• 검색 결과가 없습니다.

Microwave Filter

N/A
N/A
Protected

Academic year: 2022

Share "Microwave Filter"

Copied!
44
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

Microwave Filter

Microwave Engineering

CHO, Yong Heui

(2)

Circuit Resonator

(3)

EM Wave Lab

3

Applications

1. LC resonator

 Filter

 Oscillator

 Frequency meter

 Tuned amplifier

(4)

 Input impedance

 Input power

 Resonant frequency: Wm = We

C L j

j

Z

in

   

 

 

 

C

L j j

I I

Z VI

P

in * in 2 2

 

2 1 2

1 2

1

 1

(5)

EM Wave Lab

5

Series resonator

 R, L, C

 Input impedance

 Input power

 Resonant frequency

C L j

j R

Z

in

    

 

 

  

C

L j j

R I

I Z

VI

P

in * in 2 2

 

2 1 2

1 2

1

LC

 1

1. LC resonator

(6)

 Definition

 3 dB bandwidth

 Q in terms of R, L, C

d loss/secon Energy

stored energe

Average

Q

BW f

0

Q

(7)

EM Wave Lab

7

Perturbation

 Input impedance

 

     

 

 

R j L R j L

Z

2

2

2 0 2

in

1. LC resonator

(8)

 R, L, C

 Input admittance

 Input power

 Resonant frequency

C L j

j

Y R

 1

in

 

 

  

j C

L j V R

V Y

VI

P

 1

2 1 2

1 2

1

* 2 2

in

* in

(9)

EM Wave Lab

9

Quality factor

 Q in terms of R, L, C

L RC R

P Q W

l m

0 0

0

2 

   

1. LC resonator

(10)

 Input admittance

 

     

 

 

j C

C R R j

Y 1 1 2

2 2 0 2

in

(11)

EM Wave Lab

11

Loaded Q

 Unloaded Q: resonant circuit itself

 Loaded Q: External load resistor

Q Q

Q

L e

1 1

1  

1. LC resonator

(12)

 Transmission line

 Input impedance: lossy medium

 

) tanh(

) tan(

1

) tan(

) tanh(

tanh

0

0 in

l l

j

l j

Z l

l j

Z Z

 

(13)

EM Wave Lab

13

Approximation

 Low-loss transmission line

 Phase:

l l

 )  tanh(

2 /

0

 , 

    l

0 0

) tan(

)

tan( 



 

l    

2. Tx line resonator

(14)

 Input impedance

 Quality factor

 





 

 

 

 

 

jL R

j l

l Z j

j Z l

Z

2

) /

( 1

) /

(

0 0

0 0 0

in

2 2

0

 

R l

Q L

(15)

EM Wave Lab

15

Open-circuited half-wave line

 Transmission line

 Input impedance: lossy medium

 

) tan(

) tanh(

) tanh(

) tan(

1

coth

0

0 in

l j

l

l l

Z j

l j

Z Z

 

2. Tx line resonator

(16)

 Low-loss transmission line

 Phase:

l l

 )  tanh(

2 /

0

 , 

    l

0 0

) tan(

)

tan( 



 

l    

(17)

EM Wave Lab

17

Equivalence

 Input impedance

 Quality factor







 

 

 

jC R

j l

Z j

l

l Z j

Z

2 /

1

1

) /

( )

/ (

) /

( 1

0 0

0 0 0

in

 

2

0

 2 

RC l

Q

2. Tx line resonator

(18)

 Metallic wall

 Propagation constant

 Resonant condition

2 2

2

 

 

 

 

 

b

n a

k m

mn

 

mn

dl

(19)

EM Wave Lab

19

Resonant wavenumber

 Resonant wavenumber

 TE101 mode and TM110 mode

 Q of cavity

2 2 2

 

 

 

 

 

 

 

 

 

d l b

n a

k

mnl

m   

l e

P Q 2 W

0

3. Waveguide cavity

(20)

 Metallic wall

 Propagation constant

 Resonant condition

 TE111 mode and TM110 mode

mn

dl

(21)

EM Wave Lab

21

Dielectric material

4. Dielectric cavity

 High Q

 Fringing field

 High permittivity: magnetic wall

 Mechanical tuning

 TE01d mode

 Notation

1 /

2 

L

g

d

(22)

 Two mirrors

 High Q

 Laser

 Millimeter and optical applications

(23)

EM Wave Lab

23

Microwave Filter

(24)

 2 port network: S parameters

 Pass band and stop band

 Return loss and insertion loss

 Ripple and selectivity (skirt)

 Pole and zero

 Group delay

(25)

EM Wave Lab

25

Characteristics

1. Filter

 Phase response

 Signal distortion

(26)

 LPF (Low Pass Filter)

 HPF (High Pass Filter)

 BPF (Band Pass Filter)

 BSF (Band Stop Filter): notch filter

(27)

EM Wave Lab

27

Filter response

 Maximally flat (Butterworth) filter

 Chebyshev filter

 Elliptic function filter

 Bessel function filter

1. Filter

(28)

 Filter specifications

 Design of low pass filter

 Scaling and conversion

 Design of transmission line

 Implementation

(29)

EM Wave Lab

29

Insertion loss method

 Precise design method

 Power loss ratio: transducer gain

 Reflection coefficient

 Results:

LR 2

) ( 1

1 load

to delivered

Power

source from

available Power

 

P

) (

) (

) ) (

(

2 2

2 2

 

N M

M

 

) (

)

1 (

2

2

LR

N

P   M

2. Filter design

(30)

 Maximally flat response

 Equal ripple response

 Chebyshev polynomial

N

c

k P

2 2

LR

1 

 

 

 

 

 

 

c

T

N

k

P

2

2

LR

1

(31)

EM Wave Lab

31

Example

 Design 2-poles low pass filter in terms of the insertion loss method where

 

c

 1 , Z

S

 1

4 LR

 1   P

in 2

) (

1

) 1

(

C Z

C Z j

L Z j

Z

L L

L

 

 

2. Filter design

(32)

L L

s

Z Z Z

Z Z

Z C C

L Z L

0 0 0 0

 

 

 

 

in 2

) (

1

) 1

(

C Z

C Z j

L Z j

Z

L L

L

 

 

R Q

0

L

 1

Example

(33)

EM Wave Lab

33

Frequency scaling for LPF

 Basic equation

 

 

 

c

P

P

LR

LR

( )

C j

C j

jB

L j

L j

jX

c c

 

 

 

 

c c

C C L L

 

 

2. Filter design

(34)

 Basic equation

 

 

 

 

P

c

P

LR

( )

LR

C L j

j jX

c c

 

1 1

L C

c

1 1

 

 

(35)

EM Wave Lab

35

Frequency scaling for BPF

 Basic equation:

1 2

0 0

0 LR

LR

( ) , Q

 

 

 

 

 

 

 

  P Q

P

2 2

0 0

1 1

0 0

1 1

L C j

j C

jQ jB

C L j

j L

jQ jX

 

 

 

 

 

 

 

 

 

 

 

 

 

2 1

0

 

 

2. Filter design

(36)

 Basic equation:

1 2

0 1

0 0

LR

LR

1 , Q

)

(  

 

 

 

 

 

 

 

 

P Q P

1 1

1 1

1 1

0

0

1

 

 

  

 

 

 

 

C

j L Q L

jX j

 

 

2 1

0

 

 

(37)

EM Wave Lab

37

Example

 Design 5-poles low pass filter with a cutoff

frequency of 2 [GHz], impedance = 50 [Ohms], insertion loss = 15 dB at 3 [GHz]

618 .

0

618 .

1 2

618 .

1

618 .

0

5 4 3 2 1

g g g g g

Maximally flat response 2. Filter design

(38)

 Transformation

 Input impedance: stub

 

 

 

v

p

ll

 ) tan tan(

) tan( l jL

L j

jX    

) tan( l jC

C j

jB    

(39)

EM Wave Lab

39

LC to stubs

2. Filter design

) tan( l jL

L j

jX    

) tan( l jC

C j

jB    

(40)

 Resonance: wavelength/8 related to the cutoff frequency

 Attenuation pole: wavelength/4

 Period: wavelength/2

) tan(

1   l

(41)

EM Wave Lab

41

Kuroda’s identity

 Stub transformation: shunt and series stub

 Series to shunt stub transform: microstrip line

 Implementation

1

1

2

Z N   Z

2. Filter design

(42)

(43)

EM Wave Lab

43

Equivalent transmission line

2. Filter design

 Series to shunt stub transform: microstrip line

 Implementation: realization

(44)

 Microstrip line

 Dielectric resonator

 Waveguide

 Semiconductor

 MEMS (Micro ElectroMechanical System)

 LTCC (Low Temperature Cofired Ceramic)

 SAW (Surface Acoustic Wave)

 FBAR (Film Bulk Acoustic Resonator)

 Superconductor

참조

관련 문서

을 지 의 대 Hyun Kyung Kim ․ Sung Kee Ryu Ji Young Park ․ Jae Woong Choi Yong Bum Cho ․ Chang Sup Song Yu Min Jung ․ Jong Kwan Jung Kyung Jin Lee ․ Dong Geum

  The differential equations which the voltage or current must satisfy on a uniform transmission line..  Circuit model: tie field theory and circuit

Microwave Engineering

Filter >

사업부는 크게 RF, LED 사업부로 나뉘어져 있으며, RF 사업부는 System, Filter, Site Solution 사업부로 구성되어 있음.. Filter 사업부는 MBF, Black Hole Filter,

Hairdressing Appliances And Hand Dryers, Space-Heating And Soil-Heating Apparatus, Water Heaters, Immersion Heaters, Smoothing Irons, Microwave Ovens, Ovens,

Sang - pil Yoon, Hyeok - jung Kwon, Han - sung Kim, Yong - sub Cho, Bo - hyun Chung, Kyung - tae Seol, Young - gi Song, Dae - il Kim, and Yi - sub Min(KAERI). Current Design

그리고 Hummers' method로 graphite oxide을 만들고 Microwave range를 이용하여 박리된 graphene oxide를 합성하였고 FE-SEM, HRTEM 이미지를 얻고 XPS 데이터를 통해