• 검색 결과가 없습니다.

Introductory Thermondynamics - Thermodynamic system

N/A
N/A
Protected

Academic year: 2022

Share "Introductory Thermondynamics - Thermodynamic system"

Copied!
24
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

Advanced Physical Metallurgy Advanced Physical Metallurgy

Phase Phase Equilibria Equilibria in Materials in Materials

EunEun SooSoo ParkPark

Office: 33-316

Telephone: 880-7221 Email: espark@snu.ac.kr

2009 fall

09.10.2009

(2)

2

- Equilibrium

CHAPTER 1

Introductory Thermondynamics - Thermodynamic system

Contents for previous class

: Isolated/closed/open system

- Gibbs and Helmholtz free energies

= 0 dG

The properties of the system-pressure, temperature, volume and concentrations-do not change with time.

No desire to change ad infinitum

Lowest possible value of Gibb’s Free Energy

Helmholtz free energy : F=E−TS

Useful when V is constrained during thermodynamic process.

Gibbs free energy : G=E +PV-TS=H-TS

Useful when P is constrained during thermodynamic process.

(3)

CHAPTER 1

Introductory Thermondynamics - Four laws in thermodynamics

Contents for previous class

- Zeroth law : 열역학적 평형

- 열역학적 평형은 열적 평형(열교환과 온도와 관계)과 역학적 평형(일교환과 압력 같은 일 반화된 힘과 관계)과 화학적 평형(물질교환과 화학퍼텐셜과 관계)을 포함한다

- First law: : 에너지 보존 법칙 - Second law : 엔트로피

- Third law of thermodynamics : 절대 0 도

The total entropy of any isolated thermodynamic system tends to increase over time, approaching a maximum value.

q S = T

The entropy of all system and of all states of a system is zero at absolute zero.

( i i) dE =δQδw d+μ N

= th + config S S S

w k S = ln

- Single component system/Binary system

(4)

4

* Binary System (two component) Æ A, B

- Mixture ; A – A, B – B ; Æ 각각의 성질 유지, boundary는 존재, 섞이지 않고 기계적 혼합

A B

* Single component system One element (Al, Fe), One type of molecule (H2O)

: 평형 상태 압력과 온도에 의해 결정됨

: 평형 상태 압력과 온도 이외에도 조성의 변화를 고려

(5)

- Solution ; A – A – A ; Æ atomic scale로 섞여 있다. Random distribution A – B – A Solid solution : substitutional or interstitial

- Compound ; A – B – A – B ; Æ A, B 의 위치가 정해짐, Ordered state

B – A – B – A

(6)

ruthenium 루테늄 《백금류의 금속 원소;기호 Ru, 번호 44》 6

Solid Solution vs. Intermetallic Compounds

Crystal structure

Surface

Pt0.5Ru0.5 – Pt structure (fcc) PtPb – NiAS structure

partial or complete solid solution Alloying: atoms mixed on a lattice

(7)

Solid Solution vs. Intermetallic Compounds

Pt0.5Ru0.5 – Pt structure (fcc) PbPt – NiAS structure

(8)

8

• Solid solution:

– Crystalline solid

– Multicomponent yet homogeneous

– Impurities are randomly distributed throughout the lattice

• Factors favoring solubility of B in A (Hume-Rothery Rules) – Similar atomic size: ∆r/r ≤ 15%

– Same crystal structure for A and B

– Similar electronegativities: A χB| ≤ 0.6 (preferably ≤ 0.4) – Similar valence

If all four criteria are met: complete solid solution

If any criterion is not met: limited solid solution

(9)

complete solid solution limited solid solution

(10)

10

CHAPTER 1 & 2

Contents for today’s class

- Chemical potential and Activity

- Gibbs Free Energy in Binary System

- Binary System

Ideal solution and Regular solution

- Classification of phase transition

- Gibbs Free Energy as a Function of Temp.

- Pressure Effects

- Driving force for solidification

- Single component system

(11)

TS H

G = −

PV E

H = +

System Condensed

E for

H

H : Enthalpy ; Measure of the heat content of the system

E : Internal Energy, Kinetic + Potential Energy of a atom within the system Kinetic Energy :

Atomic Vibration (Solid, Liquid)

Translational and Rotational Energy in liquid and gas.

Potential Energy : Interactions or Bonds between the atoms within the system T : The Absolute Temperature

Relative Stability of a System Gibbs Free Energy

(12)

12

Single component system

One element (Al, Fe)

One type of molecule (H2O)

Fe C

(1) Gibbs Free Energy

as a Function of Temp.

TS H

G = −

Fe: α γ δ Liq.

(13)

Draw the plots of (a) Cp vs. T, (b) H vs. T and (c) S vs. T.

= ⎜

P

P

C H

T =

298

T

H C dTP

=

0

T CP

S dT

T

How is Cp related with H and S?

H = 0 at 298K for a pure element in its most stable state.

H = ?

S = ? P = ⎜

P

C S

T T

Enropy : q S = T

2

+ +

= a bT CT CP

(경험식 above room temp)

(14)

14

P dP dT G

T dG G

P T G G

T P

+

=

= ( , )

SdT VdP

SdT TdS

VdP PdV

PdV TdS

dG

TS d PV

d dE TS

d dH dG

TS H

G

=

+

+

=

+

=

=

=

) ( )

( )

(

Compare the plots of H vs.T and G vs. T.

H T

T G P V

S G T

G

P T

P

=

=

=

]

1) (

) ( [ ,

,

+

=

=

1 0

1

0 0

0 0

0 1

1, ) ( , ) ( , ) ( , )

( P

P

T

T S P T dT dP

P T V T

P G T

P G

SdT VdP

dG

(15)

• Which is larger, HL or HS?

• HL > HS at all temp.

• Which is larger, SL or SS?

• SL > SS at all temp.

Gibbs free energy of the liquid

decreases more rapidly with increasing temperature than that of the solid.

• Which is larger, GL or GS at low T?

L S S L

Gibbs Free Energy as a Function of Temp.

(16)

16

Considering P, T

+

=

=

=

1 0

1 0 0

0 0 1

1, ) ( , ) ( , ) ( , )

(

)

, (

P P

T

T S P T dT dP

P T V T

P G T

P G

SdT VdP

dG

P T G G

G

T (K)

800 1300

graphite diamond

2.9 kJ

300

P = 1 bar

S(graphite) = 5.74 J/K, S(diamond) = 2.38 J/K,

G

T(K) gas

liquid

0

phase transformation

T S G

P

⎟ =

⎜ ⎞

S(water) = 70 J/K S(vapor) = 189 J/K

(17)

Different molar volume 을 가진 두 상이 평형을 이룰 때 만일 압력이 변한다면 평형온도 T 또한 압력에 따라 변해야 한다.

α,β 상이 평형이라면

dT S dP V dG

dT S dP V dG

β β

β

α α

α

=

=

β

α dG

dG =

At equilibrium,

p c

m n

f = = +2

α→γ 의 경우 ; ∆V (-), ∆H(+)

Δ

γ →liquid 의 경우; ∆V (+), ∆H(+)

>0 Δ

= Δ

V T

H dT

dP

eq

- Clausius-Clapeyron Relation :

(applies to all coexistence curves)

Fcc (0.74)

Bcc (0.68)

hcp (0.74)

(2) Pressure Effects

이므로 여기서

eq eq

T S H

V S V

V S S dT

dP

= Δ Δ

Δ

= Δ

=

α β

α β

V T

H dT

dP

eq

eq Δ

= Δ

(18)

18

(19)

T

m

T G L Δ

= Δ

L : ΔH = HL – HS (Latent heat) T = Tm - ΔT GL = HL – TSL

GS = HS – TSS

ΔG = Δ H -T ΔS ΔG =0= Δ H-TmΔS ΔS=Δ H/Tm=L/Tm

ΔG =L-T(L/Tm)≈(LΔT)/Tm

(eq. 1.17)

Driving force for solidification

(20)

20

4 Fold Anisotropic Surface Energy/2 Fold Kinetics, Many Seeds

4. Solidification

: Liquid Solid

(21)

4.1.1. Homogeneous Nucleation

L V L

S V G

V

G1 = ( + ) G2 = VSGVS +VLGVL + ASLγSL

L V S

V G

G ,

SL SL

S V L

V

S

G G A

V G

G

G = − = − − + γ

Δ

2 1

( )

r G

r

G = − 4 π

3

Δ + 4 π

2

γ

Δ

: free energies per unit volume

for spherical nuclei (isotropic) of radius : r

(22)

22

4.1.1. Homogeneous Nucleation

Fig. 4.2 The free energy change associated with homogeneous nucleation of a sphere of radius r.

r < r* : unstable (lower free E by reduce size) r > r* : stable (lower free E by increase size) r* : critical nucleus size

Why r* is not defined by ΔGr= 0?

r* dG=0

Unstable equilibrium

(23)

Driving force for solidification

T

m

T

G = L Δ

Δ

(24)

24

Although nucleation during solidification usually requires

some undercooling, melting invariably occurs at the equilibrium melting temperature even at relatively high rates of heating.

Why?

SV LV

SL

γ γ

γ + <

In general, wetting angle = 0 No superheating required!

4.1.4. Nucleation of melting

(commonly)

참조

관련 문서

b) Endterm: again 5 to 10 topics from the list + a short oral discussion.. Topics List for Siegmar’s Lectures 1.) What is a crystal?.. 2.) Why are crystals so important for

그늘 에 주차된 자동차의 온도와 햇빛이 비치는 곳에 주차된 자동차의 온도가 다르다.. 불과 가까운 쪽에서 불에서 먼

상기 신입생 장학금 외에도 본교는 신입생장학금-재학생장학금-해외연수장학금-대학원진학장학금에 이르는 전주기 장학제도를 운영하고 있으며, 다양한 교외장학금

[r]

캐나다정부간행물목록(Weekly checklist of Canadian government publications) 에 수록된 자료 중 Folder자료, 인구센서스, 전화번호 자료 등을 제외한

Component ratio and solid content of solution used in the duration time experiment by addition ratio of coco betain.. Component ratio and solid content of solution used

- The final announcement of personal research will be made by the students to select research themes on urban form and spatial structure and present them in PPT in small

for a future of work that does not yet exist, careers that have not yet been invented, an economy that prizes things not yet created, and that puts STEAM into the