• 검색 결과가 없습니다.

 Effect of Surfactant on the Properties of Tantalum Capacitor Using Soluble Polyaniline Electrolyte    

N/A
N/A
Protected

Academic year: 2022

Share " Effect of Surfactant on the Properties of Tantalum Capacitor Using Soluble Polyaniline Electrolyte     "

Copied!
6
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

       

 

 * *

() 

435-030   543

*  

449-728     38-2 (2002 3 21 !, 2003 3 12 "#)

Effect of Surfactant on the Properties of Tantalum Capacitor Using Soluble Polyaniline Electrolyte

Hye Kyong Min, Jae Kun Kim, Kwan Sik Jang* and Eung Ju Oh*

Partsnic R&D Center, 543 Dangjeong-dong, Kunpo, Kyonggi-do 435-030, Korea

*Department of Chemistry, Myongji University, San 38-2 Nam-dong, Yongin, Kyonggi-do 449-728, Korea (Received 21 March 2002; accepted 12 March 2003)

 

       .   ! "#$ %&'()

*+,- ./0[camphorsulfonic acid(CSA)- dodecylbenzenesulfonic acid(DBSA)]1 1:2 234 567(trifluoroacetic acid, 89:) ;< =#> ?. @ABA 7C trifluoroacetic acid1 D> $  

E F GH< IJ$ KL1 MNOP. QR STU V1 W> %&'()  XYZA(N-lauryl-β- aminopropionic acid, sorbitan mono-oleate)1 [> ?\, ] KL N-lauryl-β-aminopropionic acid [$ %&

'()  ^ D> $   _ `+ a b STU(98µF)L c GH(3%) dA^ eP. @A BA 71 DR `+   IJ$ dA^ MNOP\, f ;_ 567- gh_ J i _R 7jL(solvent effect) k, lA 7( ) ;<_ mn- g nBOo pq gn -_ mnK#(hydrogen bonding) rA< 6C\, XYZA1 DR `+ st$ XYZA 3lA DuL @ ABC mn1 S5 vw 3lAC %&'() xDuL_ y?! zA^ { | g nB-_ mnK#

^ } pore Oo_ STUf VR ~ /$.

Abstract−Tantalum solid electrolytic capacitors were fabricated by dip coating process into the electrolyte solutions which mixed polyaniline powder with dopants[camphorsulfonic acid(CSA) and dodecylbenzenesulfonic acid(DBSA)] respectively with the mole ratio of 1:2. This mixed powders were dissolved in solvents trifluoroacetic acid and chloroform respectively to prepare the polymer electrolyte. Tantalum electrolytic capacitors prepared with polyaniline solution dissolved in protic solvent such as trifluoroacetic acid showed a high capacitance and a low tanδ. Polyaniline electrolyte solution containing surfactant was prepared by adding N-lauryl-β-aminopropionic acid and sorbitan monooleate to polyaniline solution prepared previously.

Polyaniline electrolyte solution containing N-lauryl-β-aminopropionic acid surfactant showed a high capacitance(98µF) and a low tanδ(3%). In the case of using polyaniline dissolved in the protic solvents, a good affinity was obtained due to a hydrogen bond between hydrogens in protic solvent (electrolytic solution) and oxygens in tantalum oxide. In the case of using surfac- tants, improved capacitor characteristics was also obtained due to a increase of the affinity between surfactant having aprotic chains and hydrogens and aprotic polyaniline chain and a increase of impregnation rate of the polyaniline solution induced a hydrogen bonding between hydrogen in the surfactant and surface of the tantalum oxide.

Key words: Tantalum Solid Electrolytic Capacitors, Polyaniline, Surfactant, Protic Solvent, Hydrogen Bonding, Affinity

To whom correspondence should be addressed.

E-mail: hkmin86@hanmail.net

(2)

 41 3 2003 6

    !" #$ %& ' '(  ) *, +,*, - * . /01* 23 456 7 8 9: ;< =>*  ? ) , @ABC (SMD type)

DDE(Low ESR; Low Equivalent Series Resistance) FGH IBJ  KL4 ?+[1-3]. MN O PQ'RS TU VWXY(Al) 

 4Z . ![ \A ]^L0_ SMD `*, ) * . 456 FG A ab $^ FGH !04 ?4, %c*de (MnO2)H 'RS L 4Q'RS fgh  `*" )

* ]^L, Zi 456 FG j'J $^L+[4-6].

k lmno (MLCC) pb ) `*, 4q'r  FG

 s CtH !04 ?0_, uvFG, 4Z*, 'rFG

 A wtH !04 ?+. 2n %N   8C

K xyL zR %& jN !0  Ct&H {| ! 04 ? };  ~% €%+.

fgh  ? %N ‚&H RƒL zLj fg h 6b# U(„ Xm*L …† 4Z, ) *„ K‡L4 ? +. k ESR(!ˆ‰DE) ŠH ‹Œ zR ci Ž PQ 'RS %c*dei Ž 4Q'RS K . % ‘’

 “G”, carbon/silver l KG v'Q l 'vv ~•

”  Lj 0–— K! ˜™4 ?+[3, 7]. %c*de

 uv FG š%4 ›G% œ4 ž'Ÿ! + CtH

!04 ?, %c*de ‹ ''vv(10−1 S/cm) —R D  ¡¢9 B‡% ab £b¤, 456 <7 ¥%¦(noise)

“i §‡¨H Tq wtH !04 ? (§ 23 u v¨© R ª% «¬ ¤, '( ›GH DRL ­

—% 4 ?+. 2n '( ®¯ w° 8 5±²„ {

| ³b ‡¨ —Lj 456 <7  /01 

 % I $!,L+[2, 3, 8]. k 4'vv(100S/cm)

 ]>vQ(TCNQ ´)„  ]>vQ ! ~ 

qxDE µ)*„ !¶ '( ) *, /01* ˜ ' 23 - . ) *· 456  ESR FG% ¸¹L¬

yL0 ºL4 ?+.

%" Ž% '( 456* 2n D ¡¢9 . ¥%¦ »%

ab ¼L¬ |4 ?¤, 456 23 ‹ ESR FG% €

L¬ ½+. %N ‚tH RƒL zLj %c*de 4Q'RS ''vv! ¾¿ 'vG 4¹(„ 'RS L À% $

!¡ B%+. 'vG 4¹( 'vv %c*de 100Á %¨

— 10-500 S/cm ÂL Á ÄÅ 'RS 'vv! Æ[J Ǩ

4, ƒi 456 <7 FGH ÈbL ESR% Éʶ

/01 ‚Ë  8 456 % !,L¬ ¤, 4¹( F G¨  ÌxrÍ  w° 8 *‡¨% ‡DL¬ Î)L

CtH !04 ?+[9-15].

Ï K c*· fgh qx pore Ð= ÑÒ 23 D  ¡¢9 B‡i ‹ ÓBŠ FGH Ô fgh 4Q'RÕÖ8

„ ‚ÉL4( *× ØG· Ù^ÊÚÛH vÜÝ[Camp- horsulfonic acid(CSA), Dodecylbenzensulfonic acid(DBSA)]" ÑÞ trifluoroacetic acid . ßàs R á âAãG‚ N-lauryl- β-aminopropionic acid" sobitan monooleate„ ä!Lj 'RSH ‚ åLj fgh 4Q'RÕÖ8„ ‚ÉLæ+. ‚É· fgh 4Q 'RÕÖ8 'Z . ÓBŠH \Ñç !G Ù^ÊÚ Û 'RS âAãG‚ èi . aèi(solvent effect)„ éê ë4( +.

0oC 1 M ´c P q ÊÚÛ {¥ì" ic*cí{Y [(NH4)2S2O8] c*‚„ +Äi Ž îï(ÊÚÛ:c*‚=4:1) c* ¼ ØLj 'vG Ù^ÊÚÛ(emeraldine salt: ES)H ØGLæ+. ØG·

Ù^ÊÚÛH 0.1 N c*í{Y P 158eðš >y8ñ IG Ù^ÊÚÛ(emeraldine base: EB)H _&4, %„ ˜”n— q òå 8ó+. òå· Ù^ÊÚÛ(EB) ¹ôi vÜÝ[camphorsulfonic acid(CSA), dodecylbenzensulfonic acid(DBSA)]„ 1:2(Ù^ÊÚÛ:vÜÝ) õîï

öØ á ]a(ßàs, trifluoroacetic acid) ÷j 'vG 2 wt%

Ù^ÊÚÛ PH ‚åLj 'RS Læ+. %à vÜÝ CSA"

DBSA 1:1 îï ð=L¬ öØLæ+. âAãG‚! ä!· Ù^

ÊÚÛ 'RS øùG âAãG‚— N-lauryl-β-aminopropionic acid

„ ¨ ‚å· Ù^ÊÚÛ P 0.1-1 wt% ú¬î ä!Lj ‚å Læ4, î%uG âAãG‚— sorbitan monooleate„ Ž …† Ù

^ÊÚÛ P 0.1-1 wt% ú¬î ä!Lj ‚åLæ+. øùG âA ãG‚ . î%uG âAãG‚ *×KåûH Fig. 1 Tq½+.

2-2.     

fgh ¹ô fgh•H üU +Ä 1,600oC, 10−6 torr 4u, 4

˜”L )ƒL4 '*× øÅc*8ñ *G· c*fgh (Ta2O5) ]'Q ¡ýH GLæ+. c*fgh ]'Q ¡ýH Ù^Ê ÚÛ 'RS P 10¹e þÿ á 90oC 10¹e òå8ñ ]' Q q·Ìx @AH Læ+. þM …†H 8² >Læ¤, %

" Ž Ù^ÊÚÛ 'RSlz carbonl, Ag pastel  + Ä Lead Frame  á õLj fgh 4Q'RÕÖ8 )(„ ‚ ÉLæ+. ‚É· )( ~— Kå . õKå„ Fig. 2" 3  Tq½+. ‚É· )( 'Z, tanδ ŠH Impedance-Gain-Phase Analyzer(HP 4194A)„ %Lj \Læ+. k ]'Q z Ù^Ê ÚÛ “G¨³, ÑÒv k a Ÿ . âAãG‚  8 ±

(a) N-lauryl-β-aminopropionic acid(C12H23NHCH2CH2COOH) (b) Sorbitan monooleate

Fig. 1. Structural formula of (a) amphoteric surfactant (N-lauryl-ββββ-ami- nopropionic acid, and (b) non ionic surfactant (sorbitan monooleate).

Fig. 2. Structure of tantalum electrolytic capacitor fabricated in this study.

(3)

* Ù^ÊÚÛ ÑÒv„ Scanning Electron Microscopy(SEM, Philips XL 30) \H R —, ¹ Læ+.

3. 

fgh 4Q'RÕÖ8 œ 'Zi ‹ ÓBŠH  zR 'RSP% c*fgh(]'Q) )("  *GH !¶

c*fgh )( qx pore& – èi Ò  +

[16]. 'RS P% c*fgh )("  *GH Ô zR

øG(G a 'RSH Lj +. fgh )( '*×

 øÅc*>y8ñ c*fgh c*¡ý  ? Ã

 øG(G a„  'RS pb øG(G a )"

c*fgh )( O¯L c)" )ƒØ —R *ÍH Ô

¬ ·+[16]. L0_ ë+ œ 'Zi ‹ ÓBŠH Ô fgh 4Q'RÕÖ8„ ‚ÉL zR 'RSi c*· fgh )(

qx" *G ! 23 Ð= % %W¶ +. Ï K

 'RSi c*· fgh )( qx" *GH !8 z R 'RS P î%uG âAãG‚ . øùG âAãG‚„ ä!

Lj fgh ÕÖ8„ ‚ÉLæ+.

*G· c*fgh øG(G a— trifluoroacetic acid a Ù

^ÊÚÛH ÷j ‚å PAn/trifluoroacetic acid 'RS Pi îøG (G a— ßàs a ÷j ‚å PAn/chloroform 'RS  P  þ! ÑÒ8 á fgh 4Q'RÕÖ8„ ‚ÉLæ+.

PAn/trifluoroacetic acid" PAn/chloroform 'RSP R ‚å·

Ù^ÊÚÛ €s ¨u ''vv" fgh ÕÖ8 ‚É á )(

 'Z . ÓBŠ(tanδ)H 56 120 Hz \Læ¤, \

· ŠH Table 1 Tq½+.

PAn/trifluoroacetic acid 'RS PH R ‚É· fgh 4Q' RÕÖ8 'Z(at 120 Hz) 80µF, ÓBŠ(at 120 Hz) 20%

„ Tq½4 PAn/chloroform 'RS PH R ‚É· fgh 4 Q'RÕÖ8 'Z(at 120 Hz) 65µF, ÓBŠ(at 120 Hz)

30%„ Tq½+.

PAn/trifluoroacetic acid 'RS(45 S/cm) Pi PAn/chloroform 'R S(48 S/cm) P ¨u ''vv!  îL, ÕÖ8 ‚ É á \· FG‘ PAn/trifluoroacetic acid 'RS(45 S/cm)P ‚ É· ÕÖ8! ë+ œ 'Zi ‹ ÓBŠH ëj54 ?+.

PAn/trifluoroacetic acid P øG(G a— trifluoroacetic acid!

c*fgh )(" )ƒØH Lj *GH Ô¬ ¤, % c

*fgh qx pore – Ò „ %L¬ _&+. c*fgh )( qx pore& – Ò G% b PAn/trifluoroacetic acid ' RS P c*fgh )( qx ]è@AH ç œ

'Zi ‹ ÓBŠH Ô¬ ·+. %N ‡¨ 'RSP  Fig. 3. Mold structure of tantalum electrolytic capacitor fabricated in

this study.

Table 1. The characteristics of tantalum electrolytic capacitors using soluble polyaniline solutions composed of a protic solvent and an aprotic solvent respectively

Electrolyte Capacitance (µF) (at 120 Hz) Tan δ(%) (at 120 Hz) Conductivity (S/cm)

Protic solvent (PAn/trifluoroacetic acid) 80 20 45

Aprotic solvent (PAn/chloroform) 65 30 48

Fig. 4. Hydrogen bonding between tantalum oxide surface and polya- niline solution; (a) PAn/trifluoroacetic acid electrolyte solution, and (b) PAn/chloroform electrolyte solution.

Fig. 5. SEM photographs of the tantalum electrolytic capacitors prepared by using; (a) PAn/trifluoroacetic acid electrolyte solution, and (b) PAn/chlo- roform electrolyte solution.

(4)

 41 3 2003 6

· a" c*fghe ¨É  aèi , 'RS  P š )" c*fgh )(qx O¯L c)" )ƒ

Ø G  ¨É žª  ?+[16]. Fig. 4 c*fgh )(" øG(G, îøG(G 'RS Pe ¨ÉH Tq½+.

aèi 23 PAn/chloroform 'RSPi PAn/trifluoroacetic

acid 'RSP ‚É 4Q'R wAH nq M @

AH Ž Áï(5000) SEM ˜H <Læ¤, M ƒi„ Fig. 5

Tq½+. ¨ žª " Ž% Ù^ÊÚۏ îøG( a—

ßàsë+ øG( a— trifluoroacetic acid R8 pb )( qx pore š # % Ò  ? ¨H —  ?½+.

Ï K c*fgh )( qx pore& – PAn/trifluoroacetic acid 'RS P Ò GH ë+ !8 zLj PAn/trifluoroacetic acid 'RS P î%uG âAãG‚— sorbitan monooleate„ 0.1-1 wt%

ú¬î ä!Lj ‚å á c*fgh )(„ 'RS P þ!

fgh 4Q'RÕÖ8„ ‚ÉLæ+. k øùG âAãG‚— N- lauryl-β-aminopropinonic acid„ PAn/trifluoroacetic acid 'RS P

0.1-1 wt% ú¬î ä!Lj ‚å á Ž …† c*fgh )

(„ 'RS P þ! fgh ÕÖ8„ ‚ÉLæ+.

î%uG . øùG âAãG‚ 0.1-1wt%!  ä!· PAn/trifluoroacetic

acid 'RS PH Lj ‚É· fgh 4Q'RÕÖ8 pb

âAãG‚! ä!0  PAn/trifluoroacetic acid 'RS P

‚É· pbë+ b FGH Tq ÀH !  ?½+. Sorbitan monooleate" N-lauryl-β-aminopropionic acid!  ä!· PAn/ trifluoroacetic

acid 'RS P ‚É· fgh 'RÕÖ8 'Z . ÓB

ŠH Fig. 6i 7 Tq½+. Fig. 6 !  ?"% sorbitan monooleate 0.5 wt%„ ä! pb 'Z 90µF" ÓB 10% +3 jN #v

 îR  FGƒi„ Tq½+(56 120 Hz \). 0.5 wt%

'á #v $J£ ZŠ% Î)L4, ÓBŠv !L pÇ H Tq 0.5 wt% #v! !C µ #v H V  ?½+. Fig. 7

v %&!0 N-lauryl-β-aminopropionic acid„ 0.5 wt% ä!

pb 'Z 98µF" ÓB 3% FG !C µ ƒi„ ëj 5½¤, 0.5 wt% #v! µ #v H V  ?½+.

'RS P 'vG 4¹(— Ù^ÊÚÛi vÜÝ, k Ù^ÊÚ Ûi Kå *GH !0A )ƒØH !,L¬ L âAã G‚— sorbitan monooleate" N-lauryl-β-aminopropionic acid„ ä!L j ‚åLæ4, %À âAãG‚„ ä!L0  'RSP ‚ É ÕÖ8 FGi î'Lj Ǩ· ƒiŠH Tq½¤, î'

 ƒi„ Table 2" Fig. 8 Tq½+. âAãG‚ N-lauryl-β- aminopropionic acid ( V)*— lauryl É îÅG *i ø G(— )„ Ñ]L4 ? îÅG— Ù^ÊÚÛ 5*i Kå

Fig. 6. Capacitor characteristics as a function of a concentration of non ionic surfactant (sorbitan monooleate) in a PAn/trifluoroacetic acid electrolyte solution; (a) Capacitance (µµµµF), and (b) Loss tan δ δ δ (%).δ

Fig. 7. Capacitor characteristics as a function of a concentration of amphoteric surfactant (N-lauryl-ββββ-aminopropinonic acid) in a PAn/trifluoroacetic acid electrolyte solution; (a) Capacitance (µµµµF), and (b) Loss tan δδδδ (%).

(5)

*GH Ô ð8 c*fgh )(" )ƒØH   ?+. >A

 sorbitan monooleate pb øG(— )„ Ñ]L4 ? c*f gh )(" )ƒØ !,L âAãG‚ ¹((Q +! + 4, k î%uGÁ Ù^ÊÚÛ 5*i *G% Î)L À

 ë—+. 2n N-lauryl-β-aminopropionic acid! ä!· pb (c)

! sorbitan monooleate! ä!· pb (b) ë+ FGA #, Ǩ

· ŠH Ô¬  À%+. Fig. 9 c*fghi âAãG‚— N- lauryl-β-aminopropionic acid, PAn/trifluoroacetic acid 'RS Pi

¨ÉH Tq½+.

Fig. 10 î%uG âAãG‚ . øùG âAãG‚„ ä! 'R

S P ‚å 4Q'RÕÖ8 wAH âAãG‚„ ä!L 0  'RS P wAi î'Lj Tq½+. âAãG‚„

- pb (b)" (c) -0  pb (a) ë+ pore – # % ÑÒ·

ÀH !  ?+. k øùG âAãG‚— N-lauryl-β-aminopropionic acid! ä!· 'RP P )( (c) î%uG âAãG‚—

sorbitan monooleate! ä!· pb (b) ë+ # % ÑÒ ‡¨H ! 

?½+. %" Ž ƒi 2n âAãG‚ N-lauryl-β-aminopropionic acid ( V)*— lauryl É îÅG *i øG(— )„

Ñ]L4 ? îÅG— Ù^ÊÚÛ 5*i Kå *GH Ô

ð8 c*fgh )(" )ƒØH R pore qx ÑÒ.%

!L ÀH —  ?½+.

'vG4¹(— Ù^ÊÚÛ 'RSH Lj ë+ œ 'Z i ‹ ÓBŠH Ô fgh 4Q'RÕÖ8„ ‚ÉL zR

Ù^ÊÚÛ 'RS (Q ''vv„ Ǩ8 z ¥Í/_ Ê 0n, Ù^ÊÚÛ 'RS Pi c*fghe *GH Ô z

øG(G a, ä!‚ •1 . 2p * G[H Ô a ~

% K¶ +.

Fig. 8. Capacitor characteristics appling PAn/trifluoroacetic acid elec- trolyte solution using (a) no surfactant, (b) non ionic surfactant (sorbitan monooleate), (c) amphoteric surfactant (N-lauryl-ββββ-ami- nopropinonic acid); (a) Capacitance (µµµµF), and (b) Loss tan δδδδ(%).

Fig. 9. The interaction between amphoteric surfactant (N-lauryl-ββββ-ami- nopropinonic acid) added PAn/trifluoroacetic acid electrolyte solution and tantalum oxide.

Fig. 10. SEM photographs of the tantalum electrolytic capacitors prepared by using; PAn/trifluoroacetic acid electrolyte solution (a) no surfactant, (b) con- taining non ionic surfactant (sorbitan monooleate), and (c) containing amphoteric surfactant (N-lauryl-ββββ-aminopropinonic acid).

Table 2. The characteristics of tantalum electrolytic capacitors in accordance with a kind of surfactant added in polyaniline solution base trifluoroacetic acid

Electrolyte Capacitance(µF)

(at 120 Hz)

tan δ(%) (at 120 Hz)

no surfactant 80 20

containing surfactant (sorbitan monooleate) 90 10 containing surfactant

(N-lauryl-β-aminopropionic acid)

98 3

(6)

 41 3 2003 6

acid" îøG(G a— ßàs ÷j 'RS PH ‚åLæ +. k øG(G a ÷j ‚å 'RS P øG(G âAã G‚" î%uG âAãG‚„ ä!Læ¤, âAãG‚ #v ±*

 23 PAn/trifluoroacetic acid 'RS PH  fgh 'RÕ Ö8„ ‚ÉLæ+. %& )(  'Z . ÓBŠH \L j +Ä ƒ4H ½+.

(1) PAn/chloroform 'RS PH Lj ‚É fgh 4Q'R ÕÖ8 'Z 65µF(at 120 Hz)i ÓBŠ 30%(at 120 Hz)H  Tq½¤, PAn/trifluoroacetic acid 'RS PH  pb '

Z 80µF(at 120 Hz)i ÓBŠ 20%(at 120 Hz)H Tq½+. %N

ƒi øG(G a„ LæH pb øG(G a" c*fgh e )ƒØ  ¨É% 506 îøG(G a„ 

pbë+ fgh )( qx pore – ÑÒ% 57H V  ?+.

(2) c*fgh )( qx pore – 'RS P Ò GH ë + !8 zLj PAn/trifluoroacetic acid 'RS P øùG â AãG‚— N-lauryl-β-aminopropionic acid" î%uG âAãG‚—

sorbitan monooleate„ Ù^ÊÚÛ P 0.1-1 wt% ú¬î ä!L j ‚å á fgh 4Q'RÕÖ8„ ‚ÉLæ+. î%uG âAã G‚„ ä! 'RP pb 'Z 90µF(at 120 Hz)i ÓBŠ

10%(at 120 Hz)H Tq½4, øùG âAãG‚„ ä! pb 

Z 98µm(at 120 Hz)i ÓBŠ 3%(at 120 Hz)„ Tq½+. âAã G‚ N-lauryl-β-aminopropionic acid ( V)*— lauryl É

îÅG *i øG(— )„ Ñ]L4 ? îÅG— Ù^ÊÚÛ 5

*i Kå *GH Ô ð8 c*fgh )(" )ƒØ H R pore qx ÑÒ.% !L ÀH —  ?½+.



ESR(m8) : equivalent series resistance tanδ(%) : loss tangent

LC(µA) : leakage current CAP(µF) : capacitance σ(S/cm) : conductivity

tion Conditions for Nb2O5 Thin Film by the Robust Design,” J.

Korean Ind. Eng. Chem., 11(5), 535-540(2000).

2. Nishino, A., “Capacitors: Operating Principles, Current Market and Technical Trends,” J. Power Sources, 60, 137-142(1996).

3. Hori, Y., “Recent Technological Trend of Capacitor,” NEC Technical Report, 49(10), 68-71(1996).

4. Mitsui, K. and Kumisawa, K., “Condenser Review,” 45(2), 84-86(1993).

5. Energy Devices Division, “Resin Mold Type of Tantalum Capaci- tor,” NEC Co., 3-9(2000).

6. “Tantalum Capacitors: A 1998-2002 Technical-Economic Analysis,”

Paumanok Publications, Inc., North Carolina(1998).

7. Yamuchi, Y., “A Trend of Tantalum Capacitor as an Anode Device,”

Electrochemistry Symposium, Janggang Technical Science Univ., 43-47(1998).

8. Harada, D., “Healing Mechanism of NEO Capacitor,” NEC Techni- cal Report, 49(10), 82-85(1996).

9. Fukuda, M., Yamamoto, H. and Isa I., “Solid Electrolyte Capaci- tor,” U.S.Patent No. 4,780,796(1988).

10. Tanba, S. and Taketani, Y., “Condenser Review,” 45(2), 57-60(1993).

11. Kudoh, Y., Akami, K. and Matsuya, Y., “Solid Electrolytic Capaci- tor with Highly Stable Conducting Polymer as a Counter Electrode,”

Synth. Met., 102, 973-977(1999).

12. Sakata, K., Kobayashi, A. and Fukami T., “Method of Manufactur- ing Solid Electrolytic Capacitor,” U.S.Patent No. 5,457,862(1995).

13. Kudoh, Y. and Kojima, T., “Tantalum Solid Electrolytic Capacitor with Polypyrrole Electrolyte Prepared by Chemical Polymerization using Aqueous Solution,” Denki Kagaku, 64(1), 41-47(1996).

14. Kazuhiko, F. and Arai, S., “Method of Manufacturing Solid Electro- lytic Capacitor,” Japan Patent No. 10-303080(1998).

15. Larmat, F., Reynolds, J. R. and Qiu, Y. J., “Polypyrrole as a Solid Electrolyte for Tantalum Capacitors,” Synth. Met., 79, 229-233(1996).

16. Jang, K. S., Min, H. K. and Oh, E. J., “Fabrication and Character- ization of Tantalum Electrolytic Capacitors Based on Soluble Poly- aniline Electrolyte,” Korean J. Appl. Phys., 12(5), 444-449(1999).

참조

관련 문서

There are four major drivers to the cosmetic appearance of your part: the part’s geometry, the choice of material, the design of the mold (or tool), and processing

• 대부분의 치료법은 환자의 이명 청력 및 소리의 편안함에 대한 보 고를 토대로

• 이명의 치료에 대한 매커니즘과 디지털 음향 기술에 대한 상업적으로의 급속한 발전으로 인해 치료 옵션은 증가했 지만, 선택 가이드 라인은 거의 없음.. •

12) Maestu I, Gómez-Aldaraví L, Torregrosa MD, Camps C, Llorca C, Bosch C, Gómez J, Giner V, Oltra A, Albert A. Gemcitabine and low dose carboplatin in the treatment of

Levi’s ® jeans were work pants.. Male workers wore them

성제는 음이온성 계면활성제(anionic surfactant), 양이온성 계면활성제 (cationic surfactant) 혹은 양쪽성계면활성제(amphoteric surfactant)의

A photoresist was used as an etching mask during the aluminum etching process, where the mixture of phosphoric acid, acetic acid, nitric acid, a nonionic surfactant and water

According to the impedance and SEM analysis results on the tantalum condenser pyrolytically decomposed 3 times with 30 wt% manganese nitrate aqueous solution, it was