• 검색 결과가 없습니다.

Poisson equation Analyses on the finite difference method by Gibou et al. for Journal of Computational Physics

N/A
N/A
Protected

Academic year: 2022

Share "Poisson equation Analyses on the finite difference method by Gibou et al. for Journal of Computational Physics"

Copied!
11
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

Contents lists available atScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

Analyses on the finite difference method by Gibou et al. for Poisson equation

Gangjoon Yoon

a

, Chohong Min

b

,∗

aInstituteofMathematicalSciences,EwhaWomansUniversity,Seoul,120-750,RepublicofKorea bMathematicsDepartment,EwhaWomansUniversity,Seoul,120-750,RepublicofKorea

a r t i c l e i n f o a b s t r a c t

Articlehistory:

Received5June2014

Receivedinrevisedform11September 2014

Accepted12September2014 Availableonline22September2014

Keywords:

Poissonequation Finitedifferencemethod Preconditioning Convergenceanalysis

Gibouetal.in[4]introducedafinitedifferencemethodforsolvingthePoissonequationin irregulardomainswiththeDirichletboundarycondition.Contrarytoitsgreatimportance, its properties have not been mathematically analyzed, but have just been numerically observed.In thisarticle, we present two analysesfor the method. One proves that its solution issecond orderaccurate, and the other estimatesthe condition number ofits linearsystem.Accordingtoourestimation,theconditionnumberoftheunpreconditioned linearsystemisofsize O(1/(h·hmin)),andeachofJacobi,SGS, and ILUpreconditioned systemsisofsizeO(h2).Furthermore,ouranalysisshowsthattheconditionnumberof MILUisofsizeO(h1),themostsuccessfulone.

©2014ElsevierInc.All rights reserved.

1. Introduction

TheShortley–Weller method[13] isabasicfinitedifferencemethodforsolvingthePoissonequation withtheDirichlet boundary condition. It is a simplesum ofthe central finitedifferences inthe Cartesian directions.Thoughimplemented in uniformgrid, the methodcan handlearbitrarily shaped domains. Its solution issecond order accurate to theanalytic solution.Usuallythegradientofasecondorderaccuratesolutionisonlyfirstorderaccurate,howeverthesolutionexhibits asupra-convergencebehavior.Itsgradientisalsosecondorderaccurate[10].

Thoughitsexcellenceinefficiencyandaccuracy,theShortley–Wellermethodconstitutesanon-symmetriclinearsystem.

Only in one dimension, the linear system can be castin a symmetric form [14]. Since the Laplacian is self-adjoint, the methodthat approximatestheoperator isexpectedtobesymmetric.Gibouetal.[4]introduceda simplemodificationof theShortley–Wellermethodthatresultsinasymmetriclinearsystem.Numericaltests[10]suggestthatthesolutionisstill secondorderaccurate.

ComparedtotheShortley–Wellermethod,themethodbyGibouetal.hasanadvantagetosolvesymmetriclinearsystem.

Thegain,however,turnsouttohavenotcomefree.Thesupra-convergenceoftheShortley–Wellermethodislostwiththe gain.Thesolutiongradientisonlyfirstorderaccurate.Bothmethodshavetheirownprosandconsasdescribedabove,anda choicebetweenthemdependsonthecharacteristicofthegivenproblem.Forexample,inapplicationtoincompressiblefluid flowsthesolutiongradientisaphysicalvariableandtheShortley–Wellermethodwouldbepreferred,andinapplicationto heatflowsthemethodbyGibouetal.wouldbedesired.

*

Correspondingauthor.

E-mailaddress:chohong@ewha.ac.kr(C. Min).

http://dx.doi.org/10.1016/j.jcp.2014.09.009 0021-9991/©2014ElsevierInc.All rights reserved.

(2)

Fig. 1. Grid nodes inΩhare marked byand nodes inΓhby. A grid node(xi,yj)∈ Ωhhas four neighboring nodes inΩh∪ Γh.

Contrarytotheirgreatimportance,theconvergencepropertiesoftheShortley–WellermethodandthemethodbyGibou etal. havejust beennumerically observed.The numerical tests, which are merely finite howevermany, are not enough toascertaintheproperties.ThoughtheShortley–Wellermethod[13]wasintroducedin1938,itisveryrecenttoseesome mathematicalanalysesonthegradientofitssolution.In2003,Lietal.[7,9]showedthesecondorderaccuracyinrectangular domains,andLietal.[8]the1

.

5 orderaccuracyinpolygonaldomains.In2014,wein[16]showedthesecondorderaccuracy ingeneraldomains.

AnimportantaspectofaPoissonsolveristhesizeoftheconditionnumberofitsassociatedlinearsystem.Alarge-sized condition number not onlydelays theconvergence to solve butalsodrops many significant digits inthe approximation.

The seminal work of Gustafsson [6] shows that only the modified incomplete-LU (MILU) preconditioner among many incomplete-LU (ILU)type preconditioners enhancesthe condition numberofthe standard finitedifference Poissonsolver with differentorder of magnitude. His work can deal onlywith rectangular domains. It is also very recent to see such estimationsinirregulardomains.Wein[15]arrivedatthesameconclusionfortheShortley–Wellermethod.OnlytheMILU enhancestheconditionnumberwithdifferentorderofgrowthwithrespecttogridstepsizeh.

In thisarticle, we introduce two analyses forthe method by Gibou etal. Oneproves that the solutionis second or- der accurate to the analytic solution. The other estimates the condition number of its linear systemwith and without preconditioners.The estimationshowsthat theunpreconditionedlinearsystemhasaverylarge conditionnumberofsize O

(

1

/(

h

·

hmin

))

,whereh isthedefaultstepsize ofuniformgridandhmin istheminimumstepsize thatis usuallymuch smaller than h. We then show that Jacobi, symmetric Gauss–Seidel (SGS),and ILU preconditioners on the linear system reducetheconditionnumberfromO

(

1

/(

h

·

hmin

))

to O

(

h2

)

.Finally,weshowthat MILUpreconditionerexcels theothers bygainingO

(

h1

)

size.

2. Convergenceanalysis

Considerauniformgridh

Z

2withstepsizeh.Let

Ω

hbethesetofnodesofthegridbelongingto

Ω

,and

Γ

h betheset ofintersectionpointsbetween

Γ

andgridlines.Agridnode

(

xi

,

yi

) ∈ Ω

hhasfourneighboringnodesin

Ω

h

∪ Γ

h,

(

xi±1

,

yj

)

and

(

xi

,

yj±1

)

in

Ω

h

∪Γ

h,asillustratedinFig. 1.Lethi+1

2,jdenotethedistancefrom

(

xi

,

yj

)

toitsneighbor

(

xi+1

,

yj

)

.Other distanceshi1

2,j

,

hi,j+1 2

,

hi,j1

2 aresimilarlydefined.TheworkofGibouetal.[4]solvesthePoissonequationwithDirichlet boundarycondition

 −

u

=

f in

Ω

u

=

g on

Γ,

(1)

bysolvingthediscreteequation

 −

huh

(

xi

,

yj

) =

f

(

xi

,

yj

), (

xi

,

yj

) ∈ Ω

h

uh

(

xi

,

yj

) =

g

(

xi

,

yj

), (

xi

,

yj

) ∈ Γ

h

.

(2)

HerethediscreteLaplacianoperator



hu

: Ω

h

→ R

isdefinedas

−(

hu

)

i j

:=



ui j

ui+1,j

hi+1 2,j

+

ui j

ui1,j

hi1 2,j



1 h

+



ui j

ui,j+1

hi,j+1 2

+

ui j

ui,j1

hi,j1 2



1

h

.

(3)

The equationsforeach node point

(

xi

,

yj

)

constitutea symmetriclinear systemwhosematrixis an M-matrix.It was numericallyobservedin[10]thatthenumericalsolutionissecondorderaccurateandthegradientofthesolutionisonly firstorderaccurate.

(3)

Inthissection,we analyzetheconsistencyandconvergenceaccuracyoftheGibouetal.method,whichshowsthatthe discretesolutionapproximatesthecontinuoussolutionwiththesecondorderaccuracy.Thoughtheconsistencyorderofthe discretizationrangesfromthezerotothesecond,itsconvergenceorderisthesecondordereverywhere.

Definition2.1.

Ω

h

⊂ Ω

hdenotesthesetofgridnodesadjacentto

Γ

h,and

Ω

h

= Ω

h

\ Ω

h.

In Definition 2.1,we divides thenodes in

Ω

h intotwo sets.Every node

(

xi

,

yj

) ∈ Ω

h hasthe fourneighboringpoints inside

Ω

h sothat hi±1

2,j

=

hi,j±1

2

=

h.Ontheother hand,if

(

xi

,

yj

) ∈ Ω

h,thenatleastoneofits fourneighboringpoints belongsto

Γ

h.

Lemma2.2(Consistencyerror).Forasmoothfunctionu

: Ω → R

,

|

hu

− 

u

| ≤



C1h2

,

in

Ω

h

C2

+

C3h

,

in

Ω

h

,

(4)

whereC1

,

C2,andC3areconstantsindependentofh.

Proof. AsimpleTaylorseriesexpansiononu showstheconsistencyerror(4)withconstantsC1

,

C2,andC3dependentonly onu and

Ω

.

2

The discrete equation (2)for each

(

xi

,

yj

) ∈ Ω

h formsa symmetric linear systemwhose matrixis an M-matrix [12].

An importantpropertyofan M-matrixisthatitsinverseisnon-negativeineveryentry,fromwhichthediscretemaximum principlefollows.

Lemma2.3 (Discretemaximumprinciple). If

−

h

ν

0,thentheminimumvalueof

ν

shouldbe achievedon

Γ

h.Similarly,if

−

h

ν

0,thenthemaximumvalueof

ν

shouldbeachievedon

Γ

h.Likewise,if

−

h

ν

1

≥ −

h

ν

2in

Ω

hand

ν

1

ν

2on

Γ

h,then

ν

1

ν

2on

Ω

h

∪ Γ

h.

Lemma2.4.Letwhbethesolutionof

−

hwh

=



0 in

Ω

h

1 in

Ω

h and wh

=

0 on

Γ

h

.

Then0

wh

h2in

Ω

h.

Proof. Since

−

hwh

0 in

Ω

h and wh

=

0 on

Γ

h, the maximum principle implies that wh

0 in

Ω

h. Furthermore, the maximum of wh is attainedat some point

(

xi

,

yj

) ∈ Ω

h.Belonging to

Ω

h,at least one of the four neighborhood points of

(

xi

,

yj

)

, say

(

xi1

,

yj

)

, is a boundary point. Since all the terms in

−

hwh

(

xi

,

yj

)

are non-negative and wh

(

xi1

,

yj

) =

0,wehave

wh

(

xi

,

yj

)

hhi1

2,j

≤ −

hwh

(

xi

,

yj

) =

1

,

or wh

(

xi

,

yj

)

hhi12,j

h2

,

whichprovesthelemma.

2

Lemma2.5.Letvhbethesolutionof

−

hvh

=



1 in

Ω

h

0 in

Ω

h and vh

=

0 on

Γ

h

.

Then0

vh

Cvin

Ω

hforsufficientlysmallh,whereCvisindependentofh.

Proof. Since

−

hvh

0 in

Ω

h andvh

=

0 on

Γ

h,themaximumprincipleimpliesthat vh

0 in

Ω

h.Considerananalytic solution v

: Ω → R

satisfying

−

v

=

2 in

Ω

andv

=

0 on

Γ

.Lemma 2.2impliesthatforsufficientlysmallh,wehave

−

h

(

v

vh

) =

 −

hv

1

0

,

in

Ω

h

−

hv

≥ −

C

,

in

Ω

h

,

withsomeconstant



C

>

0.Usingthediscretefunction wh giveninLemma 2.4,wehaveaninequality

−

h

(

v

vh

+ 

C wh

)

0 in

Ω

h

.

(4)

Sincev

vh

+ 

C wh

=

0 on

Γ

h,wehavev

vh

+ 

C wh

0.ThisinequalityandLemma 2.4implythat

0

vh

v

+ 

Ch2

.

TakingCv

=

max

|

v

| + 

C givestheestimate0

vh

Cv forsomeconstantC independentofh.

2

Theorem2.6.Letu beacontinuoussolutiontotheproblem(1)anduhadiscretesolutiontotheproblem(2).Thenwehave

|

u

uh

| =

O



h2



in

Ω

h

.

Proof. UsingLemmas 2.4 and2.5,theconsistencylemmareads

|

hu

− 

u

| ≤

C1h2

(−

hvh

) + (

C2

+

C3h

)(−

hwh

).

Ontheotherhand,since



u

= 

huh

=

f in

Ω

h,wehave

−

h



C1h2vh

+ (

C2

+

C3h

)

wh

− (

u

uh

) 

0

−

h



C1h2vh

+ (

C2

+

C3h

)

wh

+ (

u

uh

) 

0

.

Sincevh

=

wh

=

u

uh

=

0 on

Γ

h,themaximumprincipleimpliesthat

|

u

uh

| ≤

C1h2vh

+ (

C2

+

C3h

)

wh

C1Cvh2

+ (

C2

+

C3h

)

h2

=

h2

(

C1Cv

+

C2

+

C3h

),

whichshowstheconvergenceestimate

|

u

uh

| =

O

(

h2

)

in

Ω

h.

2

3. Conditionnumberofthepreconditionedmatrices

Inthissection, weconsider theapplicationofbasicpreconditioningtechniques tothelinear systemthat isassociated withtheGibouetal.method.Beforeweproceedtothediscussionofthepreconditioners,weprovidetheestimationofthe conditionnumberofthelinearsystemassociatedwiththeGibouetal.method.

We mayassume that the domain

Ω

is a subset of

{(

x

,

y

) R

2

:

0

x

a

,

0

y

b

}

.Let

Ω

h

:= {(

ih

,

jh

) ∈ Ω :

1

i

N

,

1

j

M

}

withthelexicographicalorderon

Ω

h [3].LetK

:= |Ω

h

|

andxk

:= (

ikh

,

jkh

) ∈ Ω

h fork

=

1

, . . . ,

K according totheorder.Throughoutthissection,let A betheK

×

K matrixcorrespondingtothediscretePoissonequation(2),which issymmetricandpositivedefinite.Theentryar,sof A withxr

= (

irh

,

jrh

)

andxs

= (

ish

,

jsh

)

aregivenas

ar,s

=

⎧ ⎪

⎪ ⎪

⎪ ⎪

⎪ ⎪

⎪ ⎪

⎪ ⎩

h12 if is

=

ir

±

1 and jr

=

js

1 h

(

h 1

ir+12,jr

+

h 1

ir12,jr

+

h 1

ir,jr+12

+

h 1

ir,jr12

)

if s

=

r

h12 if is

=

irand js

=

jr

±

1

0 otherwise

(5)

wherehi

r±12,jr andhi

r,jr±12 aregivenas hi

r+12,jr

=



h

,

if ir+1

=

ir

+

1

|

irh

xΓ

|,

if

xΓ

= (

xΓ

,

yΓ

) ∈ Γ

such that irh

<

xΓ

< (

ir

+

1

)

h (6) andtheothersaregiveninthesamefashion.

Theorem3.1.Let

λ

beaneigenvalueofA,then0

<

C

≤ λ

h·h8min forsomeC

>

0 independentofh andhmin

=

min(ih,jh)∈Ωh

{

hi±1

2,j

,

hi,j±1

2

}

.

Proof. Let

λ

beaneigenvalueof A.Then

λ

isapositiverealnumberbecause A issymmetricpositivedefinite.Inorderto findanupperboundof

λ

,weapplytheGerschgorinCircleTheorem.Since A isdiagonallydominant,theGerschgorinCircle Theoremimpliesthat

λ

ak,k

+

j =k

|

ak,j

| ≤

2ak,k

forsomek

=

1

, . . . ,

K .From (5),we obtainthatak,k

h·h4min forallk

=

1

, . . . ,

K ,whichgivesanupperbound h·h8

min for

λ

. Ontheotherhand,applyingthePerron–FrobeniusTheoremtotheM-matrix A1 showsthatthesmallesteigenvalue

λ

min of A issimpleandhasapositiveeigenvectoru

∈ R

K.Wemayassumemaxi=1,...,Kui

=

1.Regardingu asadiscretefunction definedon

Ω

h

∪ Γ

h withu

=

0 on

Γ

h,wecanseethatwiththehelpofwh andvn giveninLemmas 2.4 and2.5,wehave

−

hu

= λ

minu

≤ λ

min

 −

h

(

vh

+

wh

) 

in

Ω

h

.

(5)

Andthemaximumprincipleimpliestheinequalityu

≤ λ

min

(

vh

+

wh

)

in

Ω

h.ApplyingLemmas 2.4 and2.5,wefinallyobtain 1

=

max

Ωh

u

≤ λ

minmax Ωh

(

vh

+

wh

) ≤ λ

min



Cv

+

h2

 .

Since we may assume h

<

1, we conclude that

λ

min

C

>

0 for a constant C independent of h, which completes the proof.

2

Wehaveshownthattheconditionnumberofthematrix A stemmedfromthelinearsystem(2)isboundedby O

(

1

/(

h

·

hmin

))

.Table 1suggeststhattheboundistight.Sothesmallerhminbecomes,theworsetheconditionnumberof A grows.

Indeed,thefollowingtheoremprovesthatthelowerandupperboundsaretight.

Theorem3.2.Let

λ

minand

λ

maxbethesmallestandlargesteigenvaluesof A inmagnitude,respectively.Then

λ

min

<

D forsome D

>

0 independentofh and

λ

max

>

h·h1

min.Thereforewehave

κ (

A

) =

O

(

h·h1

min

)

. Proof. Atfirst,weshallshowthat

λ

max

>

h·h1

max.Let P

= (

xi

,

yj

)

be thegridnode nearesttotheboundarysothathmin

=

min

{

hi±1

2,j

,

hi,j±1

2

}

.ThentakeavectoreP

∈ R

h|ofwhichtheelementcorrespondingto P isoneandtheotherelements areallzero.TakingaRaleighquotient,wehave

λ

max

=

max

0 =v∈Rh|

A v

,

v

v

,

v

AeP

,

eP

eP

,

eP

=

1

h



1

hi1 2,j

+

1

hi+1 2,j

+

1

hi,j1 2

+

1

hi,j+1 2



>

1 h

·

hmin

.

In ordertoshow theestimate for

λ

min,wechoose arectangle R

⊂ Ω

whoseboundary isalignedwiththe gridlines.Let Rh

=

R

∩ Ω

h.Anyvector v

∈ R

|Rh| canbe extendedto v

˜ ∈ R

h| bytakingzerovaluesoutsideRh.Let B betheassociated matrixofthefive-pointfinitedifferencemethod.Then Av

˜ |

Rh

=

B v and Av

˜ |

Ωh\Rh

=

0,whichimplies

Av

˜ ,

v

˜ =

B v

,

v

and

λ

min

=

min

0 =u∈Rh|

Au

,

u

u

,

u

min

0 =v∈R|Rh|

Av

˜ ,

v

˜

˜

v

,

v

˜ =

min

0 =v∈R|Rh|

B v

,

v

v

,

v

.

In [5],

λ

min

(

B

) =

min0 =v∈R|Rh| B v,v

v,v isexactlygivenas4

(

sin

2(πah)

h2

+

sin2h(2πbh)

)

whichislessthan

π

2

(

a12

+

b12

)

,wherea

×

b is thedimensionofthe rectangle.CombiningtheresultsofTheorem 3.1,wehave

κ (

A

) =

O

(

h·h1

min

)

,whichcompletes the proof.

2

3.1. Jacobipreconditioning

Wedecompose A as A

=

L

+

D

+

U

where L

,

D,andU

=

LT arethediagonal,thestrictlowertriangular,andtheuppertriangularpartsof A,respectively.The JacobipreconditioneristhediagonalmatrixD whosediagonalentriesarethesameasA.TheJacobipreconditioningonthe linearsystemresultsin D1Au

=

D1b.Thepreconditioningis,inotherwords,toscaleeachequationsothatits diagonal entrybecomesone.ApplyingtheJacobipreconditioningtoitslinearequation,theGibouetal.methodnowreads

ui j

1 hi+1 2,j 1

hi+1 2,j

+

h 1

i12,j

+

h 1

i,j+12

+

h 1

i,j12

ui+1,j

1 hi12,j 1

hi+12,j

+

h 1

i12,j

+

h 1

i,j+12

+

h 1

i,j12

ui1,j

1 hi,j+12 1

hi+12,j

+

h 1

i12,j

+

h 1

i,j+12

+

h 1

i,j12

ui,j+1

1 hi,j12 1

hi+12,j

+

h 1

i12,j

+

h 1

i,j+12

+

h 1

i,j12

ui,j1

=

1 hfi,j

hi+12,j

+

h 1

i12,j

+

h 1

i,j+12

+

h 1

i,j12

.

(7)

ItcanbeobservedfromEq.(7)thattheeigenvalueestimationfortheJacobi-preconditionedmatrixisalmostindependent ofhmin

=

min(ih,jh)∈Ωh

{

hi±1

2,j

,

hi,j±1

2

}

,whilethatfortheoriginalmatrixisdependent.Thus,thepresenceofgridnodestoo

(6)

neartheboundary isnot problematic intheJacobi-preconditionedmatrix.Precisely, leta gridnode

(

xi

,

yj

)

bevery near theboundarytotheleft.Asitgetsnearerandnearer,hi1

2,j

0 andthediscretizationbecomes ui j

0

·

ui+1,j

1

·

g

(

xi1

,

yj

)

0

·

ui,j1

0

·

ui,j+1

=

0

·

fi j

,

or ui j

=

g

(

xi1

,

yj

).

Sothe equationmakes a diagonalblock splitfromthematrixandthe eigenvalueofthediagonalblock isone. Hence, thepresenceofgridnodesveryneartheboundaryactuallymakesratherabenigneffectonJacobi-preconditionedmatrix, contrarytoitsbadeffectontheoriginalmatrix.Now,weprovetheobservationasfollows.

Theorem3.3.Foranyeigenvalue

λ

oftheJacobi-preconditionedmatrix,wehave 0

<

h

2

4Cv

+

h4h3

min

≤ λ ≤

2

.

(8)

Furthermore,ifhmin

h3,thenwehave0

<

Ch2

≤ λ

2 forsomeconstantC

=

C

(Ω)

.

Proof. Let

λ

bean eigenvalueof D1A andu

∈ C

K itscorresponding eigenvector.SinceallthediagonalelementsofD are positive,let D12 denotethe square rootmatrixof D. Thenwe can seethat D1Au

= λ

u ifandonly if D12A D12D12u

= λ

D12u.Thus,thepositivedefinitenessofD12A D12 verifiesthat

λ >

0 andu

∈ R

K.SinceD1A isdiagonallydominantand



K

j=1

|

aii1ai j

| ≤

2,theGerschgorinCircleTheoremimplies

λ

2.

Ontheotherhand,wemayassumethatmaxi=1,...,Kui

=

1.From(5),wehave Au

= λ

Du

 λ

4

h2

,

in

Ω

h

λ

hh4

min

,

in

Ω

h (9)

Regardingu asadiscretefunctionon

Ω

hwithu

=

0 on

Γ

h,wehave

−

hu

=

Au in

Ω

h,andusingwhandvhinLemmas 2.4 and2.5,weobtain

−

hu

≤ λ

4

h2

(−

hvh

) + λ

4

hhmin

(−

hwh

)

in

Ω

h

= −

h

 λ

4

h2vh

+ λ

4 hhminwh



in

Ω

h

.

ApplyingthemaximumprincipleinLemma 2.3tothisinequalityaboveandusingLemmas 2.4 and2.5,weinducethat u

≤ λ

4

h2vh

+ λ

4

hhminwh

λ

h2



4Cv

+

4h3 hmin

 .

Consequently,we obtainu

≤ λ

h2

(

4Cv

+

h4hmin3

)

in

Ω

h sothat 1

≤ λ

h2

(

4Cv

+

h4hmin3

)

becausemaxi=1,...,Kui

=

1.Combining

λ

2,weobtainthebounds(8)for

λ

.Ifhmin

h3,furthermore,then C1

:=

4Cv

+

h4hmin3

4Cv

+

4.Inthiscase,

λ

Ch2, whichcompletestheproof.

2

Remark3.4.In[15],weshowedthatmostdomains withsmooth boundaryaswellasrectangulardomains satisfyhmin

=

O

(

h3

)

.Thedomain

Ω

iscalledtohavethegeneralintersectionpropertyifthecumulativedistributionfunction p

( ν )

defined by

p

( ν ) := (

xi

,

yj

) ∈ Ω

h

:

dist



(

xi

,

yj

), Γ

h



ν 

(10)

isalmost linear,i.e., p

( ν ) =

O

(

h2

ν )

.Mostdomains havethegeneralintersection property(see Table 1 forexampleand [15]fordetails).Notethatwhenthecumulativedistributionfunctionp

( ν )

isalmostlinear,thenfor

α >

2,p

(

) =

O

(

2

)

anditmeanshmin

hα forsufficientlysmallh.

Corollary3.5.Ifhmin

h3,theconditionnumberoftheJacobipreconditionedmatrixisboundedbyO

(

h2

)

.

TheJacobicaseonTable 2showsthattheboundistight.WeobservethattheJacobi-preconditioningdiscretization(7) is preferredthan the original discretization(2) intwo senses.Its associated matrixhas much smallercondition number

(

O

(

h2

))

thanthatoftheoriginalone

(

O

(

h·h1

min

))

,whichbecomes O

(

h4

)

whenhmin

h3.Thisisduetothefactthatthe presenceofgridnodesvery neartheboundarymakesamaliciousone intheoriginal one.Also,theGerschgorincirclesof thematrix Aarewide spreadand, however,theJacobipreconditioning collocatesthe circlessharingthe samecenter.All theconcentrationofcirclesenhancestheconditionnumberofthematrix.

참조

관련 문서

[22] to account for the incompressibility condition, a second order accurate semi-Lagrangian method to update the momentum equation, a stiffly stable backward difference scheme

• 대부분의 치료법은 환자의 이명 청력 및 소리의 편안함에 대한 보 고를 토대로

• 이명의 치료에 대한 매커니즘과 디지털 음향 기술에 대한 상업적으로의 급속한 발전으로 인해 치료 옵션은 증가했 지만, 선택 가이드 라인은 거의 없음.. •

[23] presented a node-cen- tered finite difference approach to solving the variable coefficient Poisson equation with Dirichlet boundary conditions on irregular domains

In this case, we choose to store all the variable at the grid nodes in order to develop a simple supra-convergent scheme for the Poisson equation as well as a

12) Maestu I, Gómez-Aldaraví L, Torregrosa MD, Camps C, Llorca C, Bosch C, Gómez J, Giner V, Oltra A, Albert A. Gemcitabine and low dose carboplatin in the treatment of

Levi’s ® jeans were work pants.. Male workers wore them

9.3 Differential Equation for Circuits with Two Energy Storage Elements 9.4 Solution of the Second-order Differential Equation – Natural Response 9.5 Natural Response of