• 검색 결과가 없습니다.

 1.  Effect of Variation of Molecular Weight for the Pyrolysis of Polystyrene  

N/A
N/A
Protected

Academic year: 2022

Share " 1.  Effect of Variation of Molecular Weight for the Pyrolysis of Polystyrene   "

Copied!
5
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

     

   

   

305-600    100 (2002 8 30 , 2003 3 25 )

Effect of Variation of Molecular Weight for the Pyrolysis of Polystyrene

Yu Mee Kim, Byoung Tae Yoon, Seong Bo Kim, Sang Bong Lee and Myoung Jae Choi

Advanced Chemical Technology Division, Korea Research Institute of Chemical Technology, 100 Jang-dong, Yuseong-gu, Daejeon 305-600, Korea

(Received 30 August 2002; accepted 25 March 2003)

 

Y \]- V^ _C`@A \] _C U  9F1 abA )*+&, &'(, '(, cde 0  ! 1 T7bK,. fS gh ijI k 56 lm \] nS = opbK,.

Abstract−Oil formation rate, composition of crude oil and formation of side products such as α-methyl styrene, ethyl ben- zene, benzene, toluene, dimer and trimer on thermal degradation of polystyrene were affected by various factors. Especially, melting temperature and melting time gave an important influence on formation of oil and composition of crude oil. Also, com- position of formed crude oil showed a siginificant difference on reaction time. These results were caused by changes of aver- age molecular weight of degraded polystyrene. Decrease of molecular weight by cracking gave a decrease of yield of styrene and an increase of formation of α-methyl styrene, ethyl benzene, benzene, toluene. Reaction kinetic study and degradation mechanism to styrene on polystyrene were also briefly discussed.

Key word: Pyrolysis, Polystyrene, Styrene, Molecular Weight, Ethylbenzene

1.  

        

(. )* +,-   *./0 1 234 56

!" 23 7 89 +,-  -&: ;<= -&

>? @A BC DEF GH IJ -&KL MN@OP Q

!R(. S7 56 7 89 56 B > (TUV W

 XY Z[ : @OLP 8\]^ Y7 _` &aP &

*b89 cd e'P f (.

 P *b> 89!^ XY 89 `g !4 h.7 L$ij k:4 :l(> ,::m: n opq r spL t^ *89 /u_`4 u`ij vw :x yz{7 89

!^ 6 (. P i|7 }~, €w -&B‚v

 ƒw -„…†> ‡ ˆC‰^ -&  Lt Š ‡

‹Œ5, ‰4 Ž‰ L ‘;0" Y7 ‹Œ5 op 4 ’ sp^ “ Œ (.

  *b ”• /uŽ– —vw 2˜ e' >

-™(.   *„sŽ– ˆ :x yz{7 89 Williams V[1] `g7 yš W  \Ltj ›œ^ žŒ>

89" Ÿ$  ¡ u˜ :x ¢£ ¤!^ ¥<¦ (.

Ÿ$  ¡§  u˜ +,- ¨ Ÿ$  ¡(EPS, expanded polystyrene)!^ h* S> Qž ¨x* V!^ " © ‰i

Qªij Ÿ$  ¡(GPPS, general purpose polystyrene)l( 50« ƒ

€ ¬­; ; ŽL ® r *b —vw  ¯ij #

$: B°7 )g ±  ([2-4].

Ÿ$  ¡!^,²  ¡›œ žŒ e7 o…>  o…„

 & Œ³ !"[5] 350oC €w ´2% 0 1

 µ 50% Œ¶^  ¡›œ^ žŒ·!" ´2% v 70%

¸ Œ¶^ žŒF Œ ¹P l·([6-7]. º» Zhang V[8]

barium oxide% ´2^ X 85% ¸ Œ¶^ ¼¡›œ%

To whom correspondence should be addressed.

E-mail: mjchoi@krict.re.kr

(2)

 41 3 2003 6

žŒ·¹P l·(.

½ o…w> XY Z[ ˆw sp^ *b ¾

sp ,::m: ¿  ¨ Ÿ$  ¡P ´2 -&ªÀX s pj  ¡›œ% žŒ> ªÀ +7 Á€ V XY ªÀ j„P ÂM·(. º», Ÿ$  ¡ ˆ€:  ¡ K ” m> ÃÄ r ªÀŀÆi o…% Ç& Ÿ$  ¡!^,²  ¡  K ªÀu^% `g·(.

2.  

½ ÈÉw 7 Bpj ®Ê  Ÿ$  ¡P 1 liter 3… pyrex q$ ªÀŽ ËÌ7 Í ªÀLP heating mantleP X :·

(. ªÀL Qƒ€w ÁÊ Í 200 rpm žŀ^ ªÀLP Î ªvw ªÀ€Ï0 10- Ð ¸ÑB‚Í -&ªÀP Ò³·(.

@Q Kŀ¸Œ> ªÀ€ €Ó Í,² 30-C KÊ @Q  KÔ!^,² …Õ!" -&ªÀxm Ö׀> Fig. 1 WØ(.

ªÀ!^,² -&Ê -& Ž‰> Àَ% Ç&w ; @Q

^ ‘;Ú!" Û Àَ €> 10oCÜ(. ªÀ ˆ K> @ Q Ý Èފ% X BC ß ,à% —ƒX -&ƒ€

% eá·(. -&ƒ ˆ K>  ¡ LP ¾ «\

Ž X t5% 30 ml/min qÔ!^ ªÀŽÐ °·(.

-â capillary column(HP-5, 30mã0.32mmã1.0µm, Crosslinked 5%

PH ME Siloxane) xäÊ GC/FID(DONAM Instrument)% ·!"

åæ€> 50oCw -ç 5oCè ÑX 200oCÏ0 €é^©•ê

X ·(. Ë̎š Â\Ž €> 66 250oC^ Qƒ q0

·!" split ratio> 1:100 ©$ ë¸ .€ ìíP ·(.

K@Q © î% —ƒX I•ï W ƒ7 89!^ @Q

Œ¶(Yoil)P aƒ·(.

Yoil= ×100

3. 

3-1.  

Ÿ$  ¡ -&ºKP Ꭰ7 i|7 †ðP ñƒŽ

X ½ ªÀòŒj ªÀ€ ÃÄP á·(. Table 1 W ª

À€ ß @Q Kŀ r K@Q N ©$ ªÀ óô Í ªÀŽ õI > ‹5% q> ö[LP I÷ø &7 Í XX ‘ ‹5š I÷øP ù7 Í ‘;Ò ö[LP úÎ

·(. ªÀ€: ¸Ñ  K> @Q N Kŀ> ù :·!4 ö[L ®5·(. S7 @Qˆ  ¡›œ Ô

380oC ªÀ€w c+ûP 4üÐÜ(. š ª+^ úý(b.p)

q7 ,þLj ¼ÿ ¥ݼ  ¡ Ô ®5·(.

3-2. 

XY ªÀ†ðw Ÿ$  ¡ ªÀKP úÎŽ X ªÀÅ

€Æi o…% Œ³·(. Ÿ$  ¡ -&ªÀ KªÀ W

initiation, propagation, transfer ©$ termination h§^ Ò³>

free radical chain process^ ¥<¦ (.

)*Ï0 l Ê Ÿ$  ¡!^,²  ¡›œ K ªÀ2

J I• ï (1) ï (2)š W  :0 ^ Ò³> ¤!

^ ¥<¦ (. þ´2% > u˜> ï (1) W ‹5-‹5 a |hÊ Í  ¡ K> ¤!^ ¥<¦ ([8].

(1)

S7 OŽK ´2% > u˜> ï (2)š W Ÿ$  ¡!^

,²  ¡ KP X  ¡ Œ¶ ù:P lX (.

(2) weight of obtained oil

weight of feed material

Fig. 1. Apparatus for the catalytic degradation of polystyrene.

Table 1. Effect of reaction temperature on the pyrolysis of polystyrene Reaction temperature(oC) 350 360 370 380 390 Formation of oil(ml/min) 0.84 1.32 2.88 4.19 6.86

Product oil(%) 66.5 77.5 85.0 89.0 95.0

Residue(%) 32.0 20.6 13.7 9.3 3.5

Carbon(%) 1.5 1.9 1.3 1.7 1.5

Chemical composition of oil(wt%)

Styrene monomer(wt%) 67.37 67.74 70.30 71.07 70.68 α-methyl styrene(wt%) 3.87 3.45 2.84 2.60 2.29

Toluene(wt%) 4.29 3.77 2.46 2.77 1.96

Benzene(wt%) 0.24 0.23 0.19 0.16 0.21

Ethylbenzene(wt%) 1.90 1.68 1.09 0.92 0.78

Others(wt%) 22.33 23.13 23.22 22.48 24.08

(3)

š W Ÿ$ ¼¡!^,² ¼¡›œ^ Ò³> -&ªÀ

ªÀKP úÎŽX ŀïP ï (3) W h.X 4ü Œ (.

−dw/dt = kwn (3)

k> -&ªÀ ŀ¸Œ, n -&ªÀ Œ", t> ªÀBCP 

”7(. ï (3)P i-v (¹ W ï (4): Ê(.

(4) XŽw wo> ªÀŽ  Bp tÔ, w> -&: Ò³> ëg

; ºƒBCw tÔP 4ü(.

ªÀ€  Ÿ$ ¼¡ -&ªÀ!^ K> @Q Fig. 2

š WØ!"  ªÀ Fig. 3 W 1 ªÀïP H·(.

3-3.     

w ‘;Ò i|7 €j 380oC ªÀ€w ªÀBC à ÄP ÂM7 a ªÀBC uFŒ @Q ˆ qÊ  ¡ V

 K- Table 2 4üyš W ªÀBC   % l

·(. Table 2#æ  ¡ K  ªv ,KLj ¥

ݼ  ¡  K ù:·!" º» (,   V

 úýq- K  ù:·(.

3-4.  

 |w ½ yš W ªÀBC  Ÿ$  ¡ -& ª À % l> q> -„Ô ò Žj> ¤!^ 6;

380oC ªÀ€w BC ß -„Ô ò% GPC & -â

·(. © a Fig. 4š W BC  -„Ô  ®5·(.

Fig. 4wš W ªÀBC  ªÀK r Œ¶ > q

> ªÀˆ  7 Ÿ$  ¡ -„Ô  ®5Ž Û _(. Ÿ$  ¡ -&ªÀw  ¡ K I•š W 2 :0 ªÀ & Ò³> ¤!^ ¥<¦ (. -& & ‹5-

‹5 a |hÊ Í  ¡ K> ªÀ Ÿ$  ¡ |h

0 1   ¡ K> ªÀ2J(. sp^ >

Ÿ$  ¡ Á€ ù:š  -„Ô ®5" ®5> -

„Ô  ªÀK % lQ ¤!^ ¸; Ÿ$ ¼¡  -&w ªÀK +7 Á€ ÃÄP á·!" ÁBC

2BCÜ(. -& 7 ªÀ Fig. 5š W Ÿ$  ¡

w  ¡!^ ªÀ Ò³0 1> 300oC w€ Ò³; -

„Ô  ®5·(. ªv Ÿ$ ¼¡ &ˆªÀ!^,² ‘

;0>  ¡ K Fig. 6w l> yš W 350oC ¸ 

€w KÜ(.  a>  ¡ Kl(  & ‹5-

‹5 a  |hÊ Í  ¡ KP & (.

300oC  w Á€ r BCP †|X ‘ -„Ô

w

ln =1 1 n⁄( – )ln[–kt 1 n( – )+wo(1 n– )]

Fig. 2. Formation of oil on reaction time at a pyrolysis of waste EPS.

Fig. 3. First order equation for reaction temperatures at the pyrolysis of waste EPS.

Table 2. Composition of pyrolyzed oil formed from thermal degradation of polystyrene at 380oC

Reaction time(min) 30 60 90 120 150

Styrene monomer(wt%) 73.8 67.8 63.8 59.6 57.2 α-methyl styrene(wt%) 1.25 1.47 1.92 2.62 4.21

Toluene(wt%) 1.70 1.67 1.60 1.72 2.42

Benzene(wt%) 0.09 0.14 0.09 0.10 0.08

Ethylbenzene(wt%) 0.15 0.50 0.15 0.06 0.32

Others(wt%) 23.0 28.4 32.4 35.9 35.7

Fig. 4. Changes of average molecular weights for reaction time.

Fig. 5. Changes of average molecular weight on melting temperature.

(4)

 41 3 2003 6

(ß XY Ÿ$  ¡P sp^ X 380oC -&ªÀw ï (4)

 +ÌX ‘ ªÀŀ¸Œ> Fig. 7 WØ(. Fig. 7w l> y

š W ªÀŀ> Ÿ$  ¡ -„Ô 134,000w c+û!

^ 4ü (.  a> -& ªÀ q$7 ci -„Ô !*%

”7(.

S7 -„Ô (ß Ÿ$  ¡P X ‘;Ò -& K Lt€ Table 3 W 2˜ (ß uÄP 4üÐÜ(. Fig. 7 W

134,000 -„Ôw K> @Q  ¡›œ Ô c

+ûP l·!" úý(b.p) q7 ,þLj ¼ÿ ¥ݼ  ¡ Ô cûP l·(.

 a ‹5-‹5 a  Q;4 © Í  ¡ K

 Ò³P lXË" -„Ô "Œ  ¡ KŒ¶ ù:"

-„Ô ®5FŒ ,þLj ¼ÿ, ¥ݼ  ¡ K 

 ù:·(.

 a^,² -& & Ÿ$  ¡!^,²  ¡ -&ªÀ

 ŀ¸Œ k1 k2 ú& 2˜ ]^ ËEªÀ Fig. 8 W Carniti V[12] `g7yš W -& & -„Ô Ÿ$ ¼¡!^ Ò

³7 Í &ˆ;  ¡›œ K!^ Ò³P lX (.

4.  

(1) Ÿ$  ¡ -&ªÀw KL^ ‘;0>  ¡›œ>

ªÀBC u  ®5·!" ,þL^ ‘;0> ¼ÿ,

¥ݼ  ¡, ÿ,  ù: ·(.

(2) Ÿ$  ¡ -„Ô ß ªÀK r  ¡ Œ¶  

% l·!" 130,000 -„Ôw c+ ªÀK ¼¡ Œ¶

 c+ ûP l·(.

(3) Ÿ$  ¡ -&ªÀ!^,² ‘;0> ¼¡ Œ¶ Ÿ

$  ¡ -„Ô!^ /Ê Í -„Ô ‡ Ÿ$  ¡ ˆC‰

^,²  ¡ K> ¤!^ #hÊ(.



1. Williams, V., Symposium of Waste Plastic Recycle, Tokyo, 21-32 (1993).

2. Ministry of Science and Technology, “Perspectives in recycling tech- nology of waste materials,” 38-41(2000).

3. Shun, D. W., Han, K. H. and Son, J. E., “A Status on Pyrolysis Tech- nology of Waste Plastics in Japan,” Chemical Industry and Technology, 14(4), 371-378(1996).

4. Liebman, S. A. and Levy, E. J., “Pyrolysis and GC in Polymer Anal- ysis,” MARCEL DEKKER, Inc., 149-154(1980).

5. Nishizima, H., Sakakibara, M. and Yoshida, K., “Oil Recovery from Atatic Polypropyrene by Fludized Bed Reactor,” Nippon Kagaku Kaishi, 1989-1995(1977).

6. Kim, J. S., Kim, S. J., Yun, J. S., Kang, Y. and Choi, M. J., “Pyrol- ysis Characteristics of Polystyrene Wastes in a Fludized Bed Reac- tor,” HWAHAK KONGHAK, 39(4), 465-469(2001).

7. Shun, D. W., Ghim, Y. S., Cho, S. H. and Son, J. E., “Pyrolysis of Polystyrene in a Fludized Bed Reactor,” Korea Solid Wastes Eng.

Sci., 10, 195-201(1993).

8. Zhang, Z., Hirose, T., Nishio, S., Morioka, Y., Azuma, N. and Ueno, A., “Chemical Recycling of Waste Polystyrene into Styrene over Solid Acids and Bases,” Ind. Eng. Chem. Res., 34(12), 4514-4519(1995).

9. Shertukde, P. V., Marcelin, G., Sill, G. A. and Hall, W. K., “Study of Fig. 6. Comparison between cracking and formation of styrene for

reaction temperature.

Table 3. Effect of molecular weight on the pyrolysis of waste EPS at 380oC

Average molecular weight 94,000 119,000 134,000 150,000 164,000 180,000 189,000 195,000

Styrene monomer(wt%) 66.70 66.41 69.19 67.85 64.57 62.96 61.97 61.02

α-methyl styrene(wt%) 4.63 3.85 2.47 3.61 3.87 4.03 4.47 4.59

Toluene(wt%) 1.98 2.82 0.95 1.67 1.71 2.00 3.36 3.61

Benzene(wt%) 0.11 0.12 0.12 0.12 0.15 0.13 0.12 0.12

Ethylbenzene(wt%) 1.56 1.50 0.34 0.86 1.05 1.15 2.25 2.76

Others(wt%) 25.02 25,30 26.95 26.00 24.66 24.73 27.84 27.91

Fig. 7. Reaction constants on various melting temperatures.

Fig. 8. Reaction pathways on the formation of styrene monomer from thermodegradation of polystyrene.

(5)

the Mechanism of the Cracking of Small Alkane Molecules on HY Zeolite,” J. Catal., 136, 446-457(1992).

10. Connel, G. and Dumesic, J. A., “The Generation of Bronsted and Lewis Acid Sites on the Surface of Silica by Addition of Dopant Cations,” J. Catal., 105, 285-291(1987).

11. Jellinek, H. H. G., “Thermal Degradation of Polystyrene and Poly- ethylene. part III ,” J. Polym. Sci., 4(1), 13-36(1949).

12. Carniti, P., Beltrame, P. L., Armanda, M., Gervasini, A. and Audisio, G., “Polystyrene Thermodegradation 2. Kinetic of Formation of Vol- atile Products,” Ind. Eng. Chem. Res., 30(7), 1624-1629(1991).

참조

관련 문서

The central Zn(II) atom has a tetrahedral coordination geometry, with the heterocyclic nitrogen atoms of 2-aminothiazole ligands and the nitrogen atoms of isothiocyanate

흔히 유펜이라 불리는 펜실베니아 대학 (University of Pennsylvania), 펜실베니아 주립대학(Pennsylvania State University), 카네기 멜론(Carnegie-Melon), 정보 과학이

halides (iodide and bromide) with lithium metal is believed to occur via a radical intermediate at least some extent, and this observation provides the first spectroscopic

• 대부분의 치료법은 환자의 이명 청력 및 소리의 편안함에 대한 보 고를 토대로

• 이명의 치료에 대한 매커니즘과 디지털 음향 기술에 대한 상업적으로의 급속한 발전으로 인해 치료 옵션은 증가했 지만, 선택 가이드 라인은 거의 없음.. •

3 was standing, the truck hit a pedestrian 4 will be having Mom’s birthday party 5 will be staying at her friend’s house 6 is slowly accelerating. 7 he set off for

결핵균에 감염된 사람의 일부에서만 결핵이 발병하는데 어떤 사람에서 결핵이 발병하는지 그 자세한 기전은 알려져 있지 않지만 결핵균의 독성(virulence)이 강하거나 결핵균에

Honourary Graduands, after a special summer convocation in 1978 held by the University of Toronto, during the annual meetings of the international Federation of