• 검색 결과가 없습니다.

Surface plasmon-polaritons (SPP)

N/A
N/A
Protected

Academic year: 2022

Share "Surface plasmon-polaritons (SPP)"

Copied!
35
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

Dispersion relation of surface plasmon-polaritons

(2)

Surface plasmon-polaritons (SPP)

Water drop

gravity

Surface tension

Can light flow down on the surface?

EM force

Frequency of light Viscosity of liquid

metal Light

Dielectric

Surface plasmon-polaritons?

(3)

Plasmonics: the next chip-scale technology

limit

e limit

 Micro-optics : Display and Sensors  Holography, LCD display, LEDs

 Nano-optics : Beyond the diffraction-limit  Surface-plasmon photonics

(4)

Plasmon = plasma wave

(5)

 Definitions: collective excitation of the free electrons in a metal

 Can be excited by light: photon-electron coupling (polariton)

 Thin metal films or metal nanoparticles

 Bound to the interface (exponentially decaying along the normal)

 Longitudinal surface wave in metal films

 Propagates along the interface anywhere from a few microns to several millimeters (long range plasmon) or can be extremely confined in nanostructures (localized plasmon)

Surface plasmons

(Gary Wiederrecht, Purdue University)

Note: SP is a TM wave!

(6)

표면 플라즈몬 vs. 표면 플라즈몬 폴라리톤

• 표면 플라즈몬 (Surface Plasmon, SP)

– 금속표면의 전하(자유전자) 진동 → 표면 플라즈마 – 양자화된 표면 플라즈마 진동 → 표면 플라즈몬

e1z

e2z

Metal Dielectric

– – – –

m

d

+ +

+ + + +

x z

y

6

TM pol.

• 표면 플라즈몬 폴라리톤 (Surface Plasmon Polariton, SPP)

– 표면 플라즈몬 (자유전자 진동)과 전자기파가 결합되어 있는 상태  SPP – 금속과 유전체의 경계면을 따라 진행

– 금속 표면에 수직한 TM 편광 특성 – 전송거리는 수십~수백 mm로 제한

(7)

Local field intensity depends on wavelength

(small propagation constant, k) (large propagation constant, k)

(8)

Plasmons in the bulk oscillate at p determined by the free electron density and effective mass

Plasmons confined to surfaces that can interact with light to form propagating “surface plasmon polaritons (SPP)”

Confinement effects result in resonant SPP modes in nanoparticles

+ + +

- - -

+ - +

k

Plasma oscillation = density fluctuation of free electrons

0 2

 

m

drude Ne

p

0 2

3 1

 

m Ne

drude

particle

Bulk plasmons

Surface plasmon polaritons

Localized plasmons

m d sp

m d

k c

 

 

 

(9)

Dispersion relation for bulk plasmons

( ) k

  

• Dispersion relation:

Bulk plasmons

(10)

Let’s solve the curl equations for TE & TM modes with boundary conditions

TE mode TM mode

surface plasmon plaritons

Dispersion relation for surface plasmon polaritons

( ) (0, , 0), ( ) ( , 0, ) (0) (0)

(0) (0)

i yi i xi zi

yd ym

xd xm

E z E H z H H

E E

H H

( ) ( , 0, ), ( ) (0, , 0)

(0) (0)

(0) (0)

i xi zi i yi

yd ym

xd xm

E z E E H z H

H H

E E

0

0

( , , ) ( ) : ( 0) & ( 0) ( , , ) ( )

xi

xi

jk x

i i i i i

jk x

i i i i

H i E E x y z E z e i d z i m z

E i H H x y z H z e

 



 

         

 

     

   

   

(11)

surface plasmon plaritons

TE modes :

( ) (0, , 0)

( ) ( , 0, )

i yi

i xi zi

E z E

H z H H

0 0 0

0 0 0

0

xi zi xi

i i i i yi xi zi i yi

yi yi

zi

i i xi xi

yi xi

zi xi

H H H

H i E i E ik H i E

z x z

E E

E i H E i H i H

y z z

E E

i H ik E

x y

     

  



  

          

  

 

          

  

 

    

 

 

 

yii0Hzi

2

2 2

2 yi ( 0 i xi) yi 0

E k k E

z

We want wave solutions propagating in x-direction, but confined to the interface with evanescent decay in z-direction.

 

( ) jk xxi k zzi : ( ), ( ); Re 0

yi i zi

E zA e ei d  i mk

0

0

( ) x z

yi zi ik x k z

xi xi i

E k

i H H z iA e e

z 



    

(0) E (0) & (0) (0)

yd ym xd xm

EHH

& ( ) 0

d d d zd zm

AA A kk

Curl equation

Boundary cond.

d m

0

AA

No surface modes exist for TE polarization !

(12)

TM modes :

( ) ( , 0, )

( ) (0, , 0)

i xi zi

i yi

E z E E

H z H

surface plasmon plaritons

zm zd

m d

k k

xm xd

EE

ym yd

HH

xm m ym

zm

H E

k  

yd d

ym zd m

zm k H

k H

) ,

0 ,

(iiExiiiEzi )

, 0 ,

(ikziHyi ikxiHyi

xi i yi

zi

H E

k  

xd d yd

zd

H E

k  

(13)

• For any EM wave:

2

2 2 2

i x zi x xm xd

k k k , where k k k

c

 

        

m d x

m d

k c

 

 

 

SP Dispersion Relation

surface plasmon plaritons

TM modes :

(14)

1/ 2

' "

m d

x x x

m d

k k ik

c

 

 

 

       

x-direction:

For a bound SP mode:

kzi must be imaginary: m + d < 0

k’

x

must be real: 

m

< 0 So,

2 1/ 2

'

i

zi zi zi

m d

k k ik

c

 

 

        

z-direction:

2

2 2

zi i x

k k

c

 

   

 

' "

m m

i

m

    

'

m d

   

2 2

2 2

zi i x x i x i

k k i k k

c c c

  

 

 

 

                

+ for z < 0 - for z > 0

TM modes :

surface plasmon plaritons

(15)

   

   

 

2 1

" 2 4

2

" 2 2

1

" 2 2

'

"

2 1

" 2 4

2 2 1

" 2 2

' '

) 2 (

) 2 (

d m e

e

d m m

d m x d

d m e

e m

d m x d

k c k c

   

' 2 " 2 '

2

, e m m d m

where       

1/ 2

' " m d

x x x

m d

k k ik

c

 

 

 

       

metals, of

most in

and ,

,

0

' ' "

'

m m

d m

m

   

   

,

 

' 2

"

2 / 3

' '

"

2 / 1

' ' '

2

m

m d

d d m x

d m

d x m

k c k c

 

 

 

 

 

 

' "

m m

i

m

    

surface plasmon plaritons

(16)

 

" 1 " ' 1 2' 3 / 2 1"' 2

1 2 1

The length after which the intensity decreases to 1/e :

2 , where

i x x

2( )

L k k

c

  

  

 

      

Propagation length

surface plasmon plaritons

(17)

Plot of the dispersion relation : For ideal free-electrons

2 2

1 )

( 

 

m   p

m d x

m d

k c

  

 

 

• Plot of the dielectric constants:

• Plot of the dispersion relation:

d p sp

d m

ω

ω

 

1 , k

, When

x

2 2 2 2

) 1

(

) (

p d

d p sp

x k c

k   

 

 

surface plasmon plaritons

(18)

Surface plasmon dispersion relation:

2 / 1

 

 

 

d m

d m

x c

k

 

p

d p

 1

Re k

x

real kx real kz

imaginary kx real kz

real kx

imaginary kz

d

ck

x

Bound modes Radiative modes

Quasi-bound modes

Dielectric:

d

Metal: m = m'+

m"

x z

'm > 0)

d < 'm < 0)

('m < d)

2 2 2 2

p c kx

Surface plasmon dispersion relation

2 1/ 2 i zi

m d

k i

c

 

 

    

surface plasmon plaritons

(19)

2 / 1

 

 

 

d m

d x m

k c

2 2 2 2

2 2 3 3

1 1

p p

m   i  

    

 

Dispersion relation for bulk and surface plasmons

d p sp

d p d

p d

p

m ω ω ω

 

 

 

 

 

1 , 1 1

When

2 2

2 2

2 2

Cut-off frequency of SP

surface plasmon plaritons

(20)

2 2 2 2 ' "

2 2 3 3

1

p p

m m i m B   i  

    

Ag/air, Ag/glass

surface plasmon plaritons

(21)

Silver(Ag) dispersion

0 10 20 30 40 50 60

1 2 3 4 5

light line air

E [eV]

kx [um-1]

SP Ag/air

SP Ag/glass light line glass

15001200 900 600 300

0.1 1 10 100

[nm]

L [um]

Gold(Au) dispersion

0 5 10 15 20 25 30 35 40

1 2 3 4 5

light line air

E [eV]

kx [um-1]

SP Au/air

SP Au/glass

light line glass

0.1 1 10 100

15001200 900 600 300

L [um]

[nm]

Copper(Cu) dispersion

0 10 20 30 40 50 60

1 2 3 4 5

E [eV]

SP Cu/glass light line glass

kx [um-1]

SP Cu/air light line air

0.1 1 10 100

15001200 900 600 300

0.1 1 10 100

15001200 900 600 300

L [um]

[nm]

L [um]

[nm]

For noble metals : J&C measured constants

(22)

Very small SP wavelength

vac=360 nm

X-ray wavelengths at optical frequencies

Ag SiO2

surface plasmon plaritons

(23)

Penetration depth:

' 1

At large x ( m d ), z x and zi .

x

k k ik

      k Strong confinement on the interface

At low (kxm'  d ), z m' in air : Larger Ez component

x

E i

E   

Smaller Ez component

'

1 in metal :

z

x m

E i E

Goooooooood waveguide!

surface plasmon plaritons

1/ 2

' "

m d

x x x

m d

k k ik

c

 

 

 

       

2 2 2

2 2 i

zi i x

m d

k k

c c

  

  

 

   

               

2 1/ 2 , ,

,

1 1 /

d m

d m

m d

zd km

z k c

 

 

 

        

At  = 633 nm,

for silver (Ag) : zm = 24 nm in Ag and zd = 390 nm in air, for gold (Au) : zm = 27 nm in Au and zm = 342 nm in air.

( : , : - )

z x

E  iE airi metal i

(24)

surface plasmon plaritons

xm xd

E E

ym yd

H H

xm m ym

zmH E

k 

xi i yi

ziH E

k 

xd d yd

zdH E

k 

(ik Hzi yi, 0,ik Hxi yi)  ( iiExi, 0,iiEzi)

xi yi i zi

k H   E k Hxm ym  mEzm

xd yd d zd

k H   E m zm d zd

xm xd

E E

k k

zm zd

m d

k k

x xm xd

k k k

2

2 2 2

i x zi

k k k

c

 

  

mEzm dEzd

DzmDzd

xi i yi

ziH E

k 

xi yi i zi

k H   E

ym yd

H H

zi x

x zi

E k

E   k

xm xd

E E

1/ 2

' " m d

x x x

m d

k k ik

c

 

 

2 2

2

zi x i

i

m d

k j k

c j c

      

 

    

2

zi m d

x i

E j

E

 

  

' 1/ 2

' 1/ 2

/ /

zd m d x

zm d m x

E j E

E j E

 

 

 

 

(25)

surface plasmon plaritons

(26)

Another representation of SP dispersion relation

2 ' "

( )

/

m m m

p p

k c

   

   

surface plasmon plaritons

(27)

Generalization :

Surface Electric Polaritons and Surface Magnetic Polaritons

: Energy quanta of surface localized oscillation of electric or magnetic dipoles in coherent manner

Surface Electric Polariton (SEP) Surface Magnetic Polariton (SMP)

+q -q +q -q N S N S

E  

H

Coupling to TM polarized EM wave Coupling to TE polarized EM wave

Common Features

- Non-radiative modes → scale down of control elements - Smaller group velocity than light coupling to SP

- Enhancement of field and surface photon DOS

(28)

Generalization :

Surface Electric Polaritons and Surface Magnetic Polaritons

1 2 2 1 1 2

2 2 0

2 1

' ' ( ' ' ' ' ) " "

' ' ', '

SEP       k O  

 

 

,1 ,2

1 1 2 2

, 2 2 0

2 1 1 2

' ( ' ' ' ' ) " "

, ,

' ' ' ' ' '

SEP SEP

i

SEP i      k O  

 

Dispersion Relation & Decay Constants

"/ ' , "/ '(1,1) ,

For

     {

J. Yoon, et al., Opt Exp 2005.

(29)

In Summary

1/ 2 d m

SPP

d m

k c

  

 

 

     

Dispersion relations

2 2

2 2 2 2

2 2

( ) 1

1 /

p p

m

p

i  

      

 

          

 

Permittivity of a metal

(30)

Type-A

- Low frequency region (IR) - Weak field-confinement

- Most of energy is guided in clad - Low propagation loss

clad sensitive applications

SPP waveguides applications

Type-A : low k

H. Won, APL 88, 011110 (2006).

(31)

Type-B

- Visible-light frequency region - Coupling of localized field

and propagation field - Moderated field enhancement

Sensors, display applications

Extraordinary transmission of light

Nano-hole

Type-B : middle k

(32)

Type-C

- UV frequency region - Strong field confinement - Very-low group velocity

Nano-focusing, Nano-lithography

SP-enhanced LEDs

n-GaN

p-GaN (20nm, 120nm) Ag (20nm)

QW QW

2

0

1 1

( ) 2 ( )

R f i  

  

  p E

SE Rate :

Electric field strength

of half photon (vacuum fluctuation)

Photon DOS

(Density of States)

Type-C : high k

Light emission

(33)

Importance of understanding the dispersion relation : Negative group velocity

Re k

x

SiO2

Si3N4

1 SiO2 p

4

1

Si3N p

SiO2

Si3N4

Al

 0 dk d

 0 dk d

(34)

Importance of understanding the dispersion relation : Total external reflection

Slow Propagation, Anomalous Absorption, and Total External Reflection of Surface Plasmon Polaritons in Nanolayer Systems

(35)

Importance of understanding the dispersion relation :

Broadband slow and subwavelength light in air

참조

관련 문서

Dispersion relation for TE modes in a planar dielectric waveguide. Dispersion relation

Plasmon in metals = collective oscillation of free electrons with well defined energy Surface plasmons = Plasmons on metal surfaces. An application of Drude model

Sensors based on surface plasmon resonance (SPR) Localized surface plasmon resonance (LSPR) sensors Surface-plasmon-polaritons

restoring force reduced by coupling to neighbor Æ Resonance shifts to

At the parallel wave vectors of interest, the frequency of the Ag surface plasmon lies below the region of interband transitions. Thus, the relevant single-particle

… spontaneous emission into surface plasmon is ~ 55 times faster … We have carefully calibrated the internal quantum efficiency of this InGaN SQW and we find it to be &gt; 90%

the fields in the dielectric decay exponentially away from the film and the wave fronts are tilted into the metal film, in order to remove energy from the dielectric

This course provides students with understanding the importance of scientific experience and exploration in early childhood and knowledge on the development