making antibodies

by phage display technology. Annu Rev Immunol 12; 433-455, 1994

59. Zhou JM, Fujita S, Warashina M, Baba T, Taira K: A novel strategy by the action of ricin that connects phenotype and genotype without loss of the diversity of libraries. J Am Chem Soc 124; 538-543, 2002

60. zu Putlitz J, Lanford RE, Carlson RI, Notvall L, de la Monte SM, Wands JR:

Properties of monoclonal antibodies directed against hepatitis B virus polymerase protein. J Virol 73; 4188-4196, 1999

- 국문요약 -

R i b o s o m e d i s p l a y 를 이용한

B 형 간염바이러스 중합효소에 대한 s c F v 의 선별

아주대학교 대학원 이 명 신 (지도교수: 신 호 준)

목적: 기존에 보고된 eukaryotic translation system을 사용한 ribosome display 방법을 토대로 하여 항체 선별 방법을 확립하고, 이 확립된 방법을 이용하여 마우스 scFv 라이브러리로부터 B형 간염 바이러스 DNA 중합효소의 terminal protein영역에 특이적인 항체를 선별하고자 한다.

재료 및 방법: Ribosome display에 의한 항체 선별 방법을 확립하기 위하여 항-DNA 항체를 사용하였다. 항-항-DNA 항체, 3D8 scFv의 유전자를 시험관 내에서 전사-번역하였다. 번역된 3D8 scFv와 이를 코딩하는 mRNA는 리보솜에 연결되어 항체-리보솜-mRNA의 복합체를 형성하게 된다. 이 복합체를 특정항원과의 결합에 의해 선별하였고, 이 복합체로부터 분리된 mRNA를 역전사하여 PCR로 증폭하였다. 이 방법을 라이브러리로부터 항체 선별하는데 적용하기 위하여, B형 간염 바이러스 DNA 중합효소의 TP 영역의 57-80 아미노산과 일치하도록 합성된 TP 펩타이드를 마우스에 면역하고, 면역된 마우스의 비장을 분리하여 재조합

PCR방법으로 항체 라이브러리를 제작하였다. 제조된 항체 라이브러리를 이용하여 시험관내 합성에 의해 항체-리보솜-mRNA 복합체를 형성하였고, 이 복합체를 이용하여 TP 펩타이드에 대해 4회 선별하였다. 라이브러리 내의 TP 펩타이드에 대한 항체 증가를 방사선면역측정법으로 조사하였고, 4회 선별을 거친 라이브러리는 항체 발현을 위해 클로닝을 시행하였다. 클로닝 후, TP 펩타이드에 특이적인 항체 클론을 선별하였고, 선별된 클론은 염기서열을 분석하고 ELISA로 B형 간염 바이러스 DNA 중합효소에 대한 결합 능력을 확인하였다.

결과: Ribosome display를 이용한 항체 선별의 모델로써, 항-DNA 항체를 적용하였다. 항-DNA항체인 3D8의 유전자가 ribosome display에 의해 ssDNA에 대해 특이적으로 선별되는 것을 확인하였다. 이 실험을 통해 ribosome display에 의한 항체 선별방법을 확립하였다. 확립된 항체 선별 방법을 적용하여 면역된 마우스 라이브러리로부터 TP 펩타이드 특이 scFv를 4회 선별하였다. 선별을 통해 TP 펩타이드에 특이적인 라이브러리의 증가를 확인할 수 있었고, 선별된 scFv들은 TP 펩타이드와 B형 간염 바이러스 DNA 중합효소에 대한 결합력을 보였다.

결론: 진핵세포 translation에 의한 ribosome display 방법을 적용하여 항체 선별 방법을 확립하였다. 이 방법을 이용하여 항-TP scFv를 성공적으로 선별하였다.

핵심되는 말: 항체, B형 간염 바이러스, B형 간염 바이러스 DNA 중합효소, 라이브러리, Ribosome display, scFv, Terminal protein (TP)

관련 문서