• 검색 결과가 없습니다.

NO Removal of Electrolessly Copper-plated Activated Carbons

N/A
N/A
Protected

Academic year: 2022

Share "NO Removal of Electrolessly Copper-plated Activated Carbons"

Copied!
7
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

   NO 

Kawasaki, J.*

  

305-600   100

*  

(2003 5 19 , 2003 9 20 )

NO Removal of Electrolessly Copper-plated Activated Carbons

Soo-Jin Park, Byung-Joo Kim and Junjiro Kawasaki*

Advanced Materials Division, Korea Research Institute of Chemical Technology, 100, Jang-dong, Yusong-gu, Daejeon 305-600, Korea

*Department of Chemical Engineering, Tokyo Institute of Technology, Ookayama, Meguroku, Tokyo 152-8852, Japan

Received 19 May 2003; accepted 20 September 2003)

 

  ! Cu" # ACs $%& NO '( )* + ,-./. Cu" # ACs 0 FT-IR 1 scanning electron microscope(SEM)2 $% 3-.4, N2/77 K 56 78 0 BET9, D-R plot, H-K ! BJH 92 $% :;.,, NO '(<=0 ">?@ABCD $% EF./. GHI1,  J$ K"L M N ACs Cu O0 PQ K".R, ACs 78 ; S T, UV 5 W XYZ [

\]2 ^./. ) NO '(<=0 # Cu O$ K"L MN S_T K".4, $`& I1 ACs

 # Cu  Cu-ACs  NO '( )*$ "abc de fg#/.

Abstract−In this study, the activated carbons (ACs) containing copper metal were prepared by electroless copper plating technique, in order to remove NO. The surface and structural properties of the ACs were determined by FT-IR and scanning electron microscope (SEM), respectively. N2/77 K adsorption isotherm characteristics, including the specific surface area and pore volume, were investigated by BET, D-R plot, H-K, and BJH methods. And NO removal efficiency was confirmed by gas chromatographic technique. The copper content on ACs increased as the plating time increased. However, a slightly gradual decrease of adsorption properties, such as BET’s specific surface area and total pore volume, was observed in ACs in the pres- ence of copper metal. NO removal efficiency of all Cu-ACs was higher than that of untreated ACs, and increased with the cop- per content on ACs. These results indicated that copper metal on Cu-ACs strongly accelerated catalytic reduction of NO on Cu- ACs surfaces, though it caused the decrease of the adsorption properties of original ACs.

Key words: Activated Carbon, Copper Metal, Adsorption, NO Removal

1.  

       

 ! ", #$ %& '(  )* ++, -./

;<# => ?, / @' >A8=B #$ C D

EFG& HI- J, KL MNB OPQR ST U5[2-3].

>A8=1 V / W XYZQR [B \]7 -^_

RJ, - ? `abc1 de-f, cgh(molecular sieve), i#j

A % kB lmn -o  @p- q_  5[4-6]. _r - : lm ghrR G Vst *7 RJ, - ue l mn vh 9 9: 7_ w C i#- x =>1 Dy  \]

7 z{ |5. - ? }Q~ w- Cu, Ag, Ni, Fe, Co G Pt

%-J Cu G €& ‚ uƒ„ st#- ST T… J, † G 7‡- ˆ‰ 9 QR ŠB 7L7 5 ‹ … 5 [7-10].

lm Œ i#jA Cun Dy  @pB /Ž \] uƒ„

U 47_  … 5. }Q~ @pB ‘mpR, - i#

jAn Cu w `a 3’ C “”R v• 0 8–  @ pR @p.& ’6# — QR [- to˜ @p-5.

_r - @pB ‘m3 w- i#jA& K)/™1 š (.

1 ›‹ … œ5 ž- uŸ5.   ¡¢ @pR i#jAn 

To whom correspondence should be addressed.

E-mail: psjin@krict.re.kr

(2)

 41 6 2003 12

… 5. - @pB st7E­ ®¯ bcr w- Dy

 † .o8˜ i#jAn }„–rR w¥; i#jAn

°‹ … 5 Nž1 7_ s„ Ÿ w c¤n ±/7 ² 5 ž1 7z5. ³_š @pB wDwpR §Dwp ´

§ Dwp- 5. §DwpB bDh~ i#jA §/Q µ1 -o 9 ¶® w1 Dy  @pR /.¬mp kB Nž1 7_ @p-5. 6 ´§ wDwpB ‘mp §Dwp&

wr1 i#jA Dy  @pR, - @pB i#jA& $}

„Q& ¼A7 U_ ½ K)/™ª_ w- ¾ ¿À Nž1 7z5[11-14].

- Á \], Cun ´§ wDw @pR ACs Dy 9 NOV st  G =Â8¹Q lmÃÄ ¯SQ ºÃÄ 1 ÅƂÇRJ, † Cun i#jA Dy3 È  i#jA& /

™Œ#1 ÉÊ¥R, ´§ CuDw˜ i#jA& NOVo lm

,& 7Ã# , Ê 9 ‚Ç5.

2. 

2-1. 

Á !Ë, Oo i#jA(ACs) 5™# lm 8×16 mesh U /& €ÌjA(H), “ ¸1 Oo Í5. !Ë Î, Æ´Ï –

7 _ ½B i#jAn 3q ¬Ð…, 2-3¡ )Ñ 0 80oC&

”“ Ò, 483’ -. @L3¦ ”“ 0 Oo Í5. Cu& ´§

DwB i#jAn ӈ 10%& HCl oÔ, 30c’ §–  0 ! 3 ÍRJ, -— Oo DwÕ C Dw“”B Table 1 ÖY×5.

Dw3’B 5, 15 G 40cR ÍRJ, K– 361 ¤¥ 9

 as-received, Cu-5, Cu-15 G Cu-40R ØØ Í5. i#jA

 Dw˜ Cu& ÌB atomic absorption spectrophotometry(AAS)n O o 9 cÙ Í5.

2-2. 

Cu7 Dy˜ ACs& È8˜ }„Œ#1 ÅƂ/ W FT-IR

scanning electron microscope(SEM)n Ú ÉÊ Í5. † Cu Dy 0 i#jA }„& AÉÃ/& ÌQ~ È8n ÉÊ / W X-ray photoelectron spectroscope(XPS)n -o 9 jA  A& aÛ Q Ü1 Ýa Í5. -— source MgKαn -o 9 LAB MK-II (VG Scientific Co.) cÙN$n -o 9 Ýa ÍRJ, chamber Y&

ÞÄB 106-109 torr “ß 9 Ýa Í5.

2-3.  

 3à«B 300oC, áÐ ÞÄ1 103 torr-  ;_ .â ã 5-6 3’ € ä/3å 0, ASAP 2010(Micromeritics Co.)1 -o 9 77 K, .ÞÄ(P/P0) uŸ N2/h& lmÛ1 Ýa Í5. $}„

2-4. NO  

NO VêB He ëÏE 1,000 ppm ìD& NO 7En Oo 9 7 EU³íGî›(DS 6200, Dï~Ef^Óf) st §·0& st=

 ð#=& cÙR Ýa ÍRJ, detector thermal conductivity detector(TCD)Í columnB Hayesep A(30 ft, inner dia: 0.085 inch)n -o Í5. !Ë ? st& D 500oC ;_ ÍRJ, è st 3’B 203’R Í5. st3 ;y˜ NO 7E& ;B M.F.C.

(mass flow controller; GMC1000, MLS)n Oo 9 Ú ÍRJ, 10 ml ·min1R ;_3ñ5. cÙ §  3à«B st D, 13’ €

 HeR òó 9 …c1 ô§ V 9 NO 7E& NLY lm

 & qn õA8  0 Oo Í5.

3. 

3-1.  Cu 

ACs& ´§ Cu DwB `sQR º C /Ö ‘7­& s tR ö÷ st- ;_r õø ±_ ¸B Cu ùâ - —

 G .Q 7L­ v_pR,& 7Ln _ú5 û … RJ, G st aB Æî­ k5[19].

Cu2+ü2eýCuþ(Reduction)

E0=ü0.34 V (1)

2HCHOü4OHý2HCOOüH2ü2H2Oü2e (pH=14)

E0=ÿ1.07 V (2)

HCHOüH2OýHCOOHü2H+ +2e (pH=0)

E0=ü0.056 V (3)

-­ k- ACs& }„ Cu(27)n Dy / W,   & §g 7 ¨© J, - §g«B ¤Å7 ¤R 8R ™ ˜5. -— Table 1, Ö ­ k- DwÕ& pH7  Å

#1 … st- … `5. -: -; Å# o Ô, ¤Å& }8 §W& Ü- Cu2+ - & }8

§W‚5  °/ — æ (1), (2) st1 V Cu2+ - - ¾ Cu wR º˜5. _r s #oÔ, ¤Å-  º7 _ ½ æ (3) kB st1 `R4 ˜5.

Table 1. Composition and operating conditions of electroless Cu plating bath

Composition CuSO4: EDTA Na2:HCHO 1.0:2.50:1.31

Distilled water 980 ml

Conditions pH 120

Temperature 401oC

Fig. 1. Cu quantification of the electrolessly Cu-plated activated car- bons measured by AAS.

(3)

Fig. 1B W,   ´§ Cu Dwp1 Ú “ Cu-5, Cu-15 G Cu-40& Cu ¥Û& AA cÙÜ1 Ö ¸-5. /ÁQR

Cu& DyÛB Dw3’- ¬7 ue ¬7 ¸1 ‹ … 

×5. _r ¬7$,  3’  DwÛ& $Q~ É* ã’&

ôr 1 G ¸- ×5. - ´§ wDw 

5Ÿ ‚«, _Q  - ´§ wDw& T s › Dwh }„& - /™1 w yg7 T„, 3°57 

˜5[20].

3-2. 

´§ Cu DwR È8˜ Cu-ACs& }„Ý#1 FT-IR, XPS C SEMR ÉÊ Í -? IR& Ü1 Fig. 2 ÖY×5. ´§

Cu Dw˜ Cu-ACs& IRÜ1 û — Cu gh& ›Un ‹ …

œ_r 3,450 cm1b•& ›U7 ´§ Cu Dw 0 §s§R x  R ¬7˜ ¸1  ‹ … ×RJ, Dw3’- ¬7 ue “ w ¬7 - ×5. - ›U K– ACs & T −OH

›U7 Ö +-J, † ´/=- ‘7×1 T ´/& › U7 Ö +-5. — 3,450 cm1b•& ›U& ŠB ¬7

−OH ›U& Kã ¬7­  ´/- ù#×/ —R 

˜5. ´§ Cu Dw1 Ú »… Cu r Æ!e `aÛ& CuxOy ùâ& complex7 ù#×/ —R ˜5[21].

Table 2 ´§ Cu Dw §0& Cu-ACs }„& C, O C Cu& “

#È8n ÉÊ / W XPS cÙ& aÛÜ1 Ö ¸-5. 

ÜRbç Dw- z{ ue Cu2p& Ì- x R ¬7

¸1  ‹ … ×RJ,  O1s& ÜD ã’ ¬7  ¸1 É Ê‹ … ×5. 6 C1s& ÜB §sQR ¼A Í5. DwR ~

 È8˜ A& ¥Û C ]& ¥Û1 ÉÊ /W O1s/C1sÜ C Cu2p/C1sÜ1 ]‚Ç5. & Ü1 û — /ÁQR Dw3’- ¬

7 ue   Ü F  ¬7×RJ, ue, Cu-40, 7N ŠB Ü

~ 0.138 C 0.061n ÖY×5. -bç W,   ­ k- Cu Fig. 2. FT-IR results of the electrolessly Cu-plated activated carbons.

Table 2. Chemical composition of electrolessly Cu-plated activated carbons

Sample O1s (%) C1s (%) Cu2p (%) O1s/C1s Cu2p/C1s

as-received 9.6 89.8 - 0.107 -

Cu-5 10.7 85.6 2.9 0.125 0.034

Cu-15 11.0 84.4 4.2 0.130 0.049

Cu-40 11.6 83.6 5.1 0.138 0.061

Fig. 3. Copper subpeaks in Cu2p XPS spectra as a function of the plat- ing time.

(4)

 41 6 2003 12

& Dw 3 »… CuZ CuxOyùâD " aD Dy˜5 

J, - Fig. 2 Ö ´/ ›U& ¬7­ .Ú  É Ê˜5. 8˜ ]& Ž#n é~ /W XPS& Cu2p›U& sub- peakn *QR c Í -n Fig. 3 ÖY×5. ÉÊ , D w3’- ¬7¥ ue Cu metal& .Q~ ̂5 Cu(OH)2& Ì-

žqQR ¬7 ¸1 ‹ … ×5. -:  Î,   Cu7 Dw˜ i#jA& A¥Û- ¬7 C 8]& Ž#­

$ b% ¸R ˜5.

Fig. 4 ´§ Cu Dw §0& ACsn ÉÊ ¸-5. ÉÊ  }

„- $&Q '( K– 36 $ Cu-5­ Cu-15& T ã’&

particle«- ÉÊ ×RJ, Cu-40B )E* ‚- +;ù1 , =

>«- ð ¸- ÉÊ×5. -:  ´§ Dw3 ÛR

 ù#˜ Cuyg«- ACs }„ ¬m_ -  , ./ 0 ù

#˜ ¸R Éʘ5.

3-3. 

Fig. 5 ´§ Cu DwpR “˜ Cu-ACs& 77K/N2% lm

1 Ö ¸-5. – _ ½B 36 1_ Cun Dy 3 6« F  / 2B .Þ, lmÛ- .3 57 G - 0 .Þ1 * d4D  -. ¬7 _ ½ 5ù.â D

¥- ÉÊ×RJ, - BET cÐ ? K)/™- $  

Type 161 é~ ‹ … ×5[15]. -­ k- K)/™R -^z

jA#à& /™, lm& 7 lm> cg­& ~Ä,  lm N- ?8 - *,& lm9B 8˜5. lm9& 8 ¡

lm˜ cg äm/ 4:_J, - — lm cg $

äm cg& $7 ; °Æ_  lm& lmÄ- 8˜

5. Œ ºHù F<, /™&  cg& => s& $7 3- `

—, -: (.B ST U ` J, - ue % lmB º

ž, ‡ .3  Type 1& % lm1 ÖY ˜5[22].

Fig. 6B  36& K)/™b›n D-R plotR Ö ¸-5.  h K)/™ ]“n ? lm & lmB 2B .ÞÄ  , lm> & )™t@ &, -0 lm }„,& 5 cgA lm- ð  ¸R ‚ 5. D-R plot & K) /™& b›*B Æî& æ (4)n Ú 9 P/P0=0.001-0.05 O-,

±z ÜR ¶& GîBn ± Yß6 Ü1 Ôh>A& /hb›

  9 ] Í, è /™b› õø lmÛ È .… (0.001547)1 C 9 ] ÍRJ, - Ü«B Table 3 ÖY×5.

(4) 9/, W .Þ uŸ lm˜ b›, W0 K)/™b›, B

structural constant, β affinity coefficient G T D-5.

Fig. 7B Horvath-Kawazoe& slit pore F<& æ (5) / 9 /™

¶- 2 nm - ~ K)/™«& @Q/™b›(cumulative pore volume)n Ö GD-5.

(5)

9/, 2d /™& ¶1 &K5.

Fig. 7, ACs& K)/™- H 3-10 E aD U/n 7_ /™

R ]# 5 ¸1 é~‹ … ×RJ, 4 E - & /™U/

n 7_ /™& $ê- ŠF1 Å … ×5. † Fig. 6& Ü1 Ú Cu-5 36& T K– 36 K)/™& b› C /™& c

¤7 V& q-n ‚-_ ½ s„ Cu-15­ Cu-40& T K)/™

W

log =logW0–B T( ⁄β)2log2(P0⁄P)

Ψ( )2d P P0 ---

   ln

=

62.38 2d 0.64– ---

– 1.895 10× 3 2d 0.32–

( )3

--- 2.7087 10× 7 2d 0.32–

( )9

---

– –0.05014 =0

Fig. 4. SEM images of the electrolessly Cu-plated activated carbon sur- faces.

Fig. 5. Adsorption isotherms of N2 at 77 K on the electrolessly Cu- plated activated carbons.

Fig. 6. D-R plots for N2 at 77 K on the electrolessly Cu-plated acti- vated carbons.

(5)

GH& b›7 x R IJ ¸1 Å … ×5. -: ¼AK-

 ´§ Cu Dw1 Ú i#jA& K)/™ GH `b /™ š µ- `L5 ˜5. - Fig. 4& % lm, sb&

log scale Ü1 û — lm& 3° ÞÄB Dw- z{ ue 3 6, ÞMR [- LTL ¸- × - lm9& ¼ A C lmÄ- ¼A ~¥R z5.  .Þ- 106 b•, ÉÊ ,NK)/™ & lm- Cu-15 C Cu-40, V& Ö_ ½B ¸1 ÉÊ ‹ — W, _Q  ´§ Cu D w & K)/™ šµR /~˜ (.-e ˜5.

Fig. 8B Kelvinæ / BJHp1 -o 9 ´§ Cu Dw–

§·0& Cu-ACs& ?/™ È8Ü1 @Q/™b› Ü1 Ú 9 ÉÊ

Ü-J, ÜB Æî& æ (6), (7) G (8) / 9 ] Í5.

(6)

(7)

(8)

9/, rk Kelvin s_, rBJH BJHp & /™& s_, VmB

lm>& Ob›, σ lm>& }„NÄ, RB /h.…, t t-plot

&  P G T Dn &K5.

W æ«bç ±B Fig. 8& Ü, K)/™& È8K-­ $ Q Cu Dw3’- ¬7 ue /™& b›7 ¼A 1

‹ … ×5. _r K)/™& T Cu-15 C Cu-40- Cu-5

$ x R ¼A Í ?/™& T G ¼A K-7 $&Q $ Q Í5. _r Cu-40& T /™ s_- 10 Å b•, b›&

¬77 V& œ ¸1 ‹ … ×5. - 5Ÿ 36«, RÆ û … œ (.R ƳD Fig. 4& SEM Oz,D ÉÊ ×-

D Cu Dw & ù#˜ Cu yg« & K)/™ ?/™

O-& GH,  /™ ¶- 10-20 Å b•& /™«& šµ- U `

 ¸R Éʘ5.

Table 3B ACs& ´§ CuDw §·0& $}„Q& È8, è/™b›, /™s_, BET .… C G »lm9(neat heat of adsorption)%1

Ö ¸R -n Ú ]hQ~ /™Œ#& È8n ‹ … 5.

$}„Q& T Cu-5ª_ x ¼A7 Ö_ ½ÇR Cu-40&

T ã 26%& $}„Q ¼A7 ð Í5. -S x & $}„

Q ¼A Î, _Q Í- Dw & T K)/™ C 10-20 Å U/& /™«& šµ- H˜ -; ð ¸R, -: $}„Q

& ¼A UK è/™b› C K)/™ b›D $Q R É Ê×5. 6 BET .… CÜ C »lm9& T Dw3’- ¬7

 ue ã’ ¼A ¸1  ‹ … ×, - -K  Í- Dw- z{ ue ,N K)/™«- šµ- ` §s QR lmÄ& ¼A7 ð Í/ —R é~×5.

3-4. NO 

Chen %[23]& ‚ uƒ„ NO i#jA­ kB jA* ¯S

&, >A­ A ºJ, -— stð#= N2C COx­ k B b=1 ð34J, Æî­ kB *!V1 3 Í5.

NOüC-ACsWCO-ACsü1/2 N2 (9)

COüCO-ACsWCO2üC-ACs (10)

CO-ACsWCO (11)

9/,, C-ACs­ CO-ACs  i#jA+; }„& jA C AÉ

RT P

P0 ---

  

ln 2σVm

rk --- –

=

rk 4.14 P P0 ---

   log

=

rBJH rk t P P0 ---

   +

=

Fig. 7. Cumulative micropore volume distribution of the electrolessly Cu-plated activated carbons.

Fig. 8. Cumulative mesopore volume distribution of the electrolessly Cu-plated activated carbons.

Table 3. Textural properties of the electrolessly Cu-plated activated carbons

as-received Cu-5 Cu-15 Cu-40 Specific surface area (m2·g1) 1,162 1,123 954 861 Total pore volumea (cm3·g1) 0.484 0.460 0.398 0.357 Micropore volumeb (cm3·g1) 0.450 0.437 0.376 0.343 Micropore volume fraction (%) 93.8 94.3 94.5 96.1 Mesopore volumec (cm3·g1) 0.034 0.023 0.022 0.014 Mesopore volume fraction (%) 7.0 5.0 5.5 4.0

Micro-/Mesopore ratio 13.2 19.0 17.1 24.5

Average pore radiusd (Å) 8.33 8.01 8.39 8.29

BET’s constant: C 948 945 940 932

Neat heat of adsorptione (kj·mol1) 4.403 4.401 4.397 4.392

aV

ads

molar Volume of liquid N2 molar Volume of gaseous N2 ---

× From D-R plot,

b Vtotal ads×0.001547

Total pore volume

c –Micro volume

d2 Vtotal SBET ---

×

e E=E0–EL=RTln(CBET)

(6)

 41 6 2003 12

Ã/n Ö5. 6 Park %[24]& \] uƒ„ Cu7 Dy˜ ACF

,& NO V st& T Æî& *!V1 uƒ ¸R XYZ5.

NOüCu-ACFWCu2O-ACFü1/2N2 (12)

2Cu2O-ACFW4Cu-ACFüCO2-ACF (13)

kB [\, eû — ´§ Cu Dw˜ Cu-ACs& T ACs }

„ »… Cu C ã’& 8˜ Cu7 Ž# J, NO& =Q l m C ºB  NO-Cu-ACs, NO-CuxOy-ACs C NO-C-ACs& st 1 Ú ` ¸R ]ݘ5.

Fig. 9 K– C ´§ CuDw- !3˜ Cu-ACsn -o 9 ´

A , He ëÏE& 1,000 ppm ìD& 7En -o 9 NO V

!Ë1 !3 Ü-5. K– 36& T 90c^, Mž-

ð 9 NO& ìD7 53 ¬7  1 Ö s„

Cu-5 150c G Cu-15 200c aD, Mž- ÖLRJ, Cu-40& T Mž- 93’, ÖL5.

Fig. 10 11B  '],& N2C CO2ìDn Ö ¸-5. Fig. 10

& N2& È81 û —, K– 361 Z Cu7 Dy˜ 36«

& T / 500 ppm 7ª_ N2ìDn ‚Í5. - W, 

˜ *!V `L   2& NOcg7 c & N2

cgn ù#  ¸R ˜5. st3’- ¬7 ue K–

36& T / 350 ppm aD& Ü1 ‚-57 žq ‡ ¼ A×5. - Chen& ‚­ k- i#jA ghD ã’& ºÄ1

‚-/ —-J, N2ìD& ‡ ¼A .QR D7 "`  ºst‚5 D7 aŸ NO& =Q lmR ~ aƒ Mž

55b/ —R ˜5. s„ Cu7 Dy˜ i#jA«B Cu­ NO

& 8¹Q~ º°oR ~ G N2ìD& ¼A7 K–36–c

‡ `_ ½ ¸- ×5. Fig. 10& CO2ðÛ1 ‚„

K– 36& T7 7N Š Ö s„ DwÛ- ¬7 ue

žqQR CO2& Ì- ¼A - ÉÊ ×5. - K– 3 6& T /& º°oR ã’& CO2n ð34_r d Mž

 -ƒ: G Ì- ‡ ¼A  ¸-J, Cun ¤¥  36«&

T i#jA gh& ºÄ & / ã’& CO2n ð34 _r, Park%- 3 *!V–c ð˜ CO2«- =QR i#

jA lm G Ì- U Q_ ¸-e ˜5. eQR

NO V stB K–<Cu-5<Cu-15<Cu-40 »R ÖLRJ, -

/ÁQR Dy˜ ]& Ì $  ¸R ÉÊ×5. _r

Cu-40& T Mžr1 û — 5Ÿ 36‚5 x R G Vê-

.3 Í -: -; Æî& OfR z5.

Table 3, micro-/mesopore& $Ü1 û — Cu-40& T G Ü- 24.5 5Ÿ 36 $ % UJ, -n Ú K)/™& cê- .QR ŠB ¸1 Å … 5. NO& lm3 NO gh K)/™

 & lm- bc-_r NO cg7 K)/™ 55ƒ/ W,

 G Ú7  ?/™ C /™& cê- ?© 5 ‹ … 5 [22]. - ?/™- /™& cê- g´ Š1 T lm˜ NO c g«- K)/™ª_ -ƒ_ -  ?’ lm˜ 0 ¾ äm h 7 Ã#- Ž# ˜5. _r Cu-40& T Dy˜ Cu & K)/

™‚5 ?/™& šµ- U `LRJ - — K)/™& cê - .QR ¬7×5. — lm˜ NO& äm- o- _ ½Ç 1 ¸R ˜5. 6 Î,  Íi ­k- Cu-40& T 5Ÿ 36 $ Cu(OH)2& ¥Û- .QR ŠÇRJ, - —

T#ÉÃ/­ NO­& =Q~ interaction- 8×1 ¸R ]Ý

J, -7 Cu-40& NO Vst,  ©~R °oj1 ¸R 

˜5[25].

-.R, ACs& ´§ CuDwB – _ ½B 36 $ NO

V "ê- §sQR ¬7×RJ, Œ Cu-40& T Mž r1 û

— K– $ G "ê- 400% -. ¬7 ¸- ÉÊ×5. -

¸R ‚Æ i#jA& ´§ DwB ;o }„– @p ?&

e ˜5. † -: (.& -; /ÁQR Dy Cu

& Ì &Ž J, b…QR micro-/mesopore& $ G T#Éà / & NO­& ~Ä % Ék-  ¸R ÉÊ×5. _r Fig. 9. Outlet concentration of NO as a function of plating time.

Fig. 10. Outlet concentration of N2 as a function of plating time.

Fig. 11. Outlet concentration of CO2 as a function of plating time.

(7)

Cu& Dy ue ACsgh& lmÃ,  $}„Q K)/™b› % B ¼A Í5. NO& V st- NO-C-ACs­ NO-Cu-ACs, €3

 ` ¸1 ¼‹ — 5Û& Cu DyD l¶ _r lm g h& lmÃ1 U ¼A34_ ½ IW Y, Cu& Dy- -^

_ ¸- 7N -.Q` ¸R Éʘ5.

4. 

Á \], ACs ´§ DwpR Cun Dy ÍRJ, -n -o 9 NO lm C ºV€ KL G  9 Ê Í5.

Dw 3’- ¬7¥ ue ACs }„ Dy Cu& ÌB ¬7 , s„ ACs& $}„Q, /™ b› %& lm#>- ¼A  ¸- É Ê×5. † -n -o 9 NO V !Ë1  , Cu7 Dy˜

FJ 36«B Dy_ ½B ¸ $ ŠB NO Vê1 ‚ÍRJ,

Œ Cu-40 36& T K– 36 $ G "ê- 400% m  ÖL5. _r NO& V7 lm gh,D ð  ¸1 ¼‹

— Cu& DyB lm gh& lmÃ1 U ¼A _ ½ IW Y

, -^_ ¸- õQ-e Éʘ5.

 

Á \] ¹/nb& ¹/nX8O (M1-0105-00-0059)&

_º & 9 …{ ÍRJ, - ¼Oo!5.



1. Calvert, S. and Englund, H. M., Handbook of Air Pollution Technol- ogy, John Wiley & Sons, New York(1984).

2. Noll, K. E., Gounaris, V. and Hou, W. S., Adsorption Technology for Air Water Pollution Control, Lewis, Michigan(1992).

3. Bansal, R. C., Donnet, J. B. and Stoeckli, F., Active Carbon, Marcel Dekker, New York(1998).

4. Selvaraj, M., Pandurangan, A., Seshadri, K., Sinha, S. P. K. and Lal, K. B., “Synthesis, Characterization and Catalytic Application of MCM-41 Mesoporous Molecular Sieves Containing Zn and Al,” App. Catal. A:

Gen., 242(2), 347-364(2003).

5. Subbiah, A., Cho, B. K., Blint, R. J., Gujar, A., Price, G. L. and Yie, J. E., “NOx Reduction over Metal-Ion Exchanged Novel Zeolite Under Lean Conditions: Activity and Hydrothermal Stability,” App.

Catal. B: Environ., 42(2), 155-178(2003).

6. Park, S. J. and Jang, Y. S., “Interfacial Characteristics and Fracture Toughness of Electrolytically Ni-Plated Carbon Fiber-Reinforced phenolic resin matrix composites,” J. Colloid Interface Sci., 237(1), 91-97(2001).

7. Carabineiro, S. A., McKee, D. W. and Silva, I. F., “Uncatalysed and Catalysed CO2 Reaction Using Metal Catalysts and Binary Vana- dium Mixtures Supported on Activated Carbon,” Carbon, 39(3), 451- 463(2001).

8. Matos, J. and Laine, J., “Ethylene Conversion on Activated Carbon- supported NiMo Catalysts: Effect of the Support,” App. Catal. A:

Gen., 241(1-2), 25-38(2003).

9. Zemlyanov, D. and Schlögl, R., “Electron Inelastic Mean free Path Measured by Elastic Peak Electron Spectroscopy for 24 soLids between 50 and 3400 eV,” Surface Sci., 470(1-2), L20-L24(2000).

10. Carabineiro, S. A. C., Ramos, A. M., Vital, J., Loureiro, J. M., Órfão, J. J. M. and Fonseca, I. M., “Adsorption of SO2 using Vanadium and Vanadium-copper Supported on Activated Carbon,” Catal. Today, 78(1-4), 203-210(2003).

11. Guo, J. and Lua, A. C., “Adsorption of Sulphur Dioxide Onto Acti- vated Carbon Prepared From Oil-Palm Shells with and Without Pre- impregnation,” Sep. Purif. Technol., 30(3), 265-273(2003).

12. Ryu, S. K., Kim, S. Y., Gallege, N. and Edie, D. D., “Physical Prop- erties of Silver-Containing Pitch-Based Activated Carbon Fibers,”

Carbon, 37(10), 1619-1625(1999).

13. Ang, L. M., Hor, T. S. A., Xu, G. Q., Tung, C. H., Zhao S. P. and Wang, J. L. S., “Decoration of Activated Carbon Nanotubes with Copper and Nickel,” Carbon, 38(3), 363-372(2000).

14. Park, B. J., Park, S. J. and Ryu, S. K., “Removal of NO over Copper Supported on Activated Carbon Prepared by Electroless Plating,” J.

Colloid Interface Sci., 217(1), 142-145(1999).

15. Brunauer, S., Emmett, P. H. and Teller, E., “Adsorption of Gases in Multimolecular Layers,” J. Am. Chem. Soc., 60, 309-319(1938).

16. Dubinin, M. M. and Plavnik, G. M., “Microporous Structures of Carbonaceous Adsorbents,” Carbon, 6, 183-192(1968).

17. Horvath, G. and Kawazoe, K., “Method for the Calculation of Effec- tive Pore Size Distribution in Molecular Sieve Carbon,” J. Chem.

Eng. Jpn, 16(6), 470-475(1983).

18. Khalili, N. R., Campbell, M., Sandi, G. and Golas, J., “Production of Micro- and Mesoporous Activated Carbon from Paper Mill Sludge: I.

Effect of Zinc Chloride Activation,” Carbon, 38(14), 1905-1915(2000).

19. Vaskelis, A., Coatings technology handbook, Marcel Dekker, New York(1990).

20. Park, S. J., Jang, Y. S. and Rhee, K. Y., “Interlaminar and Ductile Characteristics of Carbon Fibers-Reinforced Plastics Produced by Nanoscaled Electroless Nickel Plating on Carbon Fiber Surfaces,” J.

Colloid Interface Sci., 245(2), 383-390(2002).

21. Lee, S. H. and Choi, C. S., “Chemical Activation of High Sulfur Petroleum Cokes by Alkali Metal Compounds,” Fuel Process. Tech- nol., 64(1-3), 141-153(2001).

22. Do, D. D., Adsorption analysis: Equilibria and kinetics, Imperial College Press, London(1998).

23. Chen, Z., Mu, L., Ignowski, J., Kelly, B., Linjewile T. M. and Agar- wal, P. K., “Mathematical Modeling of Fluidized Bed Combustion.

4: N2O and NOx Emissions from the Combustion of Char,” Fuel, 80(9), 1259-1272(2001).

24. Park, S. J., Jang, Y. S. and Kawasaki, J., “NO Adsorption and Cata- lytic Reduction Mechanism of Electrolytically Copper-Plated Acti- vated Carbon Fibers,” HWAHAK KONGHAK, 40(6), 664-668(2002).

25. Park, S. J. and Kim, K. D., “Adsorption Behaviors of CO2 and NH3 on Chemically Surface-Treated Activated Carbons,” J. Colloid Inter- face Sci., 212(1), 186-189(1999).

참조

관련 문서

Formation mechanism of unstable interface/surface of lithium metal in the battery during the charge/discharge (A) Specific capacities of electrode materials in

&#34;Purification and Characterization of a Novel Malto-oligosaccharides Forming α-Amylase from Bacillus sp... Theories and

This review introduces PSM methods for MOFs, chemical modification of activated carbons (ACs), and current advancements in the elimination of Pb 2+ , Hg 2+ ,

ABSTRACT: This study was conducted to determine the solubility of copper (Cu) in two sources of copper(II) sulfate (CuSO 4 ) including monohydrate and pentahydrate and

• 대부분의 치료법은 환자의 이명 청력 및 소리의 편안함에 대한 보 고를 토대로

• 이명의 치료에 대한 매커니즘과 디지털 음향 기술에 대한 상업적으로의 급속한 발전으로 인해 치료 옵션은 증가했 지만, 선택 가이드 라인은 거의 없음.. •

Keywords: sinc interpolation, fast transform, nonuniform fast Fourier transform, density compensation weights, iterative methods, Fourier analysis, image

결핵균에 감염된 사람의 일부에서만 결핵이 발병하는데 어떤 사람에서 결핵이 발병하는지 그 자세한 기전은 알려져 있지 않지만 결핵균의 독성(virulence)이 강하거나 결핵균에