• 검색 결과가 없습니다.

™ ») ç g ` @ · ö ¶ B . > ) כ · * × <c S @ F ž B ∗ · Jin Xiaoshi

N/A
N/A
Protected

Academic year: 2021

Share "™ ») ç g ` @ · ö ¶ B . > ) כ · * × <c S @ F ž B ∗ · Jin Xiaoshi"

Copied!
8
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

OPERA ÷ m Ç] M ö ù p §  ü” X ¢ Ì ¦ R { ¿ ?ü g œ ˜ m X N Ëc  Ç; c 6 ” X ¢ Ž ì ŏ Œ

™ ») ç g ` @ · ö ¶ B . > ) כ · * × <c S @ F ž B · Jin Xiaoshi

 â

 © œ@ /† < Ɠ §  ƒ  õ † < Æ@ /† < Æ Ó ü t o † < Æõ  x 9 l œ íõ † < ƃ  ½ ¨™ è, ”  Å Ò 660-701

ƒ

‘

š - > # Þ

 â

 © œ@ /† < Ɠ §  # 3 @ /† < Æ Ó ü t o “ §¹ ¢ ¤ õ  x 9 l œ íõ † < ƃ  ½ ¨™ è, ”  Å Ò 660-701

™ » ø ¶ Ba  @

“

 ] j@ /† < Ɠ § / B N õ @ /† < Æ _ 6   x/ B N † < Æõ , ^ ” K  621-749

¦

# Ü T Ö h

 

ñ" f@ /† < Ɠ § / B N õ @ /† < Æ ² D G ~ ½ Óõ † < Æl Õ ü t † < Æõ ,  í ß – 336-795

T

Œ ‰ x* å 

ô

 Dz D G ³ ðï  r õ † < ƃ  ½ ¨" é ¶ „  o ~ ½ Ó ‚  Õ ªÒ  ¨, @ /„   305-340 (2006¸   1 Z 4 17{ 9  ~ à Î6 £ §)

OPERA z  ´+ « >“ É r Û ¼0 AÛ ¼ CERN SPS– Ð Â Ò'  s » 1 Ïo   Gran Sasso \  s Ø Ô  H CNGS (CERN to Gran Sasso) ×  æ$ í p   c ” \  _ ô  Ç  © œ o  ×  æ$ í p   ”  1 l x (ν

µ

→ ν

τ

) „ à ÐÒ  oz  ´+ « >s  . s  z  ´+ « >\ " f  H ³ ð

&

h Ü ¼– Ð " é ¶  Ù þ ˜| ó ø Íõ  ± ú š (Pb)Ü ¼– Ð ½ ¨$ í ÷ &# Q e ”   H ECC (Emulsion Cloud Chamber)\  ¦  6   x   H X <,

"

é

¶  Ù þ ˜| ó ø ͓ É r 1 µm s  _  Z  }“ É r 0 Au ì  r K 0 p x`  ¦ t “ ¦ e ” l M :ë  H \  Ä º ×  æ$ í p   ì ø Í6 £ x \ " f µ 1 ÏÒ q t 

 

H Ä º{ 9  _  q & h `  ¦ f ” ] X  › ' a8 £ ¤   H X < B Ä º & h ½ + Ë  . ECC ³ ð& h “ É r  8¹ ¡ ¤  Œ •“ É r é ß –0 A“   ECC Ú Ôa Ë : (brick) Ü ¼– Ð ½ ¨$ í ÷ &# Q e ” Ü ¼ 9,  _  Ú Ôa Ë :“ É r 56  © œ_  ± ú šó ø Í (Pb)õ  58 © œ_  " é ¶  Ù þ ˜| ó ø Í[ þ t _   ± p× ¼0 Au 

½

¨› ¸– Ð ÷ &# Q e ”  . Õ ªo “ ¦ " é ¶  Ù þ ˜| ó ø ͓ É r ‰ & ³ © œÊ ê\   H à º» ¡ ¤   + þ A÷ & 9, Û ¼H _ ç ½ + É M :  H s  Ú Ôa Ë :[ þ t`  ¦ K ^ ‰

# Œ  l  M :ë  H \  ×  æ$ í p   ì ø Í6 £ x[ þ t _  q & h [ þ t`  ¦ F ½ ¨$ í l  0 AK " f  H " é ¶  Ù þ ˜| ó ø Í[ þ t z o _  & ñ x 9 ô  Ç

&

ñ § > =s  € 9 כ ¹  . ‘ : r ƒ  ½ ¨\ " f  H s  Qô  Ç 3 l q& h `  ¦ 0 AK " f X-ray  ß ¼\  ¦  6   x K " f Ù þ ˜| ó ø Í[ þ t z o _  0 Au 

&

ñ § > =`  ¦ # Œ Ä ºÅ ҂   q & h [ þ t _  ƒ    `  ¦ r • ¸K ˜ Ѐ Œ ¤Ü ¼ 9, Õ ª   õ  ƒ    _  & ñ x 9 • ¸  H 20 µm & ñ • ¸ ÷ &% 3  .

PACS numbers: 14.60.Pq

Keywords: ×  æ$ í p  ”  1 l x, OPERA, " é ¶  Ù þ ˜| ó ø Í, X-ray  ß ¼

I. " e  ] Ø

ô

 Dz D G, { 9 ‘ : r, s » 1 Ïo   ü @ 10# Œ> h² D G s  ‚ à Ð   H ² D G ] j /

B

N1 l xƒ  ½ ¨“   OPERA (Oscillation Project with Emulsion tRacking Apparatus) z  ´+ « > [1, 2]“ É r Û ¼0 AÛ ¼ CERN SPS

–

Ð Â Ò'  s » 1 Ïo   Gran Sasso t   z  ´+ « >z  ´\  › ¸ ÷ &  H CNGS Á » ×  æ$ í p  c ” \  _ ô  Ç  © œ o  (730 km) ×  æ$ í p  

”

 1 l x (ν µ → ν τ )z  ´+ « >s  .

ë

ß –{ 9  Á » ×  æ$ í p   (ν µ )   © œ o \  ¦ ”  ' Ÿ    ×  æ$ í p 



 ”  1 l x \  _  # Œ Ä º ×  æ$ í p   (ν τ ) – Ð   ¨ 8 Š ) a  €  ,   

E-mail: csyoon@gsnu.ac.kr

¨ 8

Š Ê ê_  Ä º ×  æ$ í p    H " é ¶  Ù þ ˜| ó ø Í(Nuclear Emulsion)

³

ð& h ? /_  Ù þ ˜õ  ì ø Í6 £ x # Œ Ä º{ 9  \  ¦ Ò q t$ í >   ) a  . s  X O

>  Ò q t$ í  ) a Ä º{ 9  _  Ô  æ õ ì ø Í6 £ x`  ¦ " é ¶  Ù þ ˜| ó ø Í? /\ " f f ”

] X  › ' a8 £ ¤ † < ÊÜ ¼– Ð+ ‹ ν µ → ν τ ×  æ$ í p   ”  1 l x`  ¦ S X ‰ “  ½ + É Ã º e ”

>  ÷ &  H  כ s  .

OPERA z  ´+ « >\ " f  H ³ ð& h  x 9  Ž Ø  ¦ l – Ð" f " é ¶  Ù þ ˜|  ó ø

Íõ  ± ú š (Pb)Ü ¼– Ð s À Ò# Qt   H ECC (Emulsion Cloud Chamber)\  ¦  6   x   H X <, " é ¶  Ù þ ˜| ó ø ͓ É r 1 µm s  _  Z  }

“ É

r 0 Au ì  r K 0 p x`  ¦ t “ ¦ e ” l M :ë  H \   ú ª“ É r à º" î `  ¦ ”  

Ä º{ 9  _  q & h `  ¦ f ” ] X  › ' a8 £ ¤ ½ + É Ã º e ”  .

s

 Qô  Ç  © œ& h M :ë  H \  " é ¶  Ù þ ˜| ó ø Í  Ž Ø  ¦ l   H FNAL E531

[3], CERN WA95 (CHORUS) [4,5], Õ ªo “ ¦ FNAL E872

-8-

(2)

(DONUT) [6]1 p x õ  ° ú  “ É r ×  æ$ í p   z  ´+ « >\  ´ ú §s   6   x ÷ &# Q M

®

o  . s  Qô  Ç z  ´+ « >[ þ t`  ¦ à º' Ÿ    H î  r X < " é ¶  Ù þ ˜| ó ø Í Û ¼ H

_ ç _  5 Å q • ¸ü < K $ 3 ~ ½ ÓZ O “ É r ‰ & ³$  >  † ¾ Ó © œ÷ &% 3   H X <, Û ¼ H

_ ç _  5 Å q • ¸† ¾ Ó © œ“ É r ŠҖ Ð ’q & h ‚  × þ ˜l ’ (Track Selector) [7, 8]   Ô  ¦ o Ä º  H × ¼J ?# Q_  > hµ 1 Ï\  _ ô  Ç  כ s  9, K $ 3 

~

½ ÓZ O _  † ¾ Ó © œ“ É r ’ Å Û ¼ ± p’(Net Scan) [9]s    H D h– Ðî  r š ¸ á

Ô “   ì  r$ 3 Z O (off-line analysis)_  > hµ 1 Ï\  _ ô  Ç  כ s  

½

+ É Ã º e ”  .

1999¸   Ò'  r  Œ •  ) a OPERA z  ´+ « >“ É r ‰ & ³F   Ž Ø  ¦ l [ þ t _  ]

j Œ • x 9 [ O u   _  ¢ - a « Ñ÷ &# Q r + « >1 l x ×  æ \  e ” Ü ¼ 9, ×  æ

$ í

p   c ” “ É r 2006¸   5 Z 4 Ò'  † ¾ ÓÊ ê 5¸  ç ß – › ¸  | ¨ c \ V& ñ Ü ¼

–

Ð e ”  . s  z  ´+ « >“ É r Super Kamiokande z  ´+ « >\  _ K  \ V8 £ ¤

 )

a [10] 4m µν 2

= 3.2 × 10 −3 eV 2 õ  sin 2 2θ µν = 1 _  % ò

%

i \ " f ×  æ$ í p   ”  1 l x \  _ K  Ò q t$ í  ) a Ä º ×  æ$ í p  ì ø Í 6

£

x`  ¦ 5¸   1 l x î ß – €  • 240> h µ 1 Ï| ½ + É  כ `  ¦ 3 l q ³ ð– Ð “ ¦ e ”  .

Fig.1 “ É r Gran Sasso ' V , ? /\  [ O u   ) a OPERA  Ž Ø  ¦ l 

\

 ¦    · p  כ s  . Õ ªa Ë >\ " f ˜ Ѝ  H  ü < ° ú  s  2> h_  à »( 

—

¸Ñ ý t (super module) – Ð ½ ¨$ í ÷ &# Q e ”   H X < (Æ Ò– Ð 1> h à » (

— ¸Ñ ý t`  ¦  8 [ O u ½ + É >  S \ ‰ e ” ), y Œ • à »( — ¸Ñ ý t“ É r ECC ³ ð& h 

÷

 r ë ß –  m   ×  æ$ í p   ì ø Í6 £ x _  0 Au  S X ‰ “  `  ¦ 0 Aô  Ç ³ ð& h  q 

&

h l  (Target Tracker: TT), Õ ªo “ ¦ Á »“ : r{ 9  _  S X ‰ “  õ  î

 r1 l x | ¾ Ó8 £ ¤& ñ `  ¦ 0 Aô  Ç Á »“ : r  Ž Ø  ¦ l  x 9  $ 3 1 p x Ü ¼– Ð s À Ò# Q 4

R e ”  .

ECC ³ ð& h “ É r  8¹ ¡ ¤  Œ •“ É r é ß –0 A“   ECC Ú Ôa Ë : (brick)Ü ¼

–

Ð ½ ¨$ í ÷ &# Qe ” Ü ¼ 9     — ¸€ ª œ_  Ú Ôa Ë : Z 4 (brick wall)\  Z

 ~ # Œt >   ) a  . y Œ •y Œ •_  Ú Ôa Ë : Z 4“ É r TT  Ž Ø  ¦ l ü < 24  _ 



± p× ¼0 Au  + þ AI – Ð ½ ¨$ í  ) a  .   " f ô  Ç> h_  à »( — ¸Ñ ý t { © œ 78,336 > h_  ECC Ú Ôa Ë :s  ” > r F   9, 3> h_  à »( — ¸Ñ ý t _   â Ä

º €  • 235,000> h_  Ú Ôa Ë :s  ” > r F  >  ÷ &  H X < 5¸  1 l x î ß – % 3 

`

 ¦ à º e ”   H Á » ×  æ$ í p   „  À Óì ø Í6 £ x _  à º\  ¦ 32,000 > h & ñ

•

¸– Ð \ V © œK ‘ : r  €   À Ò\  €  • 30> h_  Ú Ôa Ë :`  ¦ Û ¼H _ ç ½ + É Ã

º e ” >  | ¨ c  כ s  .

Fig. 1. OPERA detector constructed at Gran Sasso in Italy (28 m length × 8.75 m width × 10.7 m height).

×

 æ$ í p   c ” “ É r " é ¶  Ù þ ˜| ó ø Í €  & h \  à ºf ” Ü ¼– Ð › ¸ ÷ & 9, c ”

s  › ¸   ) a Ê ê\   H | ó ø Í`  ¦ Û ¼H _ ç l  0 AK " f ECC Ú Ô a Ë

:`  ¦ K ^ ‰K  ô  Ç . ¢ ¸ô  Ç " é ¶  Ù þ ˜| ó ø ͓ É r ‰ & ³ © œ½ + É M : Ô  ¦ ½ © g Ë

: >  à º» ¡ ¤   + þ A÷ &l  M :ë  H \  q & h [ þ t`  ¦ ƒ     # Œ ×  æ$ í p

  ì ø Í6 £ x`  ¦ F ½ ¨$ í l  0 AK " f  H | ó ø Í[ þ t z o _  & ñ § > =s  B

Ä º ×  æ כ ¹  .

‘

: r  7 Hë  H \ " f  H s  Qô  Ç 3 l q& h `  ¦ 0 AK " f X-ray \  ¦  6   x 

#

Œ ‘0 Au  l ï  r  ß ¼’ (fiducial mark)\  ¦ ECC Ú Ôa Ë :\  D h 

"

f " é ¶  Ù þ ˜| ó ø Í[ þ t`  ¦ & ñ § > =ô  Ç Ê ê Ä ºÅ ҂   q & h _  ƒ    `  ¦ r 

•

¸K ˜ Ѐ Œ ¤ .

II. Ì ¦ R { ¿ ?ü g œ ˜ m8 ý X N Ëc  Ç

1. ECC ƒ »X ì ÄÊ Ý Ì ¦ R { ¿ ?ü g œ ˜ m

s

p  DONUT z  ´+ « >\ " f• ¸  6   x ÷ &# Q”     e ”   H ECC

³

ð& h “ É r l ‘ : r& h “   ³ ð& h é ß –0 A“   ECC Ú Ôa Ë :Ü ¼– Ð ½ ¨$ í ÷ &# Q e ”

 . ECC Ú Ôa Ë :“ É r ¿ ºa  0.3 mm_  " é ¶  Ù þ ˜| ó ø Í 58B  ü

< ¿ ºa  1 mm“   ± ú šó ø Í 56B  " f– Ð “ §@ /– Ð C \ P  ) a  ± p

×

¼0 Au  ½ ¨› ¸– Ð ÷ &# Qe ” Ü ¼ 9, – Ð, [ j– Ð, ¿ ºa  y Œ •y Œ • 12.7 cm, 10.5 cm, 8 cm s “ ¦, Á º>   H 8.3kg s   (Fig.2

‚ à Л ¸).

"

é

¶  Ù þ ˜| ó ø Í (Fuji ET-7)“ É r Ú Ô2 Ÿ §  o“ É r (silver halides) _  p

[ j  & ñ “   \ Y O „    0 q– Ð" f ë ß –[ þ t # Qt  9 p [ j  & ñ _  ß ¼l 



 H €  • 0.2 µms  . – Ð, [ j– Ð 125 mm × 100 mm_  ß ¼l 

“

  ô  ǁ © œ_  " é ¶  Ù þ ˜| ó ø ͓ É r ¿ ºa  200 µm_  È Ò" î ô  Ç e  ¦ o \ 

 9

E $ ™ Z …s Û ¼8 £ x \  ¿ ºa  50 µm_  \ Y O „  `  ¦ Z …s Û ¼ € ª œA á ¤€  

\

 • ¸Ÿ ír †    כ s  .

Fig. 2. The structure of ECC brick.

(3)

2. X-ray  ± Ž

õ

 \  ‘ : r ƒ  ½ ¨”  \  _ K " f à º' Ÿ ÷ &% 3 ~   FNAL E531, E653, CHORUS, DONUT, Õ ªo “ ¦ KEK E373 [11]z  ´+ « >

1 p

x \ " f  H W 1 w Ú Ô € 9 2 £ § õ  F g " é ¶`  ¦ s 6   x # Œ " é ¶  Ù þ ˜| ó ø Í

\

 " é ¶+ þ A_  l ï  r  ß ¼\  ¦ D h   . Õ ª Q  s  Qô  Ç 7 á x À Ó_    ß

¼  H | ó ø Í ³ ð€  \  > hZ > & h Ü ¼– Ð y n C`  ¦ › ¸ r &  D h    Ù

¼– Ð " é ¶  Ù þ ˜| ó ø Í_  | ¾ Ós  & h `  ¦  â Ä º\ ë ß – & h ½ + Ë % i Ü ¼ 9,

"

f– Ð   É r | ó ø Í[ þ t _   ß ¼  s \   H f ” ] X & h “   ƒ  › ' a$ í s 

\ O

% 3  .  8Ä ºl  OPERA z  ´+ « >_   â Ä º\   H 58  © œ_  " é ¶  Ù þ ˜

|

ó ø Í`  ¦ ° ú   H ECC Ú Ôa Ë :s  €  • 32,000> h e ” Ü ¼Ù ¼– Ð 8 ú x 185 ë ß –



© œ_  " é ¶  Ù þ ˜| ó ø Í_  ³ ð€  \  { 9 { 9 s   ( ç   H  כ “ É r } Œ •@ / ô

 Ç r ç ß –õ  ” ¸§ 4 s  ™ èכ ¹  ) a  .

s

 Qô  Ç é ß –& h `  ¦ K ™ è l  0 A # Œ ‘ : r ƒ  ½ ¨\ " f  H 58  © œ _

 Ù þ ˜| ó ø Í_  ³ ð€  s      \ P €  \  X-ray  ß ¼\  ¦ ô  Ç   \ 



( ç   H ~ ½ ÓZ O `  ¦ “ ¦î ß – % i  . Fig.3 \ " f ˜ Ð# Œt   H  ü <

° ú

 s , ; Ÿ ¤ s  50 µm “   _ þ ta Å @\  X-ray { 9 & ñ ô  Ç y Œ •• ¸ θ \  ¦  t

“ ¦ { 9   > ÷ &€   " é ¶  Ù þ ˜| ó ø Í ¿ ºa (0.3 mm)_  1/tanθ ë

ß –  p u _  U  ´s \  ¦ t   H  ß ¼ Ò q t$ í ÷ &  H  כ s  .

s

X O >  ÷ &€    © œÀ Ó | ó ø Íõ  À Ó | ó ø Í[ þ t _   ß ¼ 1 l x{ 9  ô

 Ç 0 Au \  ¦ t l  M :ë  H \  " é ¶  Ù þ ˜| ó ø Í`  ¦ & ñ § > =½ + É M : ‰ & ³p 

 â

ý a³ ð> \ " f Ù þ ˜| ó ø Í ý a³ ð> – Ð_    ¨ 8 Š õ & ñ s  Ô  ¦€ 9 כ ¹ 



.

3. ø p §Û  Ê  ­ Ž± ŽÑ ÷ X-ray  º X ê sV 

X-ray  ß ¼_  ; Ÿ ¤“ É r ‰ & ³p  â < ʓ É r Û ¼H _ ç TV — ¸m ' _  ô

 Ç r   (– Ð 120µm × 110µm)? /\ " f ½ ¨Z > ½ + É Ã º e ”   H 50 µm s   & h { © œ  . Õ ª Q  F | 9 s  Û ¼J $ ™Y UÛ ¼Û ¼ 9 s  9, ; Ÿ ¤ s  50 µm“   _ þ ta Å @`  ¦ ë ß –[ þ t l   H / 'î  r { 9 s   m % 3  .

œ

íl \   H Y Us $  ] X é ß – (laser cutting)`  ¦  6   x % i t ë ß –, ] X

é ß –  ) a _ þ ta Å @ é ß –€  s  ç  H{ 9  t  · ú § " f ü <s # Q ] X é ß – (wire cutting) Ü ¼– Ð ] j Œ • % i  .

Fig. 3. X-ray exposure to ECC brick (left) and the fidu- cial mark (right).

Fig. 4. ECC Brick mount (left) and X-ray exposure sys- tem (right).

s

 Qô  Ç _ þ ta Å @  Û ¼ß ¼\  ¦ ECC Ú Ôa Ë :_  \ P €  \  x 9 ‚ à Ìr ~  ´ Ã

º e ” • ¸2 Ÿ ¤ Ú Ôa Ë :  î  r '  (brick mounter)\  ¦ ë ß –[ þ t% 3 Ü ¼ 9, 30 o _  y Œ •Ü ¼– Ð X-ray c ” s  { 9  ÷ &• ¸2 Ÿ ¤ › ¸  © œu \  ¦ ] j Œ •

% i   (Fig.4 ‚ à Л ¸). X-ray µ 1 ÏÒ q t © œu   H › ¸  © œu _   â  

€

 \ " f _ þ ta Å @ î  r ' ü <_   o \  ¦ › ¸] X ½ + É Ã º e ” • ¸2 Ÿ ¤ % i 



.

X-ray c ” “ É r þ j@ / › ' a„  · ú šs  60 kV p “   Ê ë@ /6   x X-ray µ 1 Ï Ò q

t © œu (ATOMSCOPE-20)\  ¦  6   x % i Ü ¼ 9, Ä »´ ò\  -t  (E ef f )\  ¦ (1/3) (E max ) s  ½ + É M :  A  d ”  (1) \  µ ρ =24.7 cm 2 · g õ  ρ=8.25 g/cm 3 _  ° ú כ [12]`  ¦ @ /{ 9  €   ‚  + þ Ay Œ ™û Z

>

à º µ \  ¦ ½ ¨½ + É Ã º e ”  . s  ° ú כ`  ¦  6   x # Œ d ”  (2)Ü ¼– Ð Â Ò '

 Û ¼J $ ™Y UÛ ¼Û ¼ 9 _  ì ø Í8 £ x(Half Value Layer) ° ú כ x \  ¦ ½ ¨

½

+ É Ã º e ”  .

µ = ( µ

ρ ) × ρ (1)

I = I 0 e −µx (2) s

X O >  ½ ¨ô  Ç ì ø Í8 £ x ° ú כ“ É r 0.034 mm  ÷ &% 3 Ü ¼ 9, s  ° ú כ

“

É r X-ray \   Å Ò   y Œ ™ô  Ç " é ¶  Ù þ ˜| ó ø Í`  ¦ ` ‚   H X < € 9 כ ¹ ô

 Ç ¿ ºa \  ¦   & ñ   H l ï  r s   ) a  .   " f ‘ : r ƒ  ½ ¨\ " f   6

 

x ) a ¿ ºa  1.2 mm “   Û ¼J $ ™Y UÛ ¼Û ¼ 9 _   â Ä º, _ þ ta Å @ Òì  r`  ¦ ]

jü @ô  Ç Â Òì  r \ " f X-ray \  ¦ ` ‚r v l \  Ø  æì  r † < Ê`  ¦ · ú ˜ à º e ”

 .

4. { ¿ ?ü g œ ˜ m8 ý X N Ëc  ÇÊ Ý R X ì Ď ì Å+ s Ç

ECC Ú Ôa Ë :\  X-ray  ß ¼\  ¦ ô  Ç Ê ê\   H Õ ª כ `  ¦  6   x 

#

Œ " é ¶  Ù þ ˜| ó ø Í e  ¦ Y Us à Ô[ þ t`  ¦ & ñ § > = “ ¦ q & h [ þ t`  ¦ ƒ     

#

Œ  ô  Ç . X-ray  ß ¼\  ¦ ô  Ç Ê ê Ú Ôa Ë :`  ¦ K ^ ‰ “ ¦, " é ¶  Ù þ ˜

|

ó ø Í`  ¦ ‰ & ³ © œ €   | ó ø Í[ þ t“ É r à º» ¡ ¤   + þ A ) a  . ë ß –{ 9  1   |  ó

ø Í (plate #1)õ  2   | ó ø Í(plate #2)_  X-ray  ß ¼[ þ t _  0

Au  ý a³ ð\  ¦ y Œ •y Œ • (x 1 , y 1 ), (x 2 , y 2 )  “ ¦ ½ + É M :, ¿ º | ó ø Í _

  ß ¼[ þ t  s _  › ' a >   H  r„  õ  ¨ î ' Ÿ s 1 l x, Õ ªo “ ¦ à º» ¡ ¤

(4)

Fig. 5. Numbers and positions of X-ray marks.

`

 ¦ Ÿ í† < Ê   H  6 £ § õ  ° ú  “ É r  — 2 ;  ¨ 8 Š`  ¦ s 6   x # Œ ³ ð‰ & ³½ + É Ã

º e ”  .

( x 2

y 2

) = ( s x 0 0 s y

)[( cosθ sinθ

−sinθ cosθ )( x 1

y 1

) + ( p

q )] (3)

#

Œl " f s x ü < s y “ É r y Œ •y Œ • x» ¡ ¤ õ  y» ¡ ¤ ~ ½ ӆ ¾ Ó_  " é ¶  Ù þ ˜| ó ø Í Ã

º» ¡ ¤“   (shrinkage factor)s  9, p ü < q   H y Œ •y Œ • x » ¡ ¤ õ  y

»

¡

¤ ~ ½ ӆ ¾ Ó_  ¨ î ' Ÿ s 1 l x, Õ ªo “ ¦ θ   H ¿ º e  ¦ Y Us à Ô  s _   r

„

 y Œ •`  ¦    · p .

s

 Qô  Ç  B j' [ þ t`  ¦ ½ ¨ l  0 AK " f X-ray  ß ¼_  ý a

³

ð[ þ t (x 1 , y 1 ), (x 2 , y 2 ) `  ¦ 8 £ ¤& ñ % i  . Fig.5 \  5> h_  X- ray  ß ¼_  0 Au [ þ t s   ü <e ”  . x, y _   A ' ‘   1, 2   H

"

é

¶  Ù þ ˜| ó ø Í_      ñ (plate #)s  9,  À »' ‘    H X-ray  ß ¼ _

     ñs  .

d ”

 (3)`  ¦ Û  ¦ # Q æ ¼€  

x 2 = s x (cosθx 1 + sinθy 1 + p) (4)

y 2 = s y (−sinθx 1 + cosθy 1 + q) (5)

s

 ÷ & 9, à º» ¡ ¤“    s x ü < s y “ É r  6 £ § õ  ° ú  s  & ñ _   ) a  .

s x = (x 2 2 − x 1 2 )/(x 2 1 − x 1 1 ) (6)

s y = (y 4 2 − y 3 2 )/(y 1 4 − y 1 3 ) (7)

d ”

 (4) ü < d ”  (5) \ " f cos θ ∼ 1, sin θ ∼ 0 s   & ñ

“ ¦, y 1 3 `  ¦ 0 ( l ï  r) s  “ ¦ €   x, y ~ ½ ӆ ¾ Ó_  ¨ î ' Ÿ s 1 l x p ü

< q   H  A ü < ° ú  s  ³ ð‰ & ³½ + É Ã º e ”  .

p = x 1 2

s x − x 1 1 (8)

Fig. 6. Track connection method between two emulsion plates.

q = y 2 3 s y

− y 3 1 (9)

¢

¸ô  Ç cos θ ∼ θ, sin θ ∼ 0 s  “ ¦ & ñ % i `  ¦ M : e  ¦ Y U s

à Ô[ þ t ç ß –_   r„  y Œ • θ   H No. 5  ß ¼_  ý a³ ð\  ¦  6   x # Œ d ”

 (5) – Ð Â Ò' 

θ =

−( y s

25

y

− y 5 1 − q)

x 5 1 (10)

 H † d`  ¦ · ú ˜ à º e ”  .

s

[ þ t 5 > h  B j' [ þ t _  ° ú כ`  ¦  6   x # Œ " é ¶  Ù þ ˜| ó ø Í_ 

¨ î

' Ÿ s 1 l x õ   r„  , à º» ¡ ¤`  ¦ ˜ Ð& ñ ½ + É Ã º e ”  . z  ´] j Û ¼H _ ç r  s

 Qô  Ç ˜ Ð& ñ `  ¦ ô  Ç Ê ê\  q & h [ þ t`  ¦ ƒ       H X < Õ ª ~ ½ ÓZ O “ É r



6 £ § õ  ° ú   . (1) Ä º‚   " é ¶  Ù þ ˜| ó ø Í plate #1 õ  plate #2 _

 q & h [ þ t`  ¦ Û ¼H _ ç ô  Ç . (2) Õ ª   õ  % 3 # Q”   q & h [ þ t _  0 A u

ü < y Œ •• ¸\  ¦ ± ú šó ø Í_  ¿ ºa _  ×  æ ç ß –t & h  t  ü @¶ ú šZ O `  ¦ s 6   x

# Œ  © œ_  q & h `  ¦ ë ß –Ž  H  . (3) s  ×  æ ç ß –t & h \ " f_   © œ q

& h [ þ t _  0 Au [ þ t _  s \  ¦ 4x, 4y  “ ¦ “ ¦, y Œ •• ¸[ þ t _ 

s \  ¦ 4(dx/dz), 4(dy/dz)( # Œl " f z   H c ”  ~ ½ ӆ ¾ Óe ” ) 

“

¦ ½ + É M :, ë ß –{ 9  s  כ [ þ t _  # 3 0 A −10 µm < (4x, 4y) <

10µm ü < −20 mrad < [4(dx/dz), 4(dy/dz)] < 20 mrad

\

 ¦ ë ß –7 á ¤ €   ‘ƒ     ) a q & h ’ (Connected track)s  “ ¦ ó ø Í

&

ñ >   ) a   (Fig.6 ‚ à Л ¸).

III. – ¤— ¤ Ò Å  º + s ÇÊ Ý

s

 Qô  Ç ~ ½ ÓZ O `  ¦ z  ´] j Ä ºÅ ҂   q & h [ þ t \  & h 6   x % i  .

10  © œ_  " é ¶  Ù þ ˜| ó ø Í  s \  ± ú šó ø Í[ þ t`  ¦  m ”  V , # Q" f  p  W

1s à Ô ` …s (  (laminate paper)– Ð ”  / B N x 9 4 Ÿ x # Œ ECC Ú

Ôa Ë :`  ¦ ë ß –[ þ t% 3 Ü ¼ 9, 2{ 9 1 l x î ß – Ä ºÅ ҂  \  › ¸  % i  .

Ä

ºÅ ҂  \  › ¸   ) a Ú Ôa Ë :`  ¦ ”  / B N x 9 4 Ÿ x  © œI \ " f X-ray   ß

¼\  ¦ D hl “ ¦ € Œ ™z  ´\ " f Ú Ôa Ë :`  ¦ K ^ ‰ # Œ ‰ & ³ © œ % i  . s 

(5)

Fig. 7. Scanning areas.

Fig. 8. Distribution of 4x and 4y aligned by four cor- ners of emulsion plate.

[ þ

t ‰ & ³ © œ  ) a Ù þ ˜| ó ø Í ×  æ “  ] X ô  Ç 2> h_  | ó ø Í`  ¦ Û ¼H _ ç # Œ

&

ñ § > =_  & ñ x 9 • ¸\  ¦ › ¸  % i  . Õ ªo “ ¦ Ù þ ˜| ó ø Í „  ^ ‰ €  & h 

`

 ¦ Û ¼H _ ç t  · ú §“ ¦, Fig.7 õ  ° ú  s  – Ð 3 mm, 4 mm“  

€

 & h `  ¦ 9 > h t & ñ # Œ Û ¼H _ ç % i  . s  €  & h [ þ t ? /\   H 8 ú x 1,000 # Œ> h_  Ä ºÅ ҂  _  q & h [ þ t s  e ” l M :ë  H \  & ñ § > =`  ¦ _ … Û

¼à Ô l \   H Ø  æì  r % i  .

1. R X ì Ď ì Å+ s Ç8 ý X N Ëõ m Çy ¢

"

é

¶  Ù þ ˜| ó ø Í[ þ t _  & ñ § > =\  _ ô  Ç q & h ƒ    _  & ñ x 9 • ¸\  ¦ · ú ˜



˜ Ðl  0 AK " f ¿ ºt  ~ ½ ÓZ O `  ¦  6   x % i   H X <,    H " é ¶



Ù þ ˜| ó ø Í_  W 1 — ¸" fo _  0 Au \  ¦ l ï  r Ü ¼– Ð  6   x   H ~ ½ Ó Z O

s  9,   É r    H X-ray  ß ¼\  ¦ s 6   x   H ~ ½ ÓZ O s  .

"

é

¶  Ù þ ˜| ó ø Í_  W 1 — ¸" fo ë ß –`  ¦  6   x ô  Ç  â Ä º  H Fig.8 \ 

"

f ˜ Ð# Œt   H  ü < ° ú  s  4x _  ° ú כs  +100µm & ñ • ¸– Ð  

Fig. 9. Distribution of 4x and 4y aligned by X-ray marks.

Fig. 10. Distribution of 4x and 4y aligned by X-ray marks in one view.

z Œ ¤Ü ¼ 9, ∼ 200µm _  & ñ x 9 • ¸\  ¦ & ’  . Õ ªo “ ¦ 4y _ 

° ú

כ“ É r −400µm & ñ • ¸s % 3 Ü ¼ 9, ∼ 200µm _  & ñ x 9 • ¸\  ¦ 

&

’  .

s

 Qô  Ç ° ú כ[ þ t“ É r Û ¼H _ ç r  ŠҖ Ð  6   x   H 500 C _  C Ö  ¦

–

Ð ^  ¦ M : ‰ & ³p  â _  ô  Ç r  _  # 3 0 A\  ¦  Å # Q" f 9 & ñ S X ‰ ô  Ç & ñ

§ >

=s  s À Ò# Qt t  · ú §€ Œ ¤6 £ §`  ¦ ˜ Ð# Œï  r  .   " f z  ´] j z  ´+ « >

\

 & h 6   x ½ + É  â Ä º Û ¼H _ ç   H X < ´ ú §“ É r r ç ß –s  ™ è— ¸ | ¨ c ÷  r ë ß –



m   q & h `  ¦ ¸ ú ˜3 l w ƒ    ½ + É 0 p x$ í s  Z  }  .

ì ø

̀  \  X-ray  ß ¼\  ¦  6   x ô  Ç   õ   H Fig.9 \      e ”

  H X <, Õ ªa Ë >\ " f ˜ Ѝ  H  ü < ° ú  s  4x, 4y ∼ 0 s  ÷ &# Q q

“ §& h  ¸ ú ˜ & ñ § > = ) a  כ `  ¦ · ú ˜ à º e ”  . Õ ªo “ ¦ Fig.10“ É r s 

(6)

Fig. 11. Distribution of 4x and 4y in 9 scanning areas.

Fig. 12. The position difference vector in 9 scanning areas

ì

 r Ÿ í\  ¦ ‰ & ³p  â _  ô  Ç r  _  # 3 0 A– Ð S X ‰ @ / # Œ    · p  כ

“

 X <, q & h  ƒ    _  & ñ x 9 • ¸ x» ¡ ¤ \ " f ∼ 20µm, y» ¡ ¤ \ " f

∼ 25µm & ñ • ¸ H † d`  ¦ ˜ Ð# Œï  r  .

2. R X ì Ä ô p §8 ý  üV  T s ð ' [

X-ray \  ¦ s 6   x # Œ Ù þ ˜| ó ø Í`  ¦ & ñ § > =ô  Ç  â Ä º, ° ú  “ É r q & h  _

 ¿ º | ó ø Í[ þ t  s _  0 Au  s “   4x ü < 4y \  ~ ½ ӆ ¾ Ó  t

 “ ¦ 9ô  Ç ’0 Au  s  7 ˜' ’(position difference vector)

Fig. 11 \      e ”  . s  Õ ªa Ë >\ " f  H 9 > h Û ¼H _ ç % ò

% i

`  ¦ Ò  oÜ ¼– Ð ½ ¨Z >  % i Ü ¼ 9, % ò % i Z >  0 Au  s  7 ˜' _  ~ ½ Ó

†

¾ ӓ É r Fig.12 \      e ”  . : £ ¤ y , Ä º8 £ ¤  © œé ß – 2, 3, 6    _

 % ò % i \ " f 7 ˜' _  ß ¼l   p u`  ¦ ^  ¦ à º e ”   H X <, Õ ª " é ¶ “  

“ É

r ‰ & ³ © œÊ ê " é ¶  Ù þ ˜| ó ø Í_  à º» ¡ ¤   + þ A\  _ ô  Ç  כ s  .

Fig. 13. X-ray marks for numbering of ECC bricks and plates.

s

X O >  9> h_  % ò % i \  @ /ô  Ç 4xü < 4y \  ¦ 8 £ ¤& ñ † < ÊÜ ¼– Ð+ ‹ X-ray  ß ¼ r Û ¼% 7 ›_  $ í 0 p x¨ î \  ¦ ½ + É Ã º e ” % 3 Ü ¼ 9, · ú ¡Ü ¼

–

Ð " é ¶  Ù þ ˜| ó ø Í? /\ " f q & h _  î  r1 l x | ¾ Ó`  ¦ 8 £ ¤& ñ ½ + É M : כ ¹½ ¨

÷

&  H  Å Ò & ñ x 9 ô  Ç & ñ § > =\  @ /ô  Ç l œ í  « Ñ\  ¦ % 3 `  ¦ à º e ” 



. Õ ªo “ ¦  ß ¼_  0 Au \  ¦  8¹ ¡ ¤ [ jx 9 y    & ñ ½ + É Ã º e ” Ü ¼

€

 , q & h  ƒ    _  & ñ x 9 • ¸\  ¦  8¹ ¡ ¤  8 † ¾ Ó © œr ~  ´ à º e ” `  ¦  כ s

 .

IV. + s Ç Â ] Ø

OPERA z  ´+ « >\   6   x l 0 Aô  Ç X-ray  ß ¼_   ï` ç r  Û

¼% 7 ›`  ¦ > hµ 1 Ï # Œ " é ¶  Ù þ ˜| ó ø Í[ þ t _  & ñ § > =`  ¦ r • ¸K  ˜ Ѐ Œ ¤



.  — 2 ;  ¨ 8 Š`  ¦ s 6   x ô  Ç & ñ § > =~ ½ Ó& ñ d ” Ü ¼– Ð 0 Au & ñ § > =`  ¦ 

#

Œ 1,000# Œ> h_  Ä ºÅ ҂   q & h [ þ t`  ¦ ƒ    K ‘ : r   õ , — ¸Ž  H q

& h s  & ñ S X ‰ y  ƒ    ÷ &% 3 Ü ¼ 9, ƒ    _  & ñ x 9 • ¸ ∼ 20 µm

&

ñ • ¸ ÷ &% 3  . s  כ “ É r OPERA z  ´+ « >\  f ” ] X   6   x ½ + É Ã º e ” 

`

 ¦ & ñ • ¸_  q “ §& h  Z  }“ É r & ñ x 9 • ¸  ½ + É Ã º e ”  .

V. ” ¼  ×: Ì ¦ R { ¿ ?ü g œ ˜ m8 ý à š È! a S Ë

s

 Qô  Ç X-ray  ß ¼\  ¦ s 6   x # Œ ECC Ú Ôa Ë : x 9 " é ¶  Ù þ ˜

|

ó ø Í_  “ ¦Ä »    ñ\  ¦  Ò# Œ ( Å ! Qa A)½ + É Ã º e ”  . ECC Ú Ôa Ë : _

 à º  H 8 ú x 32,000 > h (185ë ß –  © œ_  " é ¶  Ù þ ˜| ó ø Í\  K { © œ† < Ê)

&

ñ • ¸ \ V © œ÷ &Ù ¼– Ð s  5 Å q \  ” > r F    H ×  æ$ í p   „  À Ó ì

ø Í6 £ x[ þ t`  ¦ ½ ¨Z >  l  0 AK " f • ¸ Ú Ôa Ë :[ þ t _  ½ ¨Z > s  € 9 כ ¹ 



.

s

 Qô  Ç  Å ! Qa A“ É r l ï  r  ß ¼– Ð Â Ò'  “  ] X ô  Ç  ß ¼ s  _

 ç ß –  _  s \  ¦ “  d ” † < ÊÜ ¼– Ð+ ‹ 0 p x  . 7 £ ¤, 250 µm é

ß –0 A– Ð ² ú ˜ t   H ç ß –  _  s ë ß –  p u Õ ü w   ² ú ˜ t >  ÷ &



 H  כ s  . s  Qô  Ç X-ray  ß ¼[ þ t _  ç ß –  “ É r e  ¦ Y Us à Ô “ §

(7)

¨ 8

Š  © œu  (plate changer)ü < CCD B j   ҂ Ã Ì  ) a  1 l x “   d ”

 © œu \  _ K  { 9 ) €”   . \ V\  ¦ [ þ t€  , 000-000_  6 o  Õ ü w



ë ß –  6   x  8 • ¸ 32,000> h_  Ú Ôa Ë :`  ¦  Å ! Qa A l \  Ø  æ ì

 r y  0 p x  . Õ ªo “ ¦  â  \  ¦ ”   V- + þ A  ß ¼  H " é ¶



Ù þ ˜| ó ø Í e  ¦ Y Us à Ô[ þ t _  “ ¦Ä » Å ! Q\  ¦  Ò# Œ   H X <  6   x ) a



 (Fig.13 ‚ à Л ¸).   " f OPERA z  ´+ « >\ " f ECC Ú Ôa Ë :õ  Ù þ

˜| ó ø Í e  ¦ Y Us à Ô\   Ò# Œ½ + É Õ ü w    H 000-000-00 _  + þ AI 

| ¨

c  כ s  .

P

c p 8 ý ò k >

s

 ƒ  ½ ¨  H 2003¸  • ¸ ô  Dz D G † < ÆÕ ü t”  < É ª F é ß – ƒ  ½ ¨õ ] j t " é ¶ Ü

¼– Ð Ã º' Ÿ ÷ &% 3 6 £ §(KRF-2003-005-C00014).

Y

c p w Š à U Ø ”  ô

[1] OPERA Collaboration, An appearance experiment to search for ν µ → ν τ oscillation in the CNGS beam, CERN/SPSC 2000-028, SPSCP318, LNGS P25/2000, July 10, 2000.

[2] OPERA web site, http://operaweb.web.cern.ch/

operaweb/ index.shtml.

[3] N. Ushida et al., E531 Collaboration, Phys. Lett. B 206, 375 (1988).

[4] E. Eskut et al., CHORUS Collaboration, Phys. Lett.

B 424, 202 (1998).

[5] E. Eskut et al., CHORUS Collaboration, Phys. Lett.

B 497, 8 (2001).

[6] K. Kodama et al., DONUT Collaboration, Phys.

Lett. B 504, 218 (2001).

[7] S. Aoki et al., Nucl. Instr. and Meth., B 51, 466 (1990).

[8] T. Nakano, Ph. D. Thesis, Nagoya University, Japan, 1997.

[9] K. Kodama et al., Nucl. Instrum. Methods A 357, 243 (1995).

[10] Y. Fukuda et al., Super-Kamiokande Collaboration, Phys. Rev. Lett. 81 (1998) 1562 ; H. Sobel (Super- Kamiokande Collaboration), to appear on the Proc.

of the XIX Int. Conf. on Neutrino Physics and As- trophysics, Sudbury (2000).

[11] http://www.ne.scphys.kyoto-

u.ac.jp/activity/strange /e373/e373english.html.

[12] J. H. Hubbell, Photon mass attenuation and energy-

absorption coeffients, Int. J. Appl. Radiat. Isot. 33,

1269 (1982).

(8)

Study on the Alignment of Emulsion Plates for the OPERA Experiment

Sung Hyun Kim, Jin Sop Song, Chun Sil Yoon and Xiaoshi Jin Department of Physics and RINS, Gyeongsang National University, Jinju 660-701

In Gon Park

Department of Physics Education and RINS, Gyeongsang National University, Jinju 660-701

Jong Eon Kim

Department of Biomechanical Engineering, Inje University, Kimhae 621-749

Kyung Wan Koo

Department of Defense Science and Technology, Hoseo University, Asan 336-795

Chul-Young Yi

Ionizing Radiation Group, KRISS, Daejeon 305-340 (Received 17 January 2006)

OPERA is a long baseline neutrino oscillation (ν

µ

→ ν

τ

) experiment using the CNGS neutrino beam exposed from CERN to Gran Sasso. The detector consists of a massive lead/nuclear emulsion target (ECC: emulsion cloud chamber) and electronic spectrometer. Thanks to the high spatial resolution (less than 1 µm) of the nuclear emulsion, it can be used a good detector for tau lepton decay from the tau neutrino reaction. The ECC target has many bricks that are sandwiches of lead plates and nuclear emulsion plates. Since the bricks need to be unpacked when we scan and the emulsion plates are shrunk after development, it is very important to align the emulsion plates in order to reconstruct neutrino events. For this purpose, we used an X-ray mark as a fiducial mark and tested the alignment of plates exposed to cosmic rays. The precision of position differences of cosmic-ray tracks between two plates was ∼ 20 µm, which is suitable for the OPERA experiment.

PACS numbers: 14.60.Pq

Keywords: Neutrino oscillation, OPERA, Nuclear emulsion, X-ray mark

E-mail: csyoon@gsnu.ac.kr

수치

Fig. 2. The structure of ECC brick.
Fig. 3. X-ray exposure to ECC brick (left) and the fidu- fidu-cial mark (right).
Fig. 5. Numbers and positions of X-ray marks. `¦ Ÿ í†&lt; Ê
 H  6£§ õ  °ú  “Ér  —2 ; ¨8 Š`¦ s 6 x 
 # Œ ³ ð‰&amp; ³½+É Ã º e”  
Fig. 10. Distribution of 4x and 4y aligned by X-ray marks in one view.
+2

참조

관련 문서

3.13 Measured grain boundary energies for symmetric tilt boundaries in Al (a) When the rotation axis is parallel to (100), (b) when the rotation axis is parallel to (110).

In order to make it possible for the flow control of the vane pump to be applied in an automatic transmission, it is very necessary to analyze the variation in

After that, we look forward to the results and expect that it will be used as a tool to determine the direction of brand development and renewal by

3.13 Measured grain boundary energies for symmetric tilt boundaries in Al (a) When the rotation axis is parallel to (100), (b) when the rotation axis is parallel to (110).

In order to decrease the deaths caused by cancer that is a serious threat to the health of many individuals living in Jejudo, it is important to

□ The least-upper-bound property (sometimes called completeness or supremum property) is a fundamental property of the real number system. The least-upper-bound

□ The least-upper-bound property (sometimes called completeness or supremum property) is a fundamental property of the real number system. The least-upper-bound

이것은 가 위로 유계가 아니라는 문제의 가정에 모순이다... 유리수의