• 검색 결과가 없습니다.

 1.  Modeling the Denitrification of Wastewater in a Fluidized Bed Biofilm Reactor   

N/A
N/A
Protected

Academic year: 2022

Share " 1.  Modeling the Denitrification of Wastewater in a Fluidized Bed Biofilm Reactor    "

Copied!
11
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

(Journal of the Korean Institute of Chemical Engineers)

     

  

 

(2001

Modeling the Denitrification of Wastewater in a Fluidized Bed Biofilm Reactor

Il-Soon Suh

Department of Chemical Engineering, Konkuk University Seoul 143-701, Korea (Received 21 February 2001; accepted 24 May 2001)

 

         ! "# $%&'(. Boaventura

Rodrigues ) $*+ , - ./0 1/  2  "# 3&'(.  "4 56 75 8 9- : ;<= >? @A&'(.  89 BC= 1D4 89 EFG HI J K;BC# L3&M @ Q ,WX 4 5 YQ 75 ) Z[ TUPQ \] ^_`(. 5 J 75 $ab=Q K;TU c d  e f ), Z[TU cd  gh0 ) ii j3+(. Y  Z[TU cd,  k

l5, 896  : ;< J  89 BC=L  mnZo p 5q J 75q $ ab= j3&Qr st uv wx# (.

Abstract−A reactor model was developed for the wastewater denitrification in the fluidized bed biofilm reactors with sand and activated carbon particles as support media. The biofilm model proposed by Boaventura and Rodrigues was modified based on the reaction scheme of two consecutive zero-order reactions. The reactor model also includes mass transport of nitrate and nitrite through the liquid film around bioparticles. The effects of liquid-phase mixing in the reactors were also taken account for by assuming the plug flow and the perfect mixing. Thin biofilms formed on the sand support media were fully pen- etrated by both nitrate and nitrite. On the other hand, the partial penetrations of both species were predicted to occur in thick biofilms on the activated carbon support particles. The removal rates of nitrate and nitrite in the case of full penetration were determined by the biomass quantity of the biofilm, while the surface area of bioparticles determined those in the partial pen- etration. In the case of partial penetration, the effective diffusivity in the biofilm, the liquid-bioparticle mass transfer and the liquid-phase mixing in the reactor play an important role in determining the volumetric removal rate of nitrate and nitrite.

Key words: Denitrification, Fluidized Bed Biofilm Reactor, Penetration Depth, Effective Diffusivity, Liquid-Bioparticle Mass Transfer, Liquid-Phase Mixing

E-mail: issuh@konkuk.ac.kr

1.  

         

   (),    !" 

#$% #  & '( #   )(). *+

, - # ./ !"  )0 # & '(

1.23 456  7 8 9: ;'-)(<):

8,, # = # >?@ ! AB C D EFGH

, I7JK(electron acceptor) LJM >N OPQ, PQ, R

# = STUC I7VWK(electron donnor), XJY  Z)[1].

< !" AB C D >LJ [T !" \]C D

 ^LJT _` ). !" C D  aG P a3

>LJ XJ- #>?G I7VWK bb XJc  Z).

d ef ef g !KhT& ij BY  Z% i@ e f/T& kl)[2, 3]. mn, Vo`p Rq7r& 5Us tu

 Z vw> Z). xs i@ ryz2C kg ef d{G

… d ef  < 2J$ Z)[4, 5].

^… d ef,  < †7 „K ‡ ˆ ‰P †7& XJY Š‹ „K x = ef # 9

NO3→NO2→N2

(2)

Œ> „K yz $ d Ž )‘ ’C “)[6].

14.7 kg N/m3d ef # 9Œ, ‰P†7& XJ

Š‹ ” 750µm Ž•– d> - ez ‡ „K Š‹ ” 140µm —@ d > ˜™$š). Boaventurap Rodrigues[7]

= Coelhoso €[8]@ bb › ef/T& H8 ‡ = ‰P

†7& „K XJ ^… d ef, < efC 

œ). žŸ ^… d ef x œ,  K- †7 o I¡ ¢£ = ef  5 ¤¥x ’@ ¦$B §¨).

© ª«, ‡ = ‰P†7& †7 „K XJ ^…

d ef&  < 2JY N, † # hT

= ¬G dŽ  # = # ;'/T

 ­ ’C ™). †7 ^ x, d ®,  5- †7 o I¡ = ef  5 ¤¥xC ¯ ¦

8 >Ÿ ’C ­X23 œ).

2. 

^… d ef, < ef ®°@ d ®, e f  5 ¤¥x,  - I¡ = †7 ^x3 «

-).

2-1.  

© ª«, › ef/T±C H8, H556, #

 p #  d g hTS ˜ ]C T).

d g, # p #  B]@ ] (1)G (2)

, bb k²  Z):

(1)

(2) d Ž LG d yz, # hT N1s& >J

)³ ´›aŸC H8 2Jz;

(3a-f) ] (1)G (2) bb ´›a] ] (4)p (5) yµ-):

(4)

(5)

#¶a*+ ef/T5 #¶a*+ ef/T·) i@

¸C ·>¹, # = #  d g hTS

"%º d Ž, d yz, # hT »

¯ mn Fig. 1 kl ¼p ½>, (a) # = #> d yz,9: dG „K Š+z¾B ¿Is Àq$ Š‹, (b)

#@ 923 Àq- ez #@ ¿Is Àq$ Š‹, (c)

# = # Ž d yz39: d g 923

Àq$ Š‹ «Y  Z).

v ue2Á # = #> Ž d g 923 Àq

$ Š‹, Š+Âà ] (6)G (7)C ] (4)p (5) bb 2J):

(6a)

(6b) (6c)

(7a)

(7b)

(7c) D1d2N1

dX2 --- k– 1=0

D2d2N2 dX2

---+(k1–k2)=0

f1 N1 N1s --- f2 N2

N1s ---

= x X

----L

= δ D1 D2 ---

= s k1 k2 ---

= Φ1 L k1

D1N1s ---

, , , , , =

=

d2f1 dx2 ---–Φ12=0

d2f2 dx2

--- δΦ12 s 1– ---s

 

 =0

+

f1=1 at x=1

f1=0 at x=x*

df1

---dx =0 at x=x* f2 N2s

N1s ---

= at x=1

f2=f2* at x=x*

df2 ---dx

  

x

df2 ---dx

 

 

x+

= at x=x*

Fig. 1. Nitrate and nitrite profiles inside the biofilm[7]; (a) biofilm fully penetrated by both species, (b) biofilm fully penetrated by nitrite and partially penetrated by nitrate, (c) biofilm partially pene- trated by both species.

(3)

(7d)

(7e) 8,, x*p x'@ #G # ÀqÄ>& bb kl). Boa- venturap Rodrigues[7] ] (7b) = (7c)p )Å Š+ÂÃC, df2/dx=0 at x=x*, XJ):

d g # hTS ] (1), (6b) = (6c)9: ] (8)G

½> k²  Z):

(8a) (8b)

#ÀqÄ> x* ] (8a)p (6a)9: ] (9)p ½> yµ-):

(9)

#  d g hTS ] (2)p (7)9: ] (10)3

k²  Z):

(10a)

(10b)

(10c)

½> yµY  Z):

(11)

d g, #G # Ž 923 Àq$ ÂÃ(x' > 0),

#@ 923 #@ ¿Is Àq$ ÂÃ(x* > 0G x' < 0) =

#G # Ž ¿Is Àq$ ÂÃ(x* > 0)@ ] (12a), (12b)

= (12c) bb yµ-):

(12a)

(12b)

(12c)

# = #> Ž d yz,9: dG „K Š+z

] (8)G (10), # = # ÀqÄ>& bb kg x*p x' C Ž 3 Æ, #@ 923 Àq- ez #@ ¿Is b «Y  Z).

2-2.  

^… d ef †7 ¤¥@ ´0  5@ ÇÈžÉ Ê ˆ ¿I¤¥C H).

2-2-1. ÇȞ ÉÊ ®

2-2-1-1. # hTS

#  Ë ef  5 B]@ †7 "D 

$  d, I¡ Ë ¢£C ¦8 ] (13)G ½>  k²  Z):

(13) 8,, N1b #  ef g  5 hT&, N1s †7

5 VÌ/, ap ef *D9‚ U †7 yz2, žÍ ks1

#  †7 "D  - I¡+& bb kl).

#>?> d g ¿Is Àq Î,, †7 yz3 # ÇÏ4& d g # hTS9 : «8;

(14) ] (13) ˆ8 2z, ef Рђ # hTS&

kg ] (15)& ÒC  Z):

(15)

8,, N1 b

0 † # hT& kl). zI@ #>

dC ¿Is Àq ef ÎC kgM,  ÂÃ G ] (15)9: (16)G ½> k²  Z):

(16)

zI, # hT N1b

I ] (16)C (15) ˆ8 ] (17)G

½> k²  Z):

(17)

#>?> d g 923 Àq Î,, , ef

 g  539: †7 yz3 # ÇÏ4 † 7 yz, d Ó#/T& B )³G ½> k²  Z):

(18) †7 yz, # hT N1s& ] (18)9:  5hT N1b ¯ kl Ô;

(19)

#   5 B ˜ ] (13) ˆ8 2z, e f Рђ # hTS ˜ ] (20)C ÒC  Z):

(20)

2-2-1-2. # hTS

#   5 B]@ )³G ½> k²  Z):

f2=0 at x=x'

df2

---dx=0 at x=x'

f1 Φ12 --- x x2( – *)2

= for 1 x x> > * f1=0 for x*> >x 0

x* 1 2

Φ1 --- –

=

f2 N2s N1s --- δΦ12

---2 1

s--- 1 s{ – –2x' 2sx+ *–2 sx( *–x')x+(s 1– )x2} –

=

for 1 x x> > *

f2 N2s N1s --- δΦ12

---2 1

s--- 1 2x' s{ – – 1 x( – *)2+2x'x x– 2} –

= for x*> >x x'

f2=0 for x' x 0> >

x' 1 2

Φ1 --- s 1 1

δ---N2s N1s ---

 + 

 

 

=

Φ1 2k1 k2 --- 1 D2

D1 ---N2s

N1s ---

 + 

 

>

2 Φ1 2k1 k2 --- 1 D2

D1 ---N2s

N1s ---

 + 

 

< <

Φ1< 2

udN1b

--- adz + pks1(N1b–N1s)=0

Φ1< 2

ks1(N1b–N1s)=k1L

N1b N1b0 apk1L --- zu –

= for 0 z z< < I

Φ1= 2

zI u

apk1L

--- N1b0 k1L ks1 --- – k1L2

2D1 ---

 – 

 

 

=

N1bI k1L2 2D1 --- k1L

ks1 --- +

=

Φ1> 2

ks1(N1b–N1s)= 2D1k1N1s0.5

N1s N1b D1k1 ks12

--- 1 1 2ks12 D1k1 --- N1b + – +

=

1 2ks12 D1k1 --- N1b

+ 1 2ks12

D1k1 ---N1bI +

1 1 2ks12 D1k1 ---

+ N1b

1 1 2ks12 D1k1 --- + N1bI

---

ln apks1

--- z zu ( – I)

= –

+ –

(4)

(21) 8,, N2b #   5hT, N2s †7 yz,

# hT, ks2 †7 "D  d, #  -

 I¡+& bb kl).

d g #G #> Ž ¿Is Àq Î,, #

  †7 yz3 ÇÏ4 )³G ½> k²  Z):

(22) ] (22)& (21) ˆ8 2z #  ef Рђ

hTS ˜ ] (23)C ÒC  Z):

(23) 8,, † # hT& kl).

d g, #@ 923 Àq #@ ¿Is Àq

efÎ,, #  †7 yz3 ÇÏ4 ] (24) p ½> k²  Z):

(24) d g, #G # Ž 923 Àq efÎ

,, †7 yz3 # ÇÏ4 )³G ½> k²

 Z):

(25) ] (25)& †7 yz, # hT N2s ˜8 H Íz )³ ]C ÒC  Z):

(26)

] (24)p (26), †7 yz, # hT N1s ] (19)p (20)39: #ÕY  Z). #  ef Рђ

Á Runge-Kutta-Fehlberg ÑÖC 2J8 «Y  Z)[9].

2-2-2. ¿I¤¥ ®

^… d ef  5 ¿I¤¥C H  - I¡C

¦z, ef Õ # = # hT ] (27) G (28) bb k²  Z):

(27)

(28) 8,, †7 yz, # = # hT N1s

= N2s d ®C >J8 «).

ef g # hT i, # = # Ž d g ¿Is ÀqY Š‹, , ] (14)p (22) yµ$ † 7 yz, # p # ÇÏ4& ] (27)G (28)

bb ˆz ] (29)p (30)C ÒC  Z):

(29)

(30)

] (14)p (29)& >Jz  # d ¿IÀq ÂÃ@

)³G ½> k²  Z):

(31)

ef g # hT <Φ1<

 ÂÃC ×Ø0Ù rÚ2 Û@ ¸C ·u N, d g #

@ 923 Àq #@ ¿Is Àq-). ] (19) yµ$

†7 yz, # hT& ] (27) ˆ8 ef

 g # hT& «z ] (32)p ½> k²  Z):

(32a) 8,,

(32b)

(32c)

] (24) yµ$ †7 yz, # ÇÏ4& ] (28) ˆz ef g # hT )³G ½> k²  Z):

(33) 8,, †7 yz, # hT N1s ] (19)p (32)9 : «Y  Z). †7 yz, # hT N2s ] (24)p (33)39: )³G ½> +#Y  Z):

(34)

ef g # hT Φ1<

 ÂÃC ×Ø0Ù Û@ ¸C ·u N, # = # Ž

d g 923 Àq-). ef g # hT ] (32)p

½> yµ-). †7 yz, # hT ˜ ] (26) C #  B ˜ ] (28) ˆz, ef g 

# hT N2b )³G ½> yµ-):

(35a) 8,,

(35b)

(35c)

. (35d)

2-3.  

^… d ef g !KhT, ef *D9‚ U †7 yz2 = †7 "D $  d,  - I¡+&

udN2b

--- adz + pks2(N2b–N2s)=0

ks2(N2b–N2s)=–(k1–k2)⋅L

N2b N2b0 ap(k1–k2)L ---zu +

= for 0 z z< < I

N2b0

ks2(N2b–N2s)=– 2D1k1N1s+k2L

ks2(N2b–N2s)=– 2k1D1N1s+ 2k2(D1N1s+D2N2s)

N2s N2b 2k1D1 ks2

---N1s0.5 k2D2 ks22 ---

+ +

=

1 2ks22 k2D2 --- N2b D1

D2

---N1s 2k1D1 ks2

--- N1s0.5 k2D2 2ks22 ---

+ + +

 

 

 

 

 

 

 

 

N1b N10 VRap

---kQ s1(N1b–N1s) –

=

N2b N20 VRap

---kQ s2(N2b–N2s) –

=

Φ1< 2

N1b N10–k1LapVR ---Q

 

 

=

N2b N20 (k1–k2)L apVR ---Q

 

 

+

=

Φ1< 2

N10 k1L L 2D1 --- apVR

---Q 1 ks1 ---

+ +

 

 

>

2 2 k( 1⁄k2){1+(D2N2s)⁄(D1N1s)}

N1b=b– b2–c

b N10 D1k1 ks1 ---

 

  apVR ---Q

 

  1 ks1 apVR ---Q

 

 

 + 

 

 

+

=

c N10 2 D1k1 ks1 ---

 

  apVR ---Q

 

 

 + 

 

 

N10

=

N2b N20 ( 2D1k1N1s–k2L) apVR ---Q

 

 

+

=

N2s N20 ( 2D1k1N1s–k2L) apVR ---Q

 

  1

ks2 ---

 + 

 

 

+

=

2 k( 1⁄k2){1+(D2N2s)⁄(D1N1s)}

N2b a b 2---

 + 

  b a b

4--- c

 + + 

 

=

a N20 2k1D1N1s k2D2 ks2 ---

 + 

  VRap

---Q

 

 

+

=

b 2k2D2 VRap ---Q

 

 2

=

c D1 D2

---N1s 2k1D1N1s ks2

--- k2D2 2ks22 ---

+ +

=

(5)

#Õ D8 †7 KܬC +#8Ý ).

 - ^… ef, ef *D9‚ U †7 yz2 ap

†7 Kܬ εSG ފ dp r +#-):

(36) †7 Kܬ@  5 Kܬ εL9: #ÕY  Z):

(37)

!u†7  - ^…,  5 Kܬ@ Richardson-Zaki 5˜]C

>J8  5/ u = †7 .ßÀà/T ut9: +#Y  Z):

(38) (39) 8,,

(40)

. (41)

.ßÀà/T £}+ CD9: +#Y  Z):

(42) †7 £}+ ] (43)  #Õ-)[10]:

(43)

£}+9: .ßÀà/T& +# D, †7 á@ â T ρp& #Õ8Ý )[] (42)]. †7 á@ âT d á@

K .Üp d ef –IÂà mn ’C ãC ä3 å æY  Z). 1,000-1,140 kg/m3 d á@ âT ¸> ·$š)[10- 12]. © ª«, 1,020 kg/m3 d á@ âT ¸G ] (43)C X J8 †7 .ßÀà/T& #՝).

2-4.     ks

 - I¡+ ks ] (44)& >J8 #ÕY  Z)[13]:

(44)

8,, ^…,  K *D¬ U AB /T εC S¯

specific power group ( )@ ] (45)p ½> +#):

(45)

3.  

‡ = ‰P†7& †7 „K XJ ^… d ef

&  < 2JY N, † # hT = ¬G dŽ  # = # ;' ­ ’C

™ D8, †7 ^ x, d ®,  5- †7 o I¡ = ef  5 ¤¥xC ¯ ¦8 ­X ÑÖC XJ). ­X 2J ef x = –IÂÃC Table 1 H͝).

3-1.   

d ç Ó#+ d V 9‚Œ = èéÁ7 €

f –Ix  ’C ã3M ìG á@ âT r  kgB d âT ¯ k²  Z)[16, 17].

Fig. 2a  d g ç Ó#+ ‡„K ^…

d ef,  5 Рђ # = # hT

S ­ ’C kl). ef  5 ÇȞ ÉÊC H,  - I¡¢£@ ´0). 2J d Ž 100µm>).

d Ž † # hT r —,, L< ,

#> d, ¿Is Àq Î> kê). ç Ó#+

 » ¯ mn > d g, ¿Is Àq Î, 923 Àq Î3 I> ef g Û@ i>, u ë u%ê)[] (16)]. ç Ó#+ 0.09 mm2/minu N  ¿ IÀq, 9Àq I> # Š‹ ef i> 73 cm, u

%, # Š‹ ef i> 209 cm, u%ê). 0.009 mm2/ min Û@ ç Ó#+ Š‹, #@ ef †«9: d g 923 Àq$ #@ ef i> 92 cm, ¿IÀq

, 9Àq I>-).

#> d g ¿Is Àq Î, # = #

  Рђ hTS ç Ó#+ ’C ãB §

d3 ìí !K¬ apL î23 ’C ã)[] (15), (23)].

ef i> \¯ mn #   5hT » 8 #

> d g, 923 Àq 0Lz # /T

» 8 #   5hT 1Ë­& kl Ô » ). 

# hT 1Ë­ N2s

max d g # ç Ó#+

 » ¯ mn )³G ½> i@ ef i> z2,max, k;

(46)

»  Š’C kl):

(47) ap 6 εS

dp ---

=

εS=1–εL

u u⁄ iLn

n=(4.4 18d+ p⁄DC)Ret0.1 for 1 Re< t<200

ui⁄ut

( )

log =–dp⁄DC Ret=utdpρL⁄µL

ut 4 3---g

CD ---ρp–ρL

ρL ---dp

 

 1 2

=

CD=17.1Ret0.47

ksdp ---D

 

  2 0.59 ε1 3 dp4 3 ρL µL ---

 

 

 0.57 µL

ρLD ---

 

 1 3 +

=

ε1 3 dp4 3 ρL⁄µL

ε1 3 dp4 3 ρL µL ---

 

 

  CD

---2

  1 3 utdpρL µL ---

 

 2 3 udpρL µL ---

 

 1 3

=

2D1N1s0 ⁄k1

z2 max, u k1apL

--- N1s0 1 2k2 k1 ---

 – 

 k1L2 2D1 --- +

=

N2smax N2s0 k1–k2 k1

--- N1s0 k2L2 2D1 ---

 – 

 

 

+

=

Table 1. Reactor characteristics and operating conditions(a) Reactor diameter; 5 cm

Reactor height; 200 cm Support media

Sand

Diameter; 0.455 mm Density; 2.61 g/cm3 Activated carbon

Diameter; 1.274 mm Dry density; 1.34 g/cm3 Wet density; 1.51 g/cm3 Liquid flow rate

1.458 m3/d for sand 0.99 m3/d for activated carbon

Effective diffusivity of nitrate and nitrite in biofilm(b) 0.090 mm2/min

Kinetic constants in biofilm(b) k1; 82.4 mg-N/L of biofilm min k2; 31.7 mg-N/L of biofilm min (a) unless stated otherwise in the text.

(b) Boaventura and Rodrigues[7]

(6)

# d 9Àq I> Á ef *D9‚ U #

 ;'/T » #  /T& » 0ï). ez

 #@ dC ¿Is Àq8 #  d g ;

·Á). ef i> +/ \¯ mn # d 9Àq  ÎC Bê Ô #   5hT  ¸C ·Á ÔT #

   5hT 8Is i@ ¸C ·8 #> d g,

¿Is Àq Î> kê). > Î, #  5h T )³G ½> d ç Ó#+ ’C )0 ãB §

ef i> \¯ mn d !K¬ apL rð8 » ):

(48)

Fig. 2b ‰P†7& „K XJ ^… d ef,

d g ç Ó#+  5 Рђ # = # h µm>). d

Ž † # hT r Ž•ñ Ë9 Š‹ ef †

«9: #> d g, 923 Àq), L> . "

%º ef i>, # hT d g ç Ó#+

 D1> » ¯ mn \):

(49)

†7 yz2 ƒ ap ’C ã). #G # d g  çÓ#+ , ½, D1=D2=D, † #> ìíB §

)z, # d ¿IÀqÎ, 9ÀqÎ3 I>D­

zIIp # 9ÀqÎ, #  5 hT N2s )³G

½> bb +#-):

(50)

(51)

Fig. 2a kl 100µm Ž dC Bó ‡„K ^…

d ef, ôGp rÚY N, ef i> \ mÅ #

 hT »  ¿× ç Ó#+ ’> õC ö  Z). ef *D9‚ U # » /T #> dC ¿ Is Àq Š‹ d3 ìí !K¬ apL rð, #>

dC 923 Àq Š‹ ef *D9‚ U # » /T †7 yz2 ap rð). #  Рђ h TS  Fig. 2a kl ‡„K ^… d ef Š

‹p 5Us )÷). ef i> \ mÅ # hT

\Œ ˆ » Œ> L, 1Ë # hTT ƒj L³C ö

 Z). \Œ> L@ > d g #  ;' mÅ 

#  ø » p Ž•– d g, # 

# ;' Ë 5Ë2 ;'Œ \& bY  Z).

3-2.  !  "# 

Fig. 3a ‡„K ^… ef, d Ž 150µmu N  -

 I¡> # = #  Рђ hTS ­

N2s N2s0 N1s0 k2apL ---zu – +

=

2D1N1s0 ⁄k1

N1s N1s0 ap 2D1k1 ---z2u –

2

=

zII u k2apL

--- N1s0 k2L2 ---2D

 – 

 

=

N2s ap 2Dk1

---u N1s0 k2L 2Dk1 ---

– ap 2Dk1

---z4u

 – 

 

 

z

=

Fig. 2. Influences of the effective diffusivity on the nitrate(close sym- bols) and nitrite(open symbols) concentration profiles along the height of the FBBRs with (a) sand as support media, the biofilm thickness of 100µµµµm, and the flow rate of 1.458 m3/d; and (b) activated carbons as support media, the biofilm thickness of 400 µµµµm, and the flow rate of 1.458 m3/d.

Fig. 3. Influences of the liquid-bioparticle mass transfer on the nitrate (close symbols) and nitrite(open symbols) concentration profiles along the height of the FBBRs with (a) sand as support media, the biofilm thickness of 150µµµµm, and the flow rate of 1.458 m3/d;

and (b) activated carbon as support media, the biofilm thick- ness of 500µµµµm, and the flow rate of 0.99 m3/d.

(7)

p (23)> kg ¼p ½>  - I¡+ ks # = 

#  Рђ hTS %ù ’T ­B §). žÈ

 - I¡@ # ¿IÀq Î, 9Àq Î3 I>

D­ z1 ’C “)[] (16)]. †7 yz, # hT

g  5 hT·) Û@ ¸C kl). ^u –IÂÃ  -  I¡C ¦B §C Š‹·) u/(apks1) ×õ Û@ D­, #

d g 9Àq Î> 0L-). # 9Àq Î, d g  /T  d ÀqÄ> ’C ã N

†7 yz, hT ’C ã). mn, †7 yz, Û@ # hT& ú †7 "D  d,  -  I¡¢£@ d g Û@ # /T& kgj ).

# hTST  d, I¡¢£ ’C ã).  d

, I¡¢£3 Á Û@ d g #  ;'/T #  Û@ /T& ·Á). mn,  - I¡C

¦B §C Š‹p rÚ8 1˸ 9û, #  Û@

 5hT& üýY  Z). 150 cm>5 ef i>, ' ½

@ # hTS& kgš). > Î, # h

). mn, d g #  ;'/T×>  5 # h T ’C ­j -). >N kê  5 # hT 100µm

 d Ž r8 i@ ¸C ·>¹ d> # 

¿Is Àq-). mn, Ž Š‹ Ž d g # ;' /T =  5, # hT i> \ mÅ » Œ@

†7 yz, hT ¸ ’C ãB §  - I¡ 

’C ãB §³C åY  Z).

Fig. 3b ‰P†7& „K XJ d Ž 500µmÁ ^

… ef,  - I¡ ’C ·8ÿ). ‡ „Kp 150µm

 d Ž& XJ Fig. 3a Š‹p rÚY N # = #

   5 Рђ hTS “  - I¡ ’> ƒ).

‡„K ^… ef Š‹·) d>   923

Àq- Î D ,  - I¡+ ksp ef *D9‚

U †7 yz2 ap 3 yµ$ ef *D9‚ U  -

I¡+ ksap 2@ ¸C ·Á). d Ž † #

hT r8 Ž N ef †«9: d> # 

8 923 Àq Î> kê). mn, ef †«9:

 - I¡> hTS ’C ÀC ö  Z). # h T ef i> \ mÅ Û@ ! » ŒG #  Û

@ 1ËhT& kl). Û@ # = # hT& ·>

ef i> ” 150 cm >5 Õ« 9û,  - I¡> 

#  » Œ ’C ÀC ·8ÿ). > Î, k Û

@  5 # = # hT N d@ # 

923 Àq$¹ d g # ;'/T †7 yz, hT ’C ã). mn, †7 "D  d,

 - I¡ Ë ¢£@ Û@ d g # ;'/T p ef i> \ mÅ Û@  5 #  » ŒC ·8 i@ # hT ¸C ·Á).

3-3. $%&' 

Fig. 4a 100µm d Ž& ·> ‡„K ^… ef

,  5 ¤¥T Õ # = #  hT ­

’C kl). † #  hT 50 mg-N/L †7

d Ž r # 9Œ> i@ ¸C 2J). # = 

# ¶aef ef›& › H N #> d

i> 130 cm >5u N  5 ¿I¤¥T ÇȞ  5ÉÊ Š

‹·) Û@ # ;'/T  # /T& ú

¸C ·Á). #@ #> d g 923 Àq Š‹

T dC ¿Is Àq8 d g # ;'/T u H ¸C ·Á Š‹>).

Fig. 4b 400µm d Ž& ·> ‰P†7& „K XJ

 ^… ef,  5 ¤¥T Õ # = #

mg-N/L d Ž r ef # 9Œ@ rÚ2 Û

@ ¸>¹ ef † ÂÃ, d@ #  92 3 Àq-). mn, ef ƒ  i> \¯ mn ³9:

 5 ¤¥@ Õ # = #  hT ’C ­%

bb \ = » 0ï).

3-4.  ()' 

Fig. 5a ‡„K ^… d ef, † #

hT ef *D9‚ U # = #  ! ;'/T

 ­ ’C kl). † ¬@ 1.458 m3/d> d Ž

 200µm>). † # hT \¯ mn #

 = #  ! ;'/T \) # ;' Fig. 4. Effects of the liquid phase mixing on the nitrate(close symbols) and nitrite(open symbols) concentrations of the effluents out of the FBBRs with (a) sand as support media, the biofilm thick- ness of 100µµµµm, and the flow rate of 1.458 m3/d; and (b) acti- vated carbon as support media, the biofilm thickness of 400µµµµm, and the flow rate of 0.99 m3/d.

(8)

/T 38 mg-N/L >5 † # hT, 11.0 kg-N/m3d

 uH ¸C ¢ ·Á Ô 98.0 mg-N/L >5 † #

hT, # ;'/T 28 kg-N/m3d uH ¸C ·Á).

ef g  d> # = #  bb ¿Is Àqc N # = # ! ;'/T uH ¸C ·>M  5 ¤¥T ’C ãB §).

Fig. 5b ‰P†7& „K XJ ^… d ef, 

† # hT ef *D9‚ U # = #

 ! ;'/T ­ ’C kl). † ¬@ 0.99 m3/ d> d Ž 600µm>). † # hT \¯

 mn # = #  ! ;'/T \) 

# ;'/T 137 mg-N/L >5 † # hT

, 15.9 kg-N/m3d uH ¸C ¢ ·Á Ô 355 mg-N/L >5 

† # hT, # ;'/T 41.2 kg-N/m3d u H ¸C ·Á). Fig. 5a ‡„K ^… d Š‹p rÚY N,

!KhT 34.8 kg/m3 ¸3 ‡„K Š‹ 23.6 kg/m3 r i z 579 m2/m3 ef *D9‚ U †7 yz2@ ‡„K Š

‹ 1178 m2/m3 r Û@ ¸C kg N † #

hT \ mÅ  ;'/T \Œ@ Û@ ¸C ·Á).

3-5.  * 

Fig. 6a ‡„K ^… d ef, † ¬> ef

*D9‚ U # = #  ! ;'/T ­ ’

200µm>). † ¬> \¯ mn # = # 

! ;'/T \) # ;'/T ¢ 1Ë­& · Á Ô »  # ;'/T 1Ë­& ·Á Ô » ). 

¬> \¯ mn  - I¡+ \ ef g † 7 Kܬ = ef *D9‚ U yz2@ » ). Û@ hT&

kg ¢ / D, @ ef g Ë9 d, 9

23 Àq$% ef/T †7 yz2 ƒ  ôH- ). ¬> \¯ mn †7 yz2> » ¯T « Û

@ / D, # = # ;'/T \ ä

@ ef 9Œ> ef Í+ g ¸C B N>).

i@ /D, ef g # = # hT

d Ž r8 i@ ¸C kg N ef g  d>

 8 ¿Is Àq-). mn, ¬> \¯ mn † 7 Kܬ = d3 ìí !K¬> » 8 ef *D9

‚ U # = #  ! ;'/T »   5

¤¥T  ;'/T ’C ­B ).

Fig. 6b ‰P†7& „K XJ ^… d ef, 

† ¬> # = #  ef *D9‚ U ! ;'

> d Ž ‡„K ef Š‹·) Ž•– 600µm>).

¬ IKD, ef g  d> #  923

 Àq-). † ¬> \¯ mn # = #

 ! ;'/T \) ¢ # ;'/T 1Ë­

Fig. 5. Effects of the influent nitrate concentration on the volumetric nitrate(close symbols) and nitrite removal rate(open symbols) in the FBBRs with the height of 200 cm, (a) sand as support media and the biofilm thickness of 200µµµµm at the flow rate of 1.458 m3/ d; and (b) activated carbon as support media and the biofilm thickness of 600µµµµm at the flow rate of 0.99 m3/d.

Fig. 6. Effects of the influent flow rate on the volumetric nitrate(close symbols) and nitrite removal rate(open symbols) in the FBBRs with the height of 200 cm, (a) sand as support media and the biofilm thickness of 200µµµµm at the influent nitrate concentration of 50 mg-N/L; (b) activated carbon as support media and the biofilm thickness of 600µµµµm at the influent nitrate concentration of 50 mg-N/L.

(9)

& ·Á Ô »  # ;'/T 1Ë­& ·Á Ô »  ). Fig. 6a ‡„K ef, ¬> \¯ mn d3

\¯ mn ef g †7 yz2> »  N  ; '/T 1­& ·Á Ô » ). d>   923

 Àq$ N ef ! ;'/T IK ¬D g

,  5 ¤¥T  ’C ã).

3-6.  +, -  

Fig. 7a ‡„K ^… d ef, d Ž  e

f # = #  ! ;'/T ­ ’C k l). † # hT 50 mg-N/L, ¬@ 1.458 m3/d>).

8 170µm d Ž, 23.7 kg/m3 1˸C ·Á Ô ”o » ). ez ef *D9‚ U †7 yz2@ d Ž

\¯ mn ³9: +/ »  Š’C ·Á). "%º †

¬ = # hT,,  ef 9Œ,, ef *D9‚

U # = # ! ;'/T Û@ D d Ž

, ef g d3 ìí !K¬> 9Œ r Û@ ¸ C ·> N d Ž \¯ mn \). ” 40µm¾ B d Ž ef  5 # = # hT r Û

@ ¸C kg¹ ef g  d@ # = # 

¿Is Àq-). 44µm d Ž, ef Õ #

kg% d@ # , ¢ 923 Àq$ 0L e z # , +/ ¿Is Àq-).  5 ÇȞ ÉÊ H

 d Ž 44µm >53 \z d> # 

\). d Ž \¯ mn #  d> ¿Is Àq$ Î 9‚ Œ@ »  ž Î, ef *D9

 1Ë­& ·> 170µm d Ž¾B #  ef

IK ! ;'/T = ;'çŒ@ 18.6 kg-N/m3d = 99.9% uH

¸C bb kl Ô d Ž \ mÅ 9Àq Î \

= †7 ryz2 »  Á8 »  Š’C ·Á).  5

 ¿I¤¥C Hz, ef Õ ÂÃ, d> 923

 Àq$ 0L d Ž 44µm >5, d Ž \

¯ mn ef *D9‚ U †7 yz2 = ! #

;'/Tp ;'çŒ@ +/ » ). ez d@  5 #

hT 17.5 mg-N/L ¸C kg # hT 6.76 mg- N/L ¸C kg d Ž 339µm T¡Y N¾B #

  ¿Is Àq-).  5 ÇȞ ÉÊC H8T, d Ž

339µm,  5 # = # hT 9.57 mg-N/L = 14.7

mg-N/L ¸C bb kg% d@ #  ¿Is Àq-).

Fig. 7b † # hT 100 mg-N/L, † ¬@

Fig. 7a Š‹p ½@ 1.458 m3/dÁ ‡„K ^… d ef

, d Ž  # = #  ef ! ;'/

T ­ ’C kl). Fig. 7a Š‹p rÚY N, ½@ †

¬C 2J8 d Ž  mÅ †7 Kܬ = r yz2G !KhT  ½). ez † # hT

i Õ # = # hT bb 25.0 = 46.2 mg- N/L ¸C ·> d Ž 207µm¾B #  ef g

 d> ¿Is Àq-). mn, d Ž \¯ mn ef g !KhT 1Ë­& ·> d Ž 170µm, ef

 ! # ;'/T = ;'çŒ@ bb 28.2 kg-N/m3d = 75.8% 1Ë­& ·Á Ô » ). † # hT& \

0  mn #  1Ë ;'/T \ 1Ë ;'çŒ@

» ). #  ef 1Ë ;'/T 50 mg-N/L †

# hT& 2J Fig. 7a Š‹ ef 9Œ  ô H- ez 100 mg-N/L † # hT& 2J Fig. 7b

 Š‹ ef 1Ë Í }  !K¬  ôH-).

Fig. 7c ‰P†7& „K XJ ^… d ef,

d Ž  # = #  ef ! ;'/T

¬@ 0.99 m3/d>). d Ž \¯ mn d3 ìí

µm, ” 33 kg/m3 ¸C

·Á Ô ' uH ¸C B). ez ef *D9‚ U

†7 yz2@ d Ž \¯ mn ³9: +/ » 

Š’C ·Á). ½@ † # hT& 2J Fig. 7a Š‹

p rÚY N, Û@ † ¬C XJ N ef 9Œ@

Û@ ¸C kl ez ef 1Ë ;'/T& ôH 1Ë

!KhT i@ ¸C ·Á). Fig. 7a Š‹p ½> #  1 Ë ;'/T ef 9Œ  ôH-).  5 ÇȞ ÉÊC  Fig. 7. Effects of the biofilm thickness on the volumetric nitrate(close symbols) and nitrite removal rate(open symbols) in the FBBRs with the height of 200 cm, (a) sand as support media at the influ- ent nitrate concentration of 50 mg-N/L and the flow rate of 1.458 m3/d; (b) sand as support media at the influent nitrate concentration of 100 mg-N/L and the flow rate of 1.458 m3/d; (c) activated carbon as support media at the influent nitrate con- centration of 50 mg-N/L and the flow rate of 0.99 m3/d.

(10)

HY N, #  1Ë ;'/T Fig. 7a 18.6 kg-N/m3d ·)

† ¬ r×õ Û@ 12.6 kg-N/m3d ¸C ·Á ez #

  1Ë;'/T Fig. 7a 10.8 kg-N/m3d ·) ”o  11.9

kg-N/m3d ¸C ·Á). ” 230µm d Ž, k 

#  1Ë ;'/T #  1Ë ;'/Tp ' ½@

¸C kg¹ †$ #  ' Ž  7 ;' -).  5 ¿I¤¥C HY N, Fig. 7a r 5Us —@ 165µm

 Ž, d> #  923 Àq$ 0L).

4. 

^… d ef, < ef Ë › ef/T±C

H ­X ª«, )³G ½@ ô±C ÒC  Z):

(1) —@ d> $ ‡„K ^… d ef, d@ #G #  ¿Is Àq-).

(2) ‰P †7& „K XJ ^… d ef, 

$ Ž•– d@ #G #  923 Àq-).

(3)

 @ †7 ef *D9‚ U yz2  ôH-).

(4) d g ç Ó#+,  - I¡+ = ef  5

¤¥T € ’@ Ž•– d> $ ‰P ^… d ef, ƒj kê).

(5) "%º † ¬ = d Ž, † # hT

 \¯ mn # = #  ef *D9‚ U

! ;'/T \) uH ¸C ·Á).

(6) "%º † # hT = d Ž, † ¬

> \¯ mn # = #  ef *D9‚ U

! ;'/T \) 1Ë­& ·Á Ô » ).

(7) "%º † # hT = ¬, d Ž \

¯ mn # = #  ef *D9‚ U ! ; '/T \) 1Ë­& ·Á Ô » ).

© ª« 1997T ÃËÚ ºª«r  $š3 M > »X).



ap : volumetric surface area of the bioparticles CD : drag coefficient

D : effective diffusivity DC : column diameter

DW : molecular diffusivity in water, 0.09610−6m2/min dp : bioparticle diameter

f : dimensionless concentration, N/N1s g : gravitational acceleration

k : reaction rate constant

kS : liquid-solid mass transfer coefficient L : biofilm thickness

N : concentration N0 :influent concentration NI : concentration at zI

N ma x2 : maximal nitrite concentration at z2,max n : Richardson-Zaki index

Q : influent flow rate

Ret : Reynolds number, utdpρLL

s : the ratio of the reaction rate constant of k1 to k2, k1/k2 u : superficial liquid velocity

ui :particle settling velocity defined by Eq. (40) ut : terminal settling velocity of a particle VR : reactor volume

X : distance from the biofilm/media interface

x : dimensionless distance from the biofim/media interface, x/L x* : dimensionless distance from the biofim/media interface at which

the nitrite concentration of zero occurs in the biofilm x' : dimensionless distance from the biofim/media interface at which

the nitrite concentration of zero occurs in the biofilm z : distance from the reactor inlet

zI : distance from the reactor inlet at which nitrate is fully penetrated in the biofilm

zII : distance from the reactor inlet at which nitrite starts to penetrate the biofilm partially

z2, max : distance from the reactor inlet at which the nitrite concentration in the reactor is maximal

./0 1

ε : energy dissipation rate per unit mass of liquid εL : liquid holdup

εS : bioparticle holdup

δ : ratio of molecular diffusivity D1 to D2, D1/D2 µL : liquid viscosity

ρL : liquid density ρp : bioparticle density

Φ1 :

23 1 : nitrate 2 : nitrite b : bulk L : liquid-phase s : bioparticle surface



1. Painter, H. A.: Wat. Res., 4, 393(1970).

2. Shieh, W. K., Mulcahy, L. and LaMotta, E. J.: Enzyme Microb. Tech- nol., 4, 269(1982).

3. Kim., D.-S. and Song, S.-K.: Chem. Ind. Technol., 13, 35(1995).

4. Jeris, J. S., Owens, R. W., Hickey, R. and Flood, F.: J. WPCF, 49, 816(1977).

5. Walker, J. F. Jr., Hancher, C. W., Genung, R. K., Patton, B. D. and Kowalchuk, M.: Biotechnol. Bioeng., 11, 416(1981).

6. Shin, S. H., Suh, I.-S. and Chang, I. Y.: Theories and Applications of Chem. Eng., 3, 1049(1997).

7. Boaventura, R. A. and Rodrigues A. E.: Chem. Eng. Sci., 43, 2715(1988).

8. Coelhoso, I., Boaventura, R. and Rodrigues, A.: Biotechnol. Bioeng., L k1

D1N1s ---

(11)

40, 625(1992).

9. Atkinson, L. V., Harley P. J. and Hudson, J. D.: “Numerical Methods with Fortran 77: a Practical Introduction,” Addison-Wesley, Woking- ham(1989).

10. Hermanowicz, S. W. and Ganczarczyk, J. J.: Biotechnol. Bioeng., 25, 1321(1983).

11. Tsezos, M. and Benedek, A.: Wat. Res., 14, 689(1980).

12. Ngian, K.-F. and Martin, W. R.: Biotechnol. Bioeng., 22, 1843(1980).

13. Kikuchi, K.-I., Sugawara, T. and Ohashi, H.: J. Chem. Eng. Janpan,

16, 426(1983).

14. Monbouquette, H. G., Sayles, G. D. and Ollis, D. F.: Biotechnol. Bioeng., 35, 609(1990).

15. Libicki, S. B., Salmon, P. M. and Robertson, C. R.: Biotechnol. Bioeng., 32, 68(1988).

16. Fan, L.-S., Leyva-Ramos, R., Wisecarver, K. D. and Zehner, B. J.:

Biotecnol. Bioeng., 35, 279(1990).

17. Kim, D.-S., An, K.-H., Suh, M.-G., Park, T.-J. and Song, S.-K.:

HWAHAK KONGHAK, 29, 448(1991).

참조

관련 문서

In this paper we report the reactivity and mechanism of the reactions involving carbonyl ylide intermediate from the photolytic kinetic results of non-catalytic decompositions

Current Tokyo is rich in green compared to other metro cities. In some parts, the greenery has been contributed by the many inherited gardens from the Edo era to today which

웰드라인의 위치를 위치를 옮기는 옮기는 방안 방안 - 게이트 위치 변경. - 제품 두께분포 변경 -

The Joseon government designed and promulgated the Taegeukgi as a national flag for diplomatic and political purposes, but it was the independence movement that made it

In specific, better index could be calculated: attractive quality element was added to one-dimensional quality element, both of which affect the satisfaction when physical

(2000) 32) ADHD, attention deficit hyperactivity disorder; VR, virtual reality; CPT, continuous performance test; VC, virtual classroom; TOVA, Test of Variables of Attention;

bility of our experimental setup, because viscoelastic property of ppy during electrochemical deposition has been recently examined in the electrolyte solution by Muramatsu et

• 대부분의 치료법은 환자의 이명 청력 및 소리의 편안함에 대한 보 고를 토대로