• 검색 결과가 없습니다.

Electroluminescence Characteristics of Blue Light Emitting Copolymer Containing Perylene and Triazine

N/A
N/A
Protected

Academic year: 2022

Share "Electroluminescence Characteristics of Blue Light Emitting Copolymer Containing Perylene and Triazine "

Copied!
7
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

Demo

Polymer (Korea), Vol. 28, No. 5, pp 367-373 (2004) /

žVâ, \28Ì \5x, 2004„, pp 367-373 

41#™Ý#

œ< DpA œq„ VÔ `p ”©|„ ìéœ `p

\Q ÌÐ, `p øÜ äp, `p QD ÌЀ DÐ Ø

´¼$< Y€ \˜ `p DÐ ÌÐ @œ € 0

¬@ ÉX È$.1-4 ùÈ @ÄÐ `p | 2Ô p åq Äм ìéœ `p \Q ÌÐÔ U U P T

äLH´œ˜ ‘é @åq Œx € @,„ è|

È$. 5¡ ÄÐ 2Ô DpA œq„ VÔ Äм ìéœ `p \Q ÌÐÔ `0q„ VÔ P TäLH

´ \Ñ  „¼ ɬo pÕ< Y€ D(œ 5U

 ˜´ ÌИ \Ñ´ 鴘 ˆUq O ý\q 1

\ € UP„ @ È$.5 Dq ÄÐ ì ¼ ìéœ `p \Q ÌÐÔ î€ xq D•  „¼

‰y##ÁA­ù#žAÙ#}= #*F#™Ž#

rŽæ1Õ#­™Ž#$®#

ñºµ¯Õ$-¯¡Õ.¯¡µ&%#

\U@™# 5<@™# ”5Å5™</#.´­@™# U4õ @™# DÐ5™À#

+5337„# 6# 5¼# QX/#5337„# ;# 45¼# „,#

Electroluminescence Characteristics of Blue Light Emitting Copolymer Containing Perylene and Triazine

Moieties in the Side Chain

Chang Ho Lee, Seung Hoon Ryu, Hwan Sool Oh*, and Se Young Oh% Department of Chemical & Biomolecular Engineering, Sogang University,

1 Shinsoo Dong, Mapo Gu, Seoul 121-742, Korea

*Department of Electronics Engineering, Konkuk University, 1 Hwayang Dong, Gwangin Gu, Seoul 143-914, Korea

e-mail : syoh@sogang.ac.kr

(Received March 2, 2004;accepted August 12, 2004)

5¨¹\Qôœ ØôLp€ DÐ D,ôœ øì„p¼ aœ @ Ô œô „5¡ í \Q 5Q

©ô¼ ©q˜@$. \°œ 5Q©ôÔ ´œœä`, THF, ´œœ,Ä, ä`< Y€ ¼X `p é$ $ð Ø ¹˜$. Dq lÅ D9 (ITO)/ 5Q©ô / Œ(8Ä|œ ¬q\ (uU `p \Q ÌÐÔ 5Q©ô

\ ø섘 ¨` ´ 30%¼ Œ Ðìô U´ Ø ˜ œ ˜ ¸À ÑÐ èh (0.003%)„ Ø ô

$. ùÈ D\ \ќ `p \Q ÌÐÔ ØôL \Qô ‘˜Ô í \Q (479 nm)„ Ø $. ¬

 D•€ 5 Vœ $ð î˜ , ÌœÔ X R´ 0.16, Y R´ 0.17´$.

,-897,.9¹Novel non-conjugated blue light-emitting copolymers containing perylene and triazine moie- ties as light emitting and electron transporting units, respectively in the polymer side chain were synthe- sized. The resulting copolymers were soluble in most organic solvents such as chlorobenzene, THF, chlo- roform and benzene. The single-layered electroluminescence (EL) device consisting of indium tin oxide (ITO)/copolymer/aluminium (Al) exhibited a maximum external quantum efficiency (0.003%) and a good carrier balance when the triazine content was 30%. In particular, the device emitted blue light (479 nm) corresponding to the emission of perylene moiety. The drive voltage was observed at 5 V and the CIE coor- dinate was x¼0.16, y¼0.17.

Keywords¹blue light-emitting copolymer, electron transporting unit, single-layered EL device, carrier balance, drive voltage.

(2)

  Lee et al. Polymer (Korea), Vol. 28, No. 5, 2004/

  ´}x# 1# žVâ, \28Ì \5x, 2004„/

pA U@ ðX˜, € 0¬@ ÉXô ”$.6,7

˜ Dq Äм ìéœ `p \Q ÌÐÔ U5

< DÐ D,˜ È U Œx î€ èh„ Ø ôÔ ( P„ V È$.8 2œ Dq ÄÐÔ é´ ùq´ è ô ÄÐ d@ 5á˜$. ”ñ´ œ< ɬo„ ì éœ ÌИ \Ñ  ¸Ð Ø D< Y€ x\P 1

´ \pX È$.9 ´€ Y€ x\P„ \`˜p D˜

, a DpA œq˜ Ñép¼ VÔ „5¡ Ä Ð \Q | O D,ô 1 @œ € 0¬@ ÉX

ô”$.10-14 ´,œ aU ÄÐÔ $ќ a ÄÐ

˜ d@ @å˜ ”™A ˆUq´ 0ôØ° é´

ùq´ $ð ˄ ÌÐ \Ñ´ Dø˜$.

ÄÐ \Q $´d\ Ҁ èh< ÌИ XÅ

„ Vp D´\Ô U5 O DИ <Å< D,´ U

„ ´(ô¼ œ$. ¼XA|œ ´ Œd 4ì„

´´T¸€ U5 D, ùq€ Ë DÐ D, ùq´

èô \Q Lå´ 420 nmœ € í „ Ø ôØ

x Uq´ ¬p Œx ؘ „ Ø ô û

˜Ô ùq„ Ø ø$.15 2œ `p \Q ÌÐ\ 

ä´ Œ9 D9 À<\ ´ UqX´ „\Q ̸ <

U´ Ý@˜, \Q èh´ èô$.

´D 0¬\ U5 O DÐ D, (Dô¼ VÔ Ð ìô Xá 5Q©ô€ ØôL„ aœ VÔ í \Q ÄИ TLœ ¬qXÔ (uU ÄÐ \Q ÌÐ

˜ ùq @˜, 4 œ T È$.16-18 ØôL @ÄÐ

”©|€ DÐ D, ùq „´ U5 Xá åe´ ˀ

Ã|œ Œdx È$. p¼\ 8 0¬\Ô í \Q ( Dôœ ØôLp€ DÐ D, ùq|œ øì„p¼ a

œ VÔ 5Q©ô¼ ©qœ  (uU ÄÐ \Q Ì Ð¼ \ј, QDpA ùq„ °ì˜@$. ùÈ DÐ D, (Dô˜ ¨`  p¸ 5Q©ô˜ ¬° ”@

\Q ùq O èh å 8˜Ô |ìA Aå„ Àà˜

@$.

51#=U##

;ú1 ( ô˜ ©q ½ Q\ N-bromosuccinimide, potassium carbonate, tetrakis(triphenylphosphine)palladium, triethylamine€ Aldrich Chem. Co.˜ ùI ½„ U\ <

U ´ ìé˜@ , methacryloyl chloride, triethylamine, perylene, 4-aminophenylboronic acidÔ Tokyokasei Co.˜ ù I ½„ ¬Å˜, U\ <U ´ ìé˜@$. ©q é$œ ìéœ THF, ä`, ”l< ´œœ,Ā J. T.

Baker˜ ùI ½„ ìé˜@ , Q© \\œ ìéœ

AIBN€ Junsei Chem. Co.˜ ùI ½„ ìé˜@$.

30^I0+shu|ohq060|o,skhq|o`phwkdfu|odplgh#A F1Õ#æ®1 U5 D, O í \Q ùq„ VÔ per- ylene moiety¼ ,¨˜Ô methacrylamide ( ô˜ ©q

€ 3( X‘|œ ɘ@$ (Scheme 1). 3¬ ¥< L

¼ä¬ $ôÈÔ THF é$ perylene 4 g (16 mmol)

< N-bromosuccinimide 2.82 g (16 mmol)„ c 24D

ˆ h\ Xè$. L¬” X‘´ Å \  X

‘ |©|„ | A˜è $Œ Xè$. q\ ¨ D|„ ,<è $Œ 5˜\ ´°è  ´œœ

,Ä é$œ ìðU˜, 5 g (94%)˜ U\\ 3-bromo- perylene„ û$.  È& (˜ X‘ <U€ $Œ<

Y$. Potassium carbonate Xé¡ 10 mL (1 M)„ 3- bromoperylene 2.3 g (7 mmol)< 4-aminophenylboronic acid 1.2 g (7 mmol)˜ THF é¡(300 mL) c Xè$.

´ |© é¡ 30 mg˜ tetrakis(triphenylphosphine)palladium

´ ¨`\ THF é¡ 5 mL¼ A˜ä 24D ˆ

˜˜ä´\ X‘è$. X‘´ Å \ $Œ X‘ |

©|„ | c q\ ¨D|„ ,<è $Œ ”

lœ xÙè  5˜\ 12D ˆ ´°è$.

œÅA|œ ´œœ,Ä é$¼ ìé˜, ìðU ˜´

¸À ˜ p-(perylene-3-yl)phenylamine˜ Ä„ û$

(1.9 g, Xh 81%).  (˜ X‘€ methacryloyl chloride 0.6 g´ $ôÈÔ ä` é¡ 10 mL¼ p-(perylene-

Br O N O

Br

(HO)2B NH2

NH2

NH

CH3 C C Cl

CH2 O

CH3 C C

CH2 O

+

Br

NH2

+

Pd(PPh3)4

+ C6H15N

r.t.

THF

THF

benzene Br

O N O

Br

(HO)2B NH2

NH2

NH

CH3 C C Cl

CH2 O

CH3 C C

CH2 O

+

Br

NH2

+

Pd(PPh3)4

+ C6H15N

r.t.

THF

THF

benzene

 6FKHPH  Synthetic route of N-[p-(perylen-3-yl)phenyl]meth- acrylamide.

(3)

Polymer (Korea), Vol. 28, No. 5, 2004 Blue Light Emitting Copolymer  



žVâ, \28Ì \5x, 2004„ í \Q 5Q©ô˜ Dp\Q ùq# #

3-yl)phenylamine 1.9 g (5.7 mmol)< triethylamine 0.6 g (5.9 mmol)´ ¨`\ ä` é¡ (500 mL) 10 ˜\ A

˜è  24D ˆ Xè$. X‘ Å  X‘

L¼ä¬¼ h|œ œ $Œ <ð (1 N) Xé¡, | 8 ì Xð”Øø¨ (1 N) X願 \\œ Ôܜ  ` p 顄 Ý\ä „xä|œ ìðU˜, œÅ é A|¸ N-[p-(perylene-3-yl)phenyl]methacrylamide ( ô 1.1 g (Xh 52.6%)„ û$. ( ô˜ NMR, FT-IR O

Ì Ä] ð<Ô $Œ< Y$. 1H NMR (500 MHz, CDCl3 / G+  G+  P+ 

(m, 3H), 5.821 (s, 1H), 5.493 (s, 1H), 2.065 (s, 3H); FT-IR (KBr, cm-1): 3426, 3156, 3048, 2950, 1882, 1783, 1611, 1583, 1537, 1442, 1388, 805, 762, 703; Calculated C: 87.1%, H:

5.6%, N: 3.4%, O: 3.9%; Found C: 87.5%, H: 5.1%, N: 3.4%, O: 4.0%.

DÐ D,ô N-[p-(4,6-diphenyl-1,3,5-triazin-2-yl)phenyl]

methacrylamide ( ôÔ ´D 4 œ iÕ ˜´ © q˜@$.16

Sro|^30^I0+shu|ohqh060|o,skhq|o`phwkdfu|odplgh0 BH030^I0+7/90glskhq|o04/6/80wuld}lq050|o,skhq|o`#

phwkdfu|odplgh`#+SSSPD0BH0GWSP,Õ#æ®1  í \Q 5Q©ô PPPMA-co-DTPM˜ xœ Q©

<U€ $Œ< Y$. ØôL„ ¨`˜Ô ( ô 0.1 g (0.25 mmol)< øì„„ ¨`˜Ô ( ô 0.045 g (0.11 mmol)„ Q©é Schlenk flask c THF é$ 8 mL¼ è@œ$. \\œ AIBN 0.003 g (0.018 mmol)„ D é

¡ c 48D ˆ 70 ˜ Ì ÄDp ˜\  Xä´\ Q©è$. Q©´ Å X´ X‘ 顄

< ˜ ”l é$ A˜ä´\ ¨Dè$. 5Q©

ô Ä„ ,<è $Œ ”lœ xٜ  24D 

ˆ 5 ´°è$. 5Q©ô˜ Xh€ ”l ¹

ŠÔ qÄ |œ aU˜@ 75%˜ Ҁ R„ Ø ô

$.

#™#Œ#­­š1 ´ @­´ 15 Ω/cm2¸ ITO p P (22.5 cm2)„ <ð Xé¡< 8dØ HÍ Lð”

œ ­œ  isopropyl alcohol< DI water ¨Aè

$Œ HŒLœ xٜ$.  (œ }€ ©ð|œ

œ´ Øì¼ É˜ „xä|œ xٜ  Ì @äœ

´°è$. xÙ\ ITO pP D 5Q©ô˜ THF é

¡ (2.5 wt%)„ 2500 rpm˜ Íœ 30H ˆ ä€ Ðä E˜, 500 Ř ÄÐ U „ \°œ$. ´ ÐäE „ Ä D ULVAC VPC-260F 5 Ýip¼ ìé˜, 1

10-5 Torr 5˜\ Al D9„ 1000 Å|œ Ýiè$.

U ˜ \ôÔ ULVACì˜ CRTM-5000 gauge¼ ì é˜@$. ´€ Y´ \Ñ\ `p \Q ÌИ D˜-D•-

X ùq„ Kiethley 237 electometer€ New port 1030-c photodiodeœ °ì˜@$. 5Q©ô˜ 1H-NMR aU€

Varian Gemini FT-NMR (600 MHz) pp¼ ìé˜@ , é$Ô 1% TMS@ ,¨Xô ÈÔ CDCl3¼ ìé˜@$.

ÄÐ aU€ Waters HT6E ,<< JASCO V4 UV ÀÜ p@ d˜\ GPC¼ ìé˜@ polystyrene 4U !`„

ìé˜, ð˜@$. 5Q©ô˜ ð”Z˜ DDÔ cy- clic voltammetry (EG&E model 62)€ UV-Visible äÙø<

„ à@œ ¬˜@$. Cyclic voltammetry aU€ 5Q©ô

¼ ¹¸ ´œœ,Ä é¡„ ÐäEœ qH D9 (11 cm2)

„ ìé˜@ , @D9< p@ D9€ qH (22 cm2)<

Ag/AgCl¼ ìé˜@|° D´ 顀 NaCl„ é´

è DI water¼ ìé˜@$. 5Q©ô˜ UV-Visible aU

€ THF é$ ˜\ JASCO V570„ ìé˜, ɘ@$.

61#-y#Œ#]­##

Table 1 PPPMA-co-DTPM 5Q©ô˜ Xh< X ÄÐ ˜ ð<¼ Ø ô$. 5Q©ô˜ Xh< X ÄÐ €  ( ô˜ 5I „h @´ 75%

€ X ÄÐ 7200 D¼ Ø ô$. ´,œ ð<

Ô U5 D, åe„ VÔ PPMA í \Q ( ô€

DÐ D, åe„ VÔ DTPM ( ô˜ ¼T¼ Q© œ q´ „÷˜p Œx¸ Ã|œ A\$. p¼\  ( ô˜ 5I „h„ °H˜, q\ 5Q©ô˜ U5 O DÐ Ðìô˜ D, U„ \`äp D˜, 5Q

©ô˜ „h„ °H˜@$.

Figure 1 PPPMA-co-DTPM 5Q©ô˜ 1H-NMR ä Ùø<„ Ø ô$. 5Q©ô˜ äÙø<\ ( ô

˜ „ 89 ´9XÔ 5ð6 ppm˜ ùq |¬@ „D È ì¼ Ã|œ 4„ Q©´ É\ Ä •¸  X È

$.

Figure 2(a)Ô THF é¡ ˜\ DTPM˜ 5I ¨`

 p¸ PPPMA-co-DTPM 5Q©ô˜ PL äÙø< ð<

´$. DÐ D,ô DTPM `ø˜ 5I ¨`  p¸

5Q©ô˜ œ PL |¬Ô PPPMA ( ÄИ ý ð 473 nm, 20%¼ Œ 464 nm, 30%¼ Œ 460 nm€ 40%

7DEOH1XPEHU$YHUDJH0ROHFXODU:HLJKWDQG<LHOGRI

3330$.4'730XQGHU9DULRXV0RQRPHU5DWLRV  sam p le

N o

P P M A :D T P M feed ratio s

n u m b er av erag e m o lecu lar w eig h t (M n )

y ield (% )

1 1 .0 : 0 8 0 0 0 8 0

2 0 .8 : 0 .2 7 2 0 0 7 5

3 0 .7 : 0 .3 7 3 0 0 7 5

4 0 .6 : 0 .4 7 1 0 0 7 5

(4)

  Lee et al. Polymer (Korea), Vol. 28, No. 5, 2004/

  ´}x# 1# žVâ, \28Ì \5x, 2004„/

¼ Œ 461 nm¼ Ø ô$. ´€ Y´ 5Q©ô˜ PL λmax R€ DTPM ¨` ´ Ý@ X (Lå|œ ´

X 30% ´\Ô 8,œ ýå´ ,”XÔ Ã„ Œ

X È$. ´,œ Q™A ùq˜ ð<¼ À” ÐxÈ

„ Àà˜p D´ PPPMA ÄÐ DTPM ( ô

@ QDpA œq´ Ô methyl methacrylate ( ô

¼ Ŝ PPPMA-co-MMA 5Q©ô¼ ©qœ  Y

€ é$ ˜\ MMA˜ ¨`  p¸ PL ùq˜

”¼ °ì˜@$. ´ ð<¼ Figure 2(b) Ø ô$.

PPPMA-co-MMA 5Q©ô\ MMA ( ô@ Ô

ýð 3/ max R€ 473 nmœ Ø Ø MMA ( ô

@ 30% Å\ ýð 467 nmœ (Lå|œ ´X 40%

´\Ô ° ”@ $. É PPPMA-co-MMA 5 Q©ô\ MMA (Dô˜ 5I ¨` ´ Ý@ X

3/ max R€ (Lå|œ P̘, PPPMA-co-DTPM 5Q

©ô˜ PL ùq< Y€ ð<¼ Ø ô$. PPPMA-co-

DTPM 5Q©ô\ DTPM (DôÔ \Q ùq´ 

ØôL ÄÐD˜ x¼ PÌ\<Ô MMA (Dô

€ `ìœ äh´\ - „ ˜Ô Ã|œ ìd\$. p¼\

PPPMA-co-DTPM 5Q©ô\ DTPM ¨` Ý@

p¼ 5Q©ô˜ PL λmax R´ (Lå|œ ´˜Ô Ã

€ ØôL a ÄÐD˜ °ì@ Ý@˜, Øôð ÄÐ D˜ ¬] è< Œx´¼ A\$. 2œ PPPMA-co-

DTPM 5Q©ô\ DTPM (Dô˜ Å p¼ 5Q

©ô˜ a ÄÐD˜ ÅôA è< ˜´ ÄÐ ìì

˜ U@ ôKØÔ ¬°¼ @ Ì Xô a ÄИ

´q´ Ø  ð<A|œ PL λmax R€ T( ´´

XÔ Aå ÈÔ Ã|œ A\$.

Figure 3 ITO/PPPMA-co-DTPM/Al|œ ¬q\ `p

\Q ÌИ EL äÙø<„ Ø ô$. ´D˜ PL ä Ùø<˜ ð<€ l@ œ œ EL |´¬Ô DTPM

˜ 5I ¨` ´ Ý@ X P̘, 20%¼ Œ 491 nm, 30%¼Œ 480 nm 8ì 40%\ 479 nm¼ Ø ô

$. ´€ Y€ EL ùq˜ ”Ô 5Q©ô ììô˜

)LJXUH PL spectra of (a)PPPMA-co-DTPM and (b)PPPMA- co-MMA in THF at various copolymer ratios.

#633# 683# 733# 783# 833# 883# 933# 983# :33#

Wavelength (nm)

(a)

414 413 31<

31;

31:

319 318 317 316 315 314 313

Intensity (a.u.)

0 1 2 3 4 5 6 7 8 9 0 1

0.6 : 0.4 (461 nm) 0.7 : 0.3 (460 nm) 0.8 : 0.2 (464 nm) 1.0 : 0.0 (473 nm)

0 1 2 3 4 5 6 7 8 9 0 1

0.6 : 0.4 (465 nm) 0.7 : 0.3 (467 nm) 0.8 : 0.2 (472 nm) 1.0 : 0.0 (473 nm)

#633# 683# 733# 783# 833# 883# 933# 983# :33#

Wavelength (nm)

(b)

414 413 31<

31;

31:

319 318 317 316 315 314 313

Intensity (a.u.)

/ /

)LJXUH 1H-NMR spectrum of PPPMA-co-DTPM copolymer.

633# 683# 733# 783# 833# 883# 933# 983# :33#

Wavelength (nm) 414

413 31<

31;

31:

319 318 317 316 315 314 313

Intensity (a.u.)

0 1 2 3 4 5 6 7 8 9 0 1

0.6 : 0.4 (479 nm) 0.7 : 0.3 (480 nm) 0.8 : 0.2 (491 nm) 1.0 : 0.0 (491 nm)

)LJXUH  EL spectra of ITO/ PPPMA-co-DTPM /Al devices under various copolymer ratios.

# <# ;# :# 9# 8# 7# 6# 5# 4# 03# ssp#

4# # 6#

vroyhqw#

(5)

Polymer (Korea), Vol. 28, No. 5, 2004 Blue Light Emitting Copolymer  



žVâ, \28Ì \5x, 2004„ í \Q 5Q©ô˜ Dp\Q ùq# #

ØôL ÄÐD˜ xÑé´ Ñ„ p Œx¸ Ã|œ

AX ùÈ PL ùq˜ ð<€ l@ œ DTPM˜

5I ¨` ´ 30% ´\Ô ° ”@ $.

PPPMA- co-DTPM 5Q©ô˜ EL ð<\ DTPM (Dô@ 5Q©ôô\ äØ´\ - „ ´<Ô Ã

„ •¸  X È$. ð< A|œ 8 0¬\ ©q

œ PPPMA-co-DTPM 5Q©ôÔ DÐ D, åe„ V Ô DTPM (Dô@ 5Q©ô\ äØ´\ - „ ˜ , \Q ùq\ ¬] è<€ ÅôA Aå 1 ˜

´ 4$ LÀ  @Œô (Lå˜ ›„ ôÔ Ã„ Œ X È$.

`p \Q ÌИ ¬ D•< èh€ ìéXÔ `p

|< D9˜ ¼œ åý ˜´ ¬Ì ÌðXÔ Ã„ Œ X È$.19 ùÈ ´A¸ D9„ ìéœ `p \Q Ì Ð˜ ¬ D•€ U5 O DÐ D,u |˜ HOMO

€ LUMO @D ˜´ ðUXô$. ITO/PPPMA-co- DTPM/Al|œ ¬qXÔ `p \Q ÌИ H $´

„8è„ Figure 4 Ø ô$. 5Q©ô˜ HOMO€

LUMO˜ H @DÔ cyclic voltammetry€ UV-Vis. a U ˜´ û$. 5Q©ô˜ H @DœÀp Œ X È/´ PPPMA ÄÐ DÐ D, åe„ VÔ øì

„ ( ô¼ Ũ|œ¨ U5˜ <Å  „

¼ DИ <Å 鴜 Ä Œ X È$. ITO D9

\ ØôL moietyœ U5´ <ÅX Al D9|œÀp øì„ moietyœ DÐ@ <Å\$. <Å\ D˜Ô U 5 D, åe„ VÔ ØôL a ÄЀ DÐ D, å e„ VÔ øì„ a ÄÐD|œ x‘ ˜œ inco- herent <U|œ ´\$.

ITO/PPPMA-co-DTPM/Al|œ ¬qXÔ `p \Q ÌÐ

˜ D˜-D• ùq„ Figure 5 Ø ô$. Figure 5

\ Œ X È/´ ÌИ ¬ D•€ 5Q©ô˜ „h

 ¬Ì ˜´˜@$. ùÈ œ ˜ D˜-D• ùq€ 5 Q©ô\ DTPM˜ 5I ¨` ´ 30% (7:3 „h)¼

Œ Ø ô$. ´,œ ð<œÀp PPPMA-co-DTPM 5 Q©ô˜ „h´ 7:3¼ Œ D˜ D,˜ U ùq´ @ å 0ôÜ Ã„ Œ X È$. É 5Q©ô\ ØôL ÄÐD˜ U5 ´@ øì„ ÄÐD˜ DÐ ´

4$  ´p Œx ø섘 ¨` ´ 30%¼ Œ D˜ D, U´ Ø Ô Ã|œ ìd\$. ùÈ PPPMA-

co-DTPM 5Q©ô¼ ìéœ ÌИ ¬ D•€ 5 V

˜ $ð î€ R„ 4@$. ´€ Y´ PPPMA ÄÐ

DTPM˜ (Dô¼ Ũ|œ¨ Ðìô˜ U „

¼ D˜-D•˜ DpA ùq $ð ¬Ì åXÔ Ã

„ Œ X È$.

Figure 6€ ITO/PPPMA-co-DTPM/Al|œ ¬q\ `p

\Q ÌÐ\ ( ô˜ 5I „h p¸ ¸À ÑÐ è h˜ ”¼ Ø ø ô$. ÌИ ÑÐ èh€ DTPM



)LJXUH Schematic energy diagram of ITO/PPPMA-co-DTPM/Al device.

3# 4# 5# 6# 7# 8# 9# :#

Voltage (V) 613#

518#

513#

418#

413#

318#

3#

Q.E. (10-3 %)

4 3 3 3 3 3

0.6 : 0.4 0.7 : 0.3 0.8 : 0.2 1.0 : 0.0

)LJXUH  External quantum efficiency of ITO/ PPPMA-co- DTPM /Al devices under various copolymer ratios.

3# 4# 5# 6# 7# 8# 9# :# ;#

Voltage (V) 313363

313358 313353 313348 313343 313338 313333

Current (A)

0 5 0 5 0 5 0

0.6 : 0.4 0.7 : 0.3 0.8 : 0.2 1.0 : 0.0

)LJXUH  Current-voltage characteristics of ITO/PPPMA-co- DTPM/Al devices under various copolymer ratios.

(6)

  Lee et al. Polymer (Korea), Vol. 28, No. 5, 2004/

  ´}x# 1# žVâ, \28Ì \5x, 2004„/

˜ 5I ¨` ´ 30%¼ Œ @å Ҁ 0.003% R„ Ø ô$. ´€ Y€ ð<Ô ÌИ I-V ùq ð<\

€ l@ œ PPPMA-co-DTPM 5Q©ô˜ „h´ 7:3

\ Ðìô˜ <Å O Xá´ @å Ë|° Ðìô U 2œ Ø p Œx¸ Ã|œ A\$. ùÈ D\

\°œ `p \Q ÌÐÔ DC 10 V\ 200 cd/m2˜ ]

€ í \Q„ Ø ô$.

ÄÐ \Q $´d˜ ¬ ”$؀ ¼XA|œ

triangular åý„ õœ D \Q ˜œ tl (Fowler- Nordheim mechanism)|œ ´]` X È$.20 Ҁ D

å\ D˜ @Ô „Ø€ Y€ |œ œD\$.

J(F) = J0F2(1/φ)exp(-kφ3/2/F)

,p\ J0Ô prefactor, FÔ electric field, φÔ barrier height, kÔ X R ´9\$. 8 0¬\ ©qœ 5 Q©ô˜ ¬° ” p¸ Ðìô <Å åý˜ Aå

„ Àà˜p D´ Au/PPPMA-co-DTPM/Au|œ ¬qX Ô `p \Q ÌИ Fowler-Nordheim ùq„ °ì˜@

$. ´ ð<¼ Figure 7 Ø ô$. Figure 7\ Œ X È/´ 1/F @œ ln(J/F2) ýå€ Ò€ D\

` U¼ Ø ô$. H D9< 5Q©ô „Ä ´

\˜ Ðìô <Å Èô\ DÐ <Å @œ åý Ò´@ U5 <Å @œ åý4$ Ҁ R„ @

œ Figure 7\˜ pøp R€ U5 <Ř åý„ X Aœ$ A  X È$. p¼\ Figure 7\ 5Q©

ô˜ „h p¼ pøp@ ,¼ Ô ð<Ô 5Q©ô

˜ U5 <Å @œ åý ”¼ ˜8œ$. É 5Q©

ô\ DÐ D,ô DTPM˜ 5I ¨` ´ Ý@˜´

DÐ <Å @œ åý˜ P̜ DÐ <Å åe´ Ý@

   „¼ U5 <Å @œ åý 2œ Ý@˜Ì

\$Ô Ã„ Œ X È$. ´€ Y€ Fowler-Nordheim Ä]

 ˜´ PPPMA-co-DTPM 5Q©ô\ DTPM˜ ¨`

Ý@ p¸ Ðìô U ùq´ åXÔ Ã€ DÐ D , ùq´ \`XÔ Ã  „¼ U5 <Å @œ å ý´ $ Ô Ô¸ Ñéœ$Ô Ã„ ÅÝ  X È$.

ITO/PPPMA-co-DTPM/Al|œ ¬qXÔ `p \Q Ì Ð˜ „ ôô4p D˜, CIE ̜¼ °ì˜@$

(Figure 8). ̜  x¼0.16, y¼0.17˜ R„ Ø ôÔ Ã|œ 4„ \Ñ\ \Q ÌÐÔ \Xœ í  @Œ

ô \Q ùq„ Ø ô Ȍ„ •¸  X È$. ´ ,œ ð<Ô PPPMA-co-DTPM„ ìé˜, `p \Q Ì Ð¼ ¬q  ýð UQ | O ¸Q |˜ Å p

¸ $ќ  ¬D€ |  (uU|œ ¬q\ èh full color display˜ \Ñ´ @娄 ÷[¨´ < È$.

71#-Ý##

8 0¬\ ÄÐ a ØôL påp€ øì„

 påp¼ VÔ  í \Q 5Q©ô¼ ©qœ  (uU `p \Q Ìм \ј, \Q ùq„ °ìœ

ð< $Œ< Y€ 𠄠û„ X È$.

(1) ¼T¼ é¡ Q© ˜´ ©qœ PPPMA-co-DTPM 5Q©ô˜ X ÄÐ € 7100ð8000, Xh€ 75ð 80%´|° ¼XA¸ `p é$ $ð Ø ¹˜$.

(2) ITO/PPPMA-co-DTPM/Al|œ ¬qXÔ `p \Q Ì ÐÔ 5Q©ô\ PPMA€ DTPM˜ feed ratio@ 7¹3

\ Ðìô˜ U´ @å ˘ œ ˜ ¸À ÑÐ è h„ Ø ô$.

(3) 5Q©ô¼ ìéœ `p \Q ÌИ (/ max R

€ DTPM˜ 5I ¨` ´ Ý@ X (Lå|œ ´

Xô 40%˜ ¨` \ 4$ í  @Œô 479 nm

# 5T430< 7T430< 9T430< ;T430<43T430<#

1/F (m/V) 066

067 068 069 06:

06;

06<

073 074 ln (J/F2 )

1 0 9 8 7 6 5 4 3

0.6 : 0.4 0.7 : 0.3 0.8 : 0.2

)LJXUH Fowler-Nordheim plots of Au/PPPMA-co-DTPM /Au devices under various copolymer ratios.

3# 315# 317# 319# 31;#

x 31;

319 317 315 3

y

)LJXUH CIE chromaticity diagram of ITO/PPPMA-co-DTPM (7:3)/Al devices.

(7)

Polymer (Korea), Vol. 28, No. 5, 2004 Blue Light Emitting Copolymer  



žVâ, \28Ì \5x, 2004„ í \Q 5Q©ô˜ Dp\Q ùq# #

˜ \Q ùq„ Ø ô$.

(4) 5Q©ô\ øì„ DTPM€ DИ <Å O D,„ é´˜Ì    „¼ U5 <ń i´˜, D˜˜ <Å O D, U ùq„ åäÔ Ã„ Œ X È$.

)Õ }8 0¬Ô œ­ <™ì(˜ éApH <

\(No. R01-2003-000-10493-0)œÀp  [€ Ã|œ

´ Pìý$.

Uhihuhqfhv##

1. C. W. Tang and S. A. Vanslyke, Appl. Phys. Lett., 51, 913 (1987).

2. H. Sirringhaus, N. Tessler, and R. H. Friend, Science, 280, 1741 (1998).

3. J. Matsui and T. Miyashita, Angew. Chem. Int. Ed., 42, 2272 (2003).

4. B. Comiskey, J. D. Albert, H. Yoshizawa, and J. Jacobsen, Nature, 394, 253 (1998).

5. D. Braun and A. J. Heeger, Appl. Phys. Lett., 58, 1982 (1991).

6. N. Tessler, G. J. Denton, and R. H. Friend, Nature, 382, 695 (1996).

7. J. S. Lee, J. S. Suh, and I. H. Cho, J. Ind. Eng. Chem., 7, 396 (2001).

8. Z. Weihong, H. Cheng, C. Kongcha, and T. He, Synth. Met., 96, 151 (1998).

9. P. L. Burn and I. D. W. Samuel, Mat. Today, 1, 3 (1998).

10. S. Y. Oh, C. H. Lee, and J. W. Choi, Synth. Metals., 117, 195 (2001).

11. S. Y. Oh, C. H. Lee, and S. Jung, Mol. Cryst. Liq. Cryst., 371, 415 (2001).

12. Y. J. Shirota, Mat. Chem., 10, 1 (2000).

13. K. A. Killeen and M. E. Thompson, J. Appl. Phys., 91, 6717 (2002).

14. T. W. Lee, O. O. Park, J. Kim and Y. C. Kim, Macromol. Res., 10, 278 (2002).

15. J. Kido, M. Kohda, K. Hongawa, K. Okuyama, and K. Nagai, Mol. Cryst. Liq. Cryst., 227, 277 (1993).

16. C. H. Lee, S. W. Kim, and S. Y. Oh, Polymer(Korea), 26, 543 (2002).

17. C. H. Lee, S. H. Ryu, and S. Y. Oh, Mat. Sci. & Eng. C, 24, 87 (2004).

18. C. H. Lee, S. H. Ryu, and S. Y. Oh, J. Polym. Sci. Polym.

Phys., 41, 2733 (2003).

19. F. Nüesch, L. J. Rothberg, E. W. Forsythe, Q. T. Le, J. D. Kres, R.L. Martin, D. L. Smith, N. N. Barashkov, and J. P. Ferrari, Phys. Rev. B., 54, 14321 (1996).

20. F. Willig, Chem. Phys. Lett., 40, 331 (1976).

/

참조

관련 문서

• 대부분의 치료법은 환자의 이명 청력 및 소리의 편안함에 대한 보 고를 토대로

• 이명의 치료에 대한 매커니즘과 디지털 음향 기술에 대한 상업적으로의 급속한 발전으로 인해 치료 옵션은 증가했 지만, 선택 가이드 라인은 거의 없음.. •

FT IR spectrum

Furthermore, the world largest-sized 12.1-inch WXGA active-matrix organic light emitting diode (AMOLED) display is demonstrated using indium- gallium-zinc oxide

ABSTRACT : The efficiency of a short-term treatment with an intravaginal device containing progesterone (CIDR) combined with pregnant mares’ serum gonadotrophin

We report on highly efficient blue, orange, and white phosphorescent organic light-emitting diodes consisting only two organic layers.. Hole transporting 4, 4,’ 4’’-tris

rene as the calibration standard showed the weight average molecular weight between 5,000-15,000 with polydispersity index of 2-3. The detaild molecular weights and polydispre-

Device III shows the highest electroluminance (L) of 11400 cd m -2 and external quantum efficiency (η EXT ) of 3.6% among the three devices (Figure 4), which is