• 검색 결과가 없습니다.

Application of Plastic Optical Fiber in Photocatalysis

N/A
N/A
Protected

Academic year: 2022

Share "Application of Plastic Optical Fiber in Photocatalysis"

Copied!
5
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

7z>wö~ POF ‚Ï

;’ƒÁ"***Á;çf*Á*«C**ÁJ;Z**Á^ ¢

^&v z", *~ã"

**‚“ö.æVF’ö ·ö.ææ~’&

(2001j 5ú 22¢ 7>, 2001j 7ú 19¢ j)

Application of Plastic Optical Fiber in Photocatalysis

Heerok Jeong, Hyunku Joo**, Sang Eun Park*, Myung Seok Jeon**, Chungmoo Auh** and Il Moon

Department of Chemical Engineering,

*Department of Environmental Engineering, Yonsei University, Seoul 120-749, Korea

**Solar Energy Conversion Research Team, Korea Institute of Energy Research, Daejeon 305-343, Korea (Received 22 May 2001; accepted 19 July 2001)

º £

 ’öBº –« 5 ËÏb‚ "‚ ÒÏ>º core Òîš Ò^ž 2¢Ê 7RF(plastic optical fiber, POF)¢ 7

2(P25, Degussa)& z+B POF >wV¢ šÏ~ C2HCl3(trichloroethylene, TCE)

Clad[~ B–¢ *~ 13«~ Ï¢ ÒÏ~ Ϛê 2¢V¾ ·ÏV j Û~ &ËWj {žš ~b¾ j^Ê

2~ vþö ’² 'Ëj A~, POF~ çã~ æzö ®ÚBº ç㚠Ã&†>ƒ >wš Ã&~&b¾, ç&'b‚ 7RF Ú

~ >ÒÅ>~ 6²‚ žš >wW Ã&& *Úº Ö"¢ {ž~&. 7RF~ çã 5 ^š~ ÿæz¢ Û~ >w

‚š'š ?bš >w ;ê& ¢~Žj {ž~&, öêR ªš~ ãÖ in-situ FTIR G;j Û~ CO2‚ j*® *~N j {ž~&.

Abstract−In this study, the use of plastic optical fiber(POF) was presented as a light guide in photocatalysis. To do so a sim- ple method to remove the clad of POF was established and the most effective parameters on photocatalysis were investigated when used in a form of bundled array. Photocatalytic degradation of trichloroethylene(C2HCl3, TCE) and ethanol in the gas- phase was also performed by using TiO2-coated plastic optical fiber reactor. Among 13 solvents with different solubility parameters and working groups, acetone was used to remove clad layer chemically, resulting in that optimized time of POF in acetone was selected 3 min to remove the clad layer completely. The photocatalytic activities of TiO2-coated optical fiber reac- tor system was dependent on the coating thickness, diameter and total clad-stripped surface area of POF. In ethanol degrada- tion, in-situ FTIR measurement resulted in complete mineralization into CO2.

Key words: Plastic Optical Fiber(POF), Photocatalytic Degradation, Trichloroethylene, TiO2

1. B †

‚" ‡ç 5 Vç J"b ¾Òö ®ÚB Vš~ N/&{ –š, 

&~ /ÒÏ, 2N ¾Ò~ jºW ~ 6j j~V *~ “Ú

žöB  ~ãVF 6º êÖz¾ÒVF‚B '7 A ®º 7/

žÚö Fš‚ >BW FV"²zbf CFzÖë~ Wb‚, î

ÒÏ> ®b–, VÂ> 7ö Ž>º >BW FV"²zb(VOCs) f æ~ö ŽR~, æ~>¢ J"ʺ ãÖ& ôš > ®.

FV"²zbf ëWš, Bzb, ~ãJ"~ " bîšV r

^ö, š‚ bîf ‚" – Ò²^B& > ®. FV"²zbö

®[4-7].

*Òræ~ 7/ ‚Ï ʂöº öÛ; Î*~ ÒÏb‚ ž~

>wV ; 5 Òîö &‚ B£" ~ *ö &‚ ^B6š ®îº

–, š¢ šÖ~Jº O»b‚ 7RF& ÒÏ>V ·~&. Clad[

To whom correspondence should be addressed.

E-mail: hkjoo@kier.re.kr

(2)

š B–B core ‚šö z+B 7/º 7RF~ ‚ã ƒöB –ÒB refractive index Nšö ~‚ ~ š.ö ~~ j ‡>~ FV J"bîj ªš† > ®º 7z >wš ¢ÚÆ > ®V r^š. ß

® >¾ÒÏ ÒÒ ; ʂ~ ãÖ ~ ŽR–Ò& 0.2 mm ;ê

‚ >wV ’Vö j~ ¾Ò† > ®º ·š ‚;>Ú ʂ ’Wö Ö B£š ô~b¾[8], 7RF ‚Ï~ ãÖ >ôf 7RF¢ ‚Ï~

 Ú' *Ú'b‚ >wj £² êΆ >& ®² B. *Òræ 7 z >wö ÒÏ> ®~ 7RFº core Òîš C'b‚(QOF) žb (bufferf clad)& B–>îj ãÖ £² ¦î > ®Ú /š Ö Ú

š‚ QOF& &æº 6j j~¶  þöBº –« 5 Ë

Ïb‚ "‚ ÒÏ>º core Òîš Ò^ž 2¢Ê 7RF(plastic optical fiber, POF; refractive index 1.492)¢ 7z >wö~  *

Ï C' ö&~ 30% Öj, V £ $0.12) žb& B–>îj ã

bòj Ϛ~² B–~º *ނ VFj d, ʂö ®‚ 'Ï

š >îj r &Ë '˚ – æ>¢ dj šö &‚ &ê¢ V®.

*f ?š B·B POF ®j ÒÏ~š Ñ‚ >wV ž¦öB  – Ò Jš¢ † >wV~ Òî 5 ;ö &‚ B£j † > ® b–, ~‚ ïšö z+† ãÖ~ š' 7z >wj POF¢ >wV

¦b‚ ªÖ ªB ¦b >wb‚ *~† > ®Ú bî*~ B£

j *¢ > ®, q‚ 7ö" >w¦ªš ªÒF > ®Ú &öB * þæ 5 æ~ "Ö/çëJ~ ~ã;zö Ϛ~² &¾† > ®b

š‚ ʂ'ž Î" šžö 7RF~ "º †ž ËÎ"ræê

2. þ

POF

f reagent grade¢ ÒÏ~&, TiO2º ªöç~ Degussa B®~ P25

¢ ÒÏ~&b–, wt%ê‚ Milli-Q plus ʂj šÏ~ B–B Ã

~>(&“ 18 MΩcm)ö bB žç‚ ò ê POF core *ö z

ö ªÖ>Ú PMMA Òî~ POF coreö z+>îb¾  ’Ö"ö º Ž~æ p~. 7öb‚º 0.2-1 kW~ ÂKš &Ë B¢ Î*

(Oriel)& ÒÏ>î.

7RF >wV¢ J~‚ ê >wVö 1µL~ TCEf öêR χj

(>wV Ú¦~ Nêº 28oC‚ ¢;~² FæN). ;ï' ªCj *~

 GC/ECD(HP 5890 series II)¢ ÒÏ~&b–, ;W' ªCj *~

FTIR, GC/FID(HP 5890 series II)f GC/MSD(HP 6890 plus)¢ šÏ~

&. ò~ ·f 400µL‚ GCö "«~&b–, GC/MSD¢ ‚Ï‚

¦Öb 2k~ Ö"º š B‚ ¢^ö ¶^® Þ/>Ú ®[14].

2-1. POF *¾Ò

Òς POF~ žb(clad)~ Òîf ®²& ~~>Ú ®º poly(methyl methacrylate)(F-PMMA)‚ z'b‚ B–¢ ê~&. bÒ'ž B

– êº ‚šö ®¢W 5 J"&Ëb‚ ž~ Bž>î. ¢>

'b‚ ª¶bîš Ú¶ ‚êræ Ϛ>¶ö ~º ^Bº &ª¶~

ãÖ¾" š†'b‚ {ž~Vº ÚJږ, š©f ª¶ bîš ß

’, ª¶Wš–, 6ê& ’, Ö;'~ 'Ë š ®V r^b‚

rJ^ ®. ¾ ¢>'b‚  &æ ãþj «šš z’–

& F҂ ©f çÏ>V £, Ϛê 2¢V(SP)& F҂ ©š ¾

(1) v: ¦bªN, SP: Ϛê 2¢V, 1: Ï, 2: ª¶

(2)

VB (SP1−SP2)N& ß ’š ∆H>T∆S& > ¯ ∆G>0š >Ú Ïš& ¢Ú¾æ pº. ¾ (SP1−SP2)& FÒ~š ∆H<T∆S& >

¯ ∆G<0š >Ú Ïš& ¢Ú¾² B. ¾ š©f “ç  ©f

B acetone(SP=9.71), acetonitrile(12.10), Ò acetylacetone Ïöº POF clad& B–>îb¾,  ž~ n-hexane(7.24), ethylether(7.50), carbon tetrachloride(8.58), toluene(8.93), benzene(9.15), n-butanol(11.40), ethyl alcohol(12.70), methyl alcohol(14.50), nitrobenzene(10.0),Ò water (23.40)öº POF clad& B–>æ p~. VB ÖÒ& Jš¢F ғf POF clad¢ Ϛʺ Ïöº CH3CR(R; O 6º N ~

Òϖšf POF~ cladòj B–~¢~–, coreö ¶çj "Ú POF~

 *ËKj 6²Êæ öj¢‚. š‚ &6öB  ’öB º j^Êj F~ B–† ^šò¢ ÆV² ‚ ê *ê‚ G;

B SEM Òêj Û~ &Ë '‚ B– *j –Ò~&b– šº 3

¢ j^Êö 3ª ÿn " ê ¢ÚÚ všº 2N Ã~>(Milli-Q, 18MΩ)‚ 3-4² ^¿~&.

2-2. 7/ z+

žb& B–B POFf TiO2 2Öz(P25, Degussa GmbH)¢ ÒÏ~

 5 wt%‚ B–B ê r2(sonication)f b(stirring)b‚ ªÖB Ï

Òº >zB 2¢Ê" TiO2& pH 2öB 6.6 ҚöB ·W(amphoteric) j &æV r^ö B‚ ;*V·Ï(electrostatic interactions)ö Vž

~–, B ÒÏB TiO2 χ~ pHº 4.5šî. χöB B–B POF

¢ Ã&ÊV *šB *~ ";j >~&.

2-3. ®(bundle) B·

\Ú準, šº žb¢ B–‚ ¦ª šž~ ª~ žb¢ B–~æ

Êrž.Ê Ê(6º r2† ) Òî~ Ç(ϕ25, ϕ36)~ çã 5-10 mm

~ ’sö žb& B–>æ pf ¦ªj If ê ö¢ I 10*

vê¢ Fig. 1ö ¾æÚî.

2-4. ªC

>wb" Wb~ ªCöº GC/ECD(HP 5890 sereis II), GC/FID(HP 5890 series II), GC/MSD(HP 6890 plus), Ò FTIR(Bomen)" SEM (JSM 5900, JEOL)¢ ÒÏ~&. Òς "b‚º GC/ECD~ ãÖ HP-5 capillary column(50 m * 0.2 mm * 0.33µm)š–, carrier gas‚º .Bê î²¢ šÏ~&b–, column flowº £ 60 ml/min‚ ~&.

∆H=v1v2(SP12–SP22)

∆G=∆H–T S∆

(3)

z B39² B5^ 2001j 10ú

Injection Nêº 200oC, detection Nê 250oC, oven Nêº 150o

;~ ÒÏ~&.

GC/FID~ ãÖ HP-FFAP capillary column(25 m * 0.32 mm * 0.5µm) j ÒÏ~&. šr carrier gasº .Bê helium gas, column flowº 1.5 ml/min, split ratioº 10 : 1‚ ;~&b–, injection Nêº 120oC, detection Nêº 250oC, Ò oven Nêº 60oC‚ ;~ ªC~

&. ãÖö V¢ Wb~ {žj *~ FTIR ª7V(Bomen)j Ò Ï~&. 6‚ clad~ B–¢ {ž~V *~ 7RF~ ‚šj SEM j šÏ~ ªC~&.

3. Ö" 5 V

photolysis þj >¯~ £ ^*š ã"‚ êræ .V Fšbî

~ ³ê& æz& ìrj {ž~&bæ‚,  ’~ Î Ö"º 7/

 ’öB šÖš¢ † š^Bº ’«‚ POF~ žb¢ ÎN'b

‚ B–~º ©šî. QOFf ?š ‚ žb 5 buffer¢ B–† >

ìîbæ‚ Vê'ž O»" z'ž O»š J>î. Sand paper

¢ ‚Ï~–¾ stripper~ ‚Ïf POF core~ J"š¾ ®¢W b

æ> 5 FšWj J‚ Ï¢ F~ z'b‚ B–¢ ê~

&. Fig. 2º žb& B–B POF¢ SEMb‚ R'‚ ©j ¾æÚî . ªîھҢʂ G;‚ clad B– *ê~ çãf POF provider&

B‚ Ò·" –~ FÒ~² ¢~~&bæ‚ FB * ÿn~ Ï

" ê 70ªš ã"‚ êöº /Ï~² ç㚠6²~&º–, šº core Wªž PMMA& Ϛ>V ·‚ ©b‚ JB.

Fig. 3f QOFf POF¢ ‚Ï~ TCE ªš >wWj jv‚ þÖ

ÒÏB 650 ml Ïï~ >wVöBº 410 ppm~ TCE¢ 90% šç ªš

~º– 40ª ;ê& ²º>îb¾, š ¾Ò *f >wV ’V 5 ‚

 ÒÏB ~ ·ž 360 nmöB~ 32 mW/cm2f ¢>'b‚ æ‚ç

ö ê~º ·~ ·ž 100 mW/cm27~ 360 nm 2Ë~ ~ ·

ž ~ *j Û~ Nêö ·7 ‚Ï ÚV ;zʂö~

¢ Î*~ ÂK^Vê 'Ëj –ÒöBº 900 W(57 mW/cm2)ó600 W 300 W(10 mW/cm2) Bb‚ >wWš ¾æÒ. š Ö"¢ :ûb‚

Fig. 4º ;šê îïj‚ B–B 7/ žj ‚Ï~ z+Å>¢

ê ç>¢ ¾æÚîb–(k=0.14 min1), šê~ þöB 3² z+B POF

" >wš ¢Ú¾º 7/ ‚šš B‚ >&šV r^ö Ã&>º z + vþº '; vþræ >wWš Ã&>& 6²~º ©š ¢>'

ž ã˚[14]. ÒÏB 3² z+~ z+vþ¢ {ž~J SEMj G;

Fig. 1. Schematic diagram of bundled POF.

Fig. 2. Effect of solvation time on the diameter of POF(SEM left: after 30 sec, right: after 3 min).

Fig. 3. Comparison of reactivity for TCE degradation between QOF and POF[1.0µl TCE in 650 ml reactor, 5 wt% P25 sol, 320 nm cut- off filter, ca. 32 mW/cm2 at 360 nm, 12 fibers(30 cm)].

(4)

š ~b¾ VN ·ÿ B>º Vê' Nê‚ POF& ¶ç>Ú G;š ®&Ë~&. ‚Þ ¾r¦V ö~º z+Å>‚ ò ê >w

~æ p, >wö šÏ‚ ©j  z+B z+Å>¢ 8²ræ Ã

&B ~j rº >w³ê& ê³ Ã&~º ©j &V~&. šf

&NB šFº ªš&ç bîž TCEö &‚ F' Ö"(Cl ¢:¢ö

ž ʂ æ>ž 7RF~ çã æzö Vž Ö" jv& Fig. 5ö

" >wš'~ Ã&¢ ~~æ‚ >wWš Ã&~& BB® Ã&~

º š 6²~º–, šº çã~ Ã&º ç&'b‚ >ÒÅ>~ 6² æ‚ POF ®j B·† r, ¢;‚ ^šöBº ';‚ ç㚠šÒ‚

–.~ POF ‚š'j ¢~Vj r >wWf –~ FÒ~² G;

Nj ¾æÞ(1² z+~ ãÖöê ÿ¢~² {žN). *~ v Ö"¢

«šš ¢;^š~ ʂ ’W~ ãÖ ';‚ çãj <º POF

~ >¢ ¾J ®j B·Žš &Ë šç'š¢ † > ®º–, b†  Vö ÒÏ>º 7ö~ ^Vê J>Ú¢ Žj r > ®.

Fig. 7f VOCs~ ¢«ž TCE šž~ öêRö &‚ 7/ ªš Ö

"š. 7* Wb‚º acetaldehyde, formaldehyde, acetic acid& ¦

2‚ j*

ZVbz(mineralization)Nj *7'b‚ ë† > ®î. ¾B CO2

¢ ç7 {ž~V *~ in-situ‚ FTIRG;š &˂ >wV¢ B·

*ræº >wb~ B–ö .6š Ö^ ®º ªCš ê>îb¾,

¦Öb~ 2k" ‚« Öbž CO2 Fig. 4. Effect of coating times on TCE degradation(under the same con-

ditions used for Fig. 3 except coating time).

Fig. 5. Effect of POF diameter on reactivity(under the same conditions used for Fig. 3 except POF diameter).

Fig. 6. Effect of total surface area on reactivity(under the same condi- tions used for Fig. 3 except 3 time coating and preillumination).

Fig. 7. Result of ethanol degradation with POF system(under the same conditions used for Fig. 3).

Fig. 8. Measurement of CO2 in ethanol degradation with in-situ FTIR reactor.

(5)

z B39² B5^ 2001j 10ú

b‚ :²ç~æ pb–, ‚ Fš~–¾ Zš‚ Öb 6º ‚«'ž j

* mineralizationÖ"bž CO2‚~ *~òš Ï'ž ~& ®V r

fê jv† > ®º– öêRš j*® *~>º– £ 90ª ;ê& ² º>–(FTIR" GC~ sensitivity J), ¦Öbræ j*® ªš>Ú CO2‚ *¦ *~>º– £ 200ªš ²ºNš ¢~~&.

4. Ö †

TiO2(P25, Degussa)& z+B POF >wV¢ šÏ~ C2HCl3(trichlo- roethylene, TCE)

[~ B–¢ *~ 13«~ Ï¢ ÒÏ~ Ϛê 2¢V¾ ·Ï V j Û~ &ËWj {žš~b¾ j^Êö 3ª* Ϛ† ãÖ

f POFö 7 z+B TiO2~ vþö ’² 'Ëj A~, POF~ ç ã~ æzö ®ÚBº ç㚠Ã&†>ƒ >wš Ã&~&b¾, ç&' b‚ 7RF Ú~ >ÒÅ>~ 6²‚ žš >wW Ã&& *Úº Ö

"¢ {ž~&. 7RF~ çã 5 ^š~ ÿæz¢ Û~ >w‚

š'š ?bš >w ;ê& ¢~Žj {ž~&, öêR ªš~ ãÖ in-situ FTIR G;j Û~ CO2‚ j*® *~Nj {ž~&. ֆ

'b‚  ’öBº plastic optical fiber¢ šÏ~ 7z>wj ê Ά > ®º "–¢ þ'b‚ B~&b–, *f ?š ’B POF

ʂj ÒÏ~š, QOF ʂ~ 6j Ϫ® jF > ®b–, 7 />w ʂ~ çÏzö Vž ~ã;z 5 ãB' 2/Î"¢ V

&† > ®bÒ¢ 6B.

6 Ò

 þf (")újJf~ Vë >ç"B(KIER A0-5157) ;b‚

>¯>îb–, šö 6Òãî.

^^ò

1. Hoffmann, M. R., Martin, S. T., Choi, W. Y. and Bahnemann, D. W.:

Chem. Rev., 95, 69(1995).

2. Ollis, D. F. and Al-Ekabi, H.: “Photocatalytic Purification and Treat- ment of Water and Air,” Elsevier(1993).

3. Pellizzetti, E. and Serpone, N.: “Homogeneous and Heterogeneous Photocatalysis,” NATO ASI Series 174, Plenum, New York(1986).

4. Utsuna, S. K., Ebihara, Y., Nakamura, K. and Ibusuki, T.: Atmospheric Environment, 27, 599(1993).

5. Nimlos, M. R., Jacoby, W. A., Blake, D. M. and Milne, T. A.: Envi- ron. Sci. Technol., 27, 732(1993).

6. Kim, J. S., Itoh, K. and Murabayashi, M.: Chemosphere, 36, 483(1998).

7. Yoon, J. K., Yoon, W. S., Joo, H. K., Jeon, M. S. and Lee, T. K.: HWA- HAK KONGHAK, 38, 288(2000).

8. Moon, S.-C., Mametsuka, H., Tabata. S. and Suzuki. E.: Catalysis Today, 58, 125(2000).

9. Ollis, D. F. and Marinangell, R. E.: AIChE J., 23, 415(1977).

10. Hoffmann, M. R. and Peill, N. J.: Environ. Sci. Technol., 29, 2974 (1995).

11. Hoffmann, M. R. and Peill, N. J.: Environ. Sci. Technol., 30, 2806 (1996).

12. Hoffmann, M. R. and Peill, N. J.: J. Photochem. and Photobiol. A:

Chem., 108, 221(1997).

13. Shin, B. G. and Kim, J. J.: Optics and Technology, Optical Society of Korea, 25, July(2000).

14. Jeong, H., Kim, J. S., Joo, H., Auh, C., Lee, T. K., Moon, I. and Yoon, W. S.: HWAHAK KONGHAK, 39, 352(2001).

15. Sperling, L. H.: “Introduction to Physical Polymer Science,” Wiley, New York(1986).

16. Granqvist, C. G.: “Materials Science for Solar Energy Conversion System,” Pergamon Press(1991).

17. Kim, J. S., Itoh, K., Murabayashi, M. and Kim, B. A.: Chemosphere, 38, 2969(1999).

참조

관련 문서

Fiber Bragg grating (FBG) Technology in the field of optical

결핵균에 감염된 사람의 일부에서만 결핵이 발병하는데 어떤 사람에서 결핵이 발병하는지 그 자세한 기전은 알려져 있지 않지만 결핵균의 독성(virulence)이 강하거나 결핵균에

12) Maestu I, Gómez-Aldaraví L, Torregrosa MD, Camps C, Llorca C, Bosch C, Gómez J, Giner V, Oltra A, Albert A. Gemcitabine and low dose carboplatin in the treatment of

Levi’s ® jeans were work pants.. Male workers wore them

Effect of the combined process of UV-TiO 2 photocatalysis (UVTP) and high hydrostatic pressure (HHP) on the ginsenoside contents of ginseng powder.. Different small letters in

The properties of porous silicon, such as substrate properties, porosity, thickness, refractive index, surface area, and optical properties of porous silicon are strongly

The capons had a significantly (p&lt;0.05) smaller fiber diameter in the Pectoralis major, but were not significantly (p&gt;0.05) different in the fiber diameter of

Photocatalytic activity of annealed Cu/TiO 2 samples was greatly decreased, compared with that of as-prepared Cu/TiO 2 , as is described in Figure 3.. The colors