• 검색 결과가 없습니다.

Vrglxp#Prqwpruloorqlwhô#.YŒ#K Lë#LSPFÌ#.á+#ŽU#¨à#`á#

N/A
N/A
Protected

Academic year: 2022

Share "Vrglxp#Prqwpruloorqlwhô#.YŒ#K Lë#LSPFÌ#.á+#ŽU#¨à#`á#"

Copied!
5
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

Demo

1. #g«#

ÎÖ® Z†WÎ æO& ®®B kÊ ªnê Z†²‡6Úæ(elec- troactive-polymer, EAP)ê :ç®â §ÿv n ޒ² BB ÚÒ® R

¯æ, †væ:Ê $– VBš V6 Þê "Ê:. 6Úæ "ê

ŽÒO "î k† ¿^& šÊ V#6, VKÊ Â² Z†²

‡"²® §ÿ& VWÎ ûfš V6 Þ:.1,2

Ê~‡6Úæ-^ã K¿"(ionic polymer-metal composite(IPMC)) ê EAP® Òے², ݖ 6Úæ ® ç Ê& ^ã ZOÊ Þê ÂÆÒ VÆ, ^ã ZO– J ^ãÊ~š ª¯W’² ®&2H k‡2þ:. IPMCê çZO Ê& Z«š V®Ê çO(anode) ’

² ÂÖBêÆ, 10 V Ê®® š¦W – ÎÖ Z«& ¾ f§

®Æ kçÊ Æ ÙÊ ûfÊ:. IPMCÒ Êÿ®B V#6 vF² ûš þ®ê ÎKRw, ʲ ²], ʲ âZ G’² § ÿv n Þ:.3-6

IPMC& V² ^¢® FÂ:– VÖÚ W’² 3n6 Þê Þ⪠Ê~‡ 6Úæ ’, ß DuPont® Nafion, Asahi Glass®

Flemion, Asahi Chemical® Aciplex Gš ÿ®6 Þ:. Ê:– tetra- fluoroethyleneR Š V® &>& vF – ÊK:® Ê~†

Ò V Þ⪠š&&¢ÊÒ Kg¿2þ chemical structure 1š V6 Þ:.7,8

CF2 CF2

O

CF2 CF2

CF2 C F CF3

O CF2 CF2 SO3

m n

Chemical Structure 1

NFÆ Ê: 6Úæ ":– VÖÚ ¦. 0.1»0.3 mm kÎ š Ú k2² f:n6 ޒÆ, ÿ‹VKÊ n  ê:. †Òr ÿ&

W¿² þ璲 ‡k®B †ûš OVª®ê ÙÊ Ó  :.9 N :.:&rê Nafionš V®B IPMCÒ rç¶ n ޒÊr ÿ‹VKÊ Vû² 6Úæ "Ò ”† Z² Î{š ² R, chemi- cal structure 2® fluoroalkyl methacrylate(FMA), ß DuPont® Zonyl TMR šÂ(AA)š Kg¿®B – 6Úæ² IPMCÒ rç¶

n ޒÆ, Nafion’² rç² IPMC– v² ‡ûš V&š J6

² j Þ:.10

Vrglxp#Prqwpruloorqlwhô#.YŒ#K Lë#LSPFÌ#.á+#ŽU#¨à#`á#

`§ó%}‹ã}ÇL?#

øð(c#^c<#

+5338T#6#44¼#Q:/#5338T#9#:¼#T,#

#

Surshuwlhv#dqg#Shuirupdqfh#ri#Hohfwurdfwlyh#Dfu|olf#Frsro|phu0Sodwlqxp##

Frpsrvlwh#Prglilhg#zlwk#Vrglxp#Prqwpruloorqlwh#

Kdq#Pr#Mhrqj%/#E|xqj#Fkrrq#Nlp/#dqg#\rxqj#Vrr#Od#

Department of Chemistry, University of Ulsan, Ulslan 680-749, Korea (Received March 11, 2005;accepted June 7, 2005)

S¨Ü Sodium montmorillonite – sodium montmorilloniteV Ûr macromer® Ê ®&r fluoroalkyl methacrylate–

X-v â^ ‡, Îû’‡, nÚ·n~ G ’W ‡š Æ®V:. f, Ê:š Êÿ®B Ê~‡ 6Úæ-‡^ K¿

"(IPMC)Ò rÆ®B n R® ÎÖ ZZ& ®² Z® ¦Ú e Z Æ/š wk² R, sodium montmorilloniteV Ê

~® Ê/š Ê®B Z® e Z® fâÒ ^ V†®V:

Abstract:Fluoroalkyl methacrylate and acrylic acid were bulk radical copolymerized in the presence of pure sodium montmorillonite or macromer intercalated sodium montmorillonite to get a fluorinated acrylic ionomer/sodium montmo- rillonite composite, and their physical properties, such as X-ray diffraction pattern, tensile properties, and water uptake, were examined. These composites were used to preparean ionic acrylic polymer-platinum composite (IPMC). The current and deformation responses of these IPMCs by external voltage applied across the platinum electrodes deposited on both sides of IPMC showed that the cation migration from anode to cathode was suppressed in the presence of sodium mon- tmorillonite, causing reduced current and deformation.

Keywords: ionic polymer-metal composite(IPMC), fluorinated acrylic ionomer, electroactive, sodium montmorillonite, composite.

To whom correspondence should be addressed.

E-mail: hmjeong@mail.ulsan.ac.kr

(2)

C CH3

C O

O

C C F

n CH2

CH2 CH2

F F

F F 1 .

=4 n

Chemical Structure 2

IPMC® ç ZO Ê& Z«š V®Ê Ê~‡ 6Úæ & K v ¿’² 6kr ¢Ê~– Ê/¶ n ’î, Ê~ ¿r ^ã çÊ~– ¢O(cathode) ’² nªr ’ Úæ– ¾. Ê/®â r :. Ê& †Ò ¢O – “znâ n6, çO(anode) – nënâ n² šÚ k2® IPMCê çO ’² Óâ r:.1,3,11 ÊB

² Â/ && ®®Ê Â/‡š û2ú† ZÊrê Ê~ ã®

óVV šê®:. NBî N :.:&r ¿‡² Þ⪠šÂ

B Ê~ ãÒ óV2úÊ nÚ ·nÊ _ÿ®â óV®B Â/

‡– zÞz V®®V:.10

Sodium montmorilloniteê f® silicate ¢Ê~ ‹ Ê& Na+Ê

~Ê Ê®ê Ê~ ãV šR è– Š† 6ÚæÊ:.12,13 N FÂ

&rê sodium montmorilloniteÒ 6Úæ :ú& Ú2þ K¿

"Ò rÆ®Ê †W k– 6Úæ :ú& Úr Ê~ ã

Ò óV2 n Þ:ê f& ž®B, FMA– AAÒ Kg¿² Þâ ª šÂ Ê~‡ 6Úæ(PFMAA) :ú& sodium montmorillonite Ò Ú2þ K¿"Ò rÆ®6, ÊÒ Êÿ®B IPMCÒ rÆ®B Â/ ‡š Æ®V:. K¿"® rÆ&ê FMA– AAÒ Òj Ò Kg¿¶ ¢ sodium montmorilloniteÒ ¾. ‚Û®B rÆ®ê  ëR chemical structure 3® poly(ethylene glycol) methyl ether methacryl- ate macromerV sodium montmorillonite& Ûr K¿"Ò ’V

"6 14-16ÊÒ FMA, AA– ¾. Kg¿2úê ë, ¦ VÒ  ÿ®V:.

H2C C CH3

C

O O

n CH2 O

CH2 CH3

Chemical Structure 3

2. /#

2.1 Pdfurphu#@´÷£#g»#

ÚæÊ 562g/molÎ poly(ethylene glycol) methyl ether methacrylate macromer(PEGM, Aldrich)V sodium montmorillonite(Southern Clay Products Inc.)& Ûr K¿"(PEGMM)ê ª‚/acetonitrile ’

¿·(֒š 1/1) ã&r rÆ®V:. ß ’¿· 100 mL& PEGMš

3 g ÏÎ , sodium montmorillonite 7 gš V² ú ~&r 2ÒZ ¦ n®V:. ®  ¾Z’š Ú®6, ¾Z’š acetonitrileR ª

‚² WW Žï² , K zf&r ~š v² š 3ÒZ ÊÆ

®B :.& ÿ®V:.14-16

2.2 +ÏÛ#@´÷£#´|#Z#Ï#g»#

FMA– AAÒ Kg¿² Þ⪠šÂ Ê~‡ 6Úæ(PFMAA) :ú& sodium montmorilloniteÒ Ú2þ K¿"ê sodium mon- tmorillonite – Z&r rƲ macromer K¿"® Ê ®&r FMA– AAÒ Š Kg¿®B rÆ®V:. g¿– 0.3 phr® 2,2′- azobisisobutyronitrile(Aldrich)š ÒjÒ r2r² ÿ®B, 60 ×,

⠆® ®&r ß®V:. g¿’– îâ Ön ª‚ ã&r

¦n®ê 뒲 n~– Žï²  60 ×&r K ÊÆ®V:. ¿

‡ recipe, 2"Û, ¿‡r K¿"® Ƈ G– Table 1& î:.

¿‡² K¿"ê 165 ×&r «ë ‡k®B ¦. 0.16 mm® š Ú k2² ": IPMC® rÆ& ÿ®V:.

2.3 LSPF£#g»

šÚ çÊ& ‡^ ZOš k‡2þ Þ⪠šÂ Ê~‡ 6Ú æ-‡^ K¿"(ionic acrylic copolymer-platinum composite, IPMC) ê ª¯ ®&뒲 rÆ®V:.11,17 «ë‡k² šÚš Ê~š r Ʋ ^rnÒ ÿ®B n~– Žï®6, ~® ^rn& 2ÒZ J  “z2þ ú, Ó 10-2M ã² tetraammine platinum(II) chloride hydrate, Pt(NH3)4Cl2áxH2O (Aldrich)Ò ^rn& ÏÎ 50 × nÿ·&

32Z J ÊK:†® H+Ê~š ‡^ Ê~’² ¦®®V:.

¦®r ‡^ Ê~š NaBH4(Aldrich)Ò 5 wt%² ÏÎ nÿ·’² 40 ×&r ®&2H ‡^Ê šÚ ²Ê& sòr IPMCÒ rÆ®V :. ‡^ Ê~ ¦®R ®& Æç– 4~– nK®B ÿÚ² ¦.®

‡^Ê ²Ê& sòn³ ®V’Ê, 3, 4ÞN® ®& 2&ê ~Ò 60 ×¢ èV:.

2.4#l`#

†KÛÚs(1H-NMR)š Varian Plus 300 MHz NMR² ~&r ®V :. 6Úæê trifluoroacetic acid& ÏB wk®V:.

K¿" g® sodium montmorillonite ¾– JgÚs뒲 ß

®V:. ß, TA Instrument® Jg Ús†(TGA 951)² K† ÚZ†

&r 10 ×/min ã² 700 ×¢ VJ²  ê®çš wk®B 2

" g sodium montmorillonite® ¾š ®V:.

Table 1. Acrylic Copolymer Composites Used in This Study

Feed composition (weight ratio) Polymer composition (weight ratio)

FMA AA Sodium montmorillonite PEGM FMA AA Sodium montmorillonite PEGM

ZAN0 70.00 30.00 - - 82.00 18.00 - -

ZAN3 70.00 30.00 3.00 - 79.89 20.11 3.96 -

ZAN7 70.00 30.00 7.00 - 86.05 13.95 8.66 -

ZAP3 70.00 30.00 2.46 0.54 88.83 11.17 2.35 0.67

ZAP7 70.00 30.00 5.73 1.27 79.75 20.25 4.97 1.14

(3)

X-v â^Ús– X-ray diffractometer(X'PERT, Philips)² Cu K;(

1.54 Å) vš ÿ®B, â^Wš 1.21²Ö† 1.2 °/min² óV2 úÊr ß®V:.

«ë‡k² šÚ® Îû’‡– šÚš 25 × ^rn& 2ÒZ J Þ “z2þ  Îû2.†(Instron 4411)Ò ÿ®B wk®V:. V

² 10 mm, ŽÊ 30 mm, ¦. 0.16 mmÎ 2š ÿ®B, Îûã

10 mm/min² wk®V:.

«ë‡k² šÚR IPMC® nÚ·n– :¢ 3(1)š Êÿ®B

®V:. Ê 3&r Wwetê 2"Ò 25 × ^rn& 2ÒZ JÞ

“z2þ ú® ŠâÊ6, Wdryê “z² 2"Ò :2 80 × Kzf

&r 2ÒZ ÊƲ ® ŠâÊ:.5

Water uptake (g-water/100 g-dry sample) 100

dry dry

wet− ×

W W W

(1)

IPMC® >ÊR ²Ê® þJ²ê ÊƲ 2&r 2"& ^š

sputtering² ú RZæZN(SEM, Jeol JSM 820)’² V†®V:.

>ʖ ·â² W² ú b² 2"® >ʚ V†®V:.

Figure 1& î û®Ò ÿ®B ² û’² 4 V® ZZÒ V

®Æî 1 Hz² 2V, 2VÒ Þ^šVÊr IPMC& ÖV®ê 

Z®– Ê7 k kÒ wk®V:.3,5 IPMCê C 6 mm® N þ 璲 îÒ ² ³š û®& 6k®B Z«š V®6 :Î ³

– Z«& ®Ê Ⲡʳ ®B Êê kÒ ^ÊV² wk®V:. Â/®ê N® ŽÊê 25 mm² ®V6, ³&r 5 mm

f&r ^ÊV² ZÒ wk®V:. 2"ê Ý ~– ^š Â/

² ú f§ h:š wk®B wkh® Z‡š èV:.

3. ûG Z ë«

3.1 [0k#×S#Ïh#

Figure 2(a)– (b)& WW sodium montmorillonite– sodium mont- morillonite& PEGMÊ Ûr K¿"(PEGMM)® X-v ÚsR Ò î:. Sodium montmorilloniteê rÆÎ Southern Clay®

†v æ"– š ®â 2 θ7.8°&r ’ÂÒ VêÆ šÊ, PEGMM

– 2 θ6.3°&r ’ÂÒ V&š R n Þ:. Ê Rê macromerÎ PEGM® ے² ήB sodium montmorillonite® ‹Z ZÿÊ â

¢¢š JBV:.14-16 P. Aranda G® F R& ®®Ê sodium montmorillonite® ‹ Ê&ê poly(ethylene oxide)V Ó 0.26 g/g-mont- morillonite¢ Ûv n ޒÆ, Ò> Ûr poly(ethylene oxide)ê ÿ:& ®Ê ‘ n ê ْ² J6r j Þ:.15N FÂ&r rƲ PEGMM g PEGM macromer® ¾– Table 1&r 0.22 g- PEGM/g-sodium montmorillonite² rn² poly(ethylene oxide)J: Ó Z Wâ Û~š R n Þ:. Êê PEGM&ê poly(ethylene oxide) Wr:. ², Figure 2(e)– (f)&r PEGMMš FMA, AA– Kg¿2 H rƲ ZAP3R ZAP7 PEGMMR š ² Z®&r X-v â^

montmorilloniteê VÖÚ poly(ethylene oxide) VV Ûr ÂÆÒ v¾š JBV:. Ê& nÊ FMA– AAÒ Kg¿¶ ¢ sodium mont- morillonite æÒ ‚Û®B rƲ ZAN3R ZAN7– 2 θ5»8° ê Z& ÚB®ê š¦W i– X-v â^ ’ÂÒ V&š R n Þ:

(Figure 2(c)

ê ê 6Úæ :ú g& sodium montmorilloniteV BB V

:ç² k2² Ún Þ¢š JBV:.

3.2 ?Ϭ?#

r¶&r †v² j– oÊ IPMC® Â/&ê ’Úæ® C¶Ê gꮲ N :.& ÿ² 6Úæ K¿"Ò «ë‡k² šÚ R ÊÒ ÿ®B rƲ IPMC® nÚ·nš wk®B Table 2&

î:. šÚ® , ZAN3– ZAP3– sodium montmorilloniteV B¾n  – ZAN0& šÊ nÚ·nÊ W–Æ Êê Nylon 6/mont- morillonite nanocomposite&r V†r j– oÊ f® silicateV nÚ® šÚ Ö²® «š Ê®† ¢Ž’² 3Wr:.18 NB î ZAN7R ZAP7– ZAN0J: nÚ·nÊ zÞz $–Æ, Êê sodium montmorillonite æV ²n‡Ê² sodium montmorillonite

® çÊ $– ê " Z& ²n‡ WCÊ óVnê þRV 20mm

5mm

6mm Laser displacement

sensor

Potentiostat Waveform generator

displacement cathode anode

20mm

5mm

6mm Laser displacement

sensor

Potentiostat Waveform generator

displacement cathode anode

Figure 1. A schematic of displacement measuring system.

Figure 2. X-ray diffraction patterns of (a) sodium montmorillonite, (b) PEGMM, (c) ZAN3, (d) ZAN7, (e) ZAP3, and (f) ZAP7.

Intensity

5# 7# 9# ;# 43#

2 θ

OˆP O‰P OŠP O‹P O P OŒP

OˆP O‰P OŠP O‹P O P OŒP

(4)

vW’² çÿ®† ¢Ž’² 3Wr:. «ë‡k² šÚš ÿ

®B ª¯W ®&뒲 IPMCÒ rÆ®ê Rk&r šÚÊ Ââ

“z~š V†¶ n ÞêÆ, Êê -COOH†V O‡Ê Æ -COO- Na+² Ên6 Na+Ê~& ’Ê nª~& †Î ْ² 3Wr:.19,20 Table 2&r IPMCV šÚJ: >‚ $– nÚ·nš V&š « ζ n Þ:. IPMC® ê V² sodium montmorilloniteV ÓZ

® nÚ·nš ZAN0& šÊ óV2úê þRV ޒî, ¾&

†Î ªê ò®  ¢š Table 2&r R n Þ:.

3.3 ÃðW|#

6Úæ K¿"Ò «ë ‡k² šÚš 25 × ’ ã& 2ÒZ J Þ “z2þ ú wk² stress-strain 7vš Figure 3&, ʲֆ 

ê kWÎ Îû’‡š Table 3& î:. ZAN0– F² 6Ú æ® ’‡š Vî, ÒnWÎ K¿"&rîR21-26 ZAN3R ZAP3

– sodium montmorillonite® JkþR& ®Ê ZAN0& šÊ þB úV óV~š ¢ n Þ:. NBî ZAN7– ZAN3J: ZAP7– ZAP3 J: þBúV f⾚ R n ÞêÆ, Êê nÚ·n® óV&

®² “z(Table 2 ŽÆ)’² ÚæZ Î{Ê fâ¾& ®² ÙÊ ² &

Β² 3Wr:.

3.4 ó?§ #

Figure 4& SEM’² V†² IPMC® >Ê e ²Ê® þJ²Ò î:. Figure 4(a)® >Ê k&r Ó 2 2 ¦.® ‡^Ê s òr ZO ‹Ê k‡n Þ¢š V†¶ n Þ:. Figure 4(b)® ²Ê k&rê Ó 20 2 †® WC:Ê þæÊ k2² ʾš

V†¶ n ÞêÆ, Êê IPMC rÆ2 “zn® ²Ê® ‡^ ‹Ê SEM V†š ZÊ Êƶ ¢ nënÊr ²Ê‹Ê îâ Ön&

& †Î®ê ْ² 3Wr:.1 3.5 OO#£§#·#

Figure 5& IPMC& 4 V® ® ZZÒ V²  Z®– Z®

ªš 2®VêÆ, Z®ê _ÿ®â óV®V:V fâ®ê Æ /š, Zê rrÞ óV®ê Æ/š R n Þ:. ʖ oÊ Z®–

Z Ê& ÓZ® 2Z FÊ Þê Êvê çÊ~& nªr ’ Ö §{& ®Ê ZV 3†ê ÙÊ r~W’² Ê>† ¢Ž’

² 3Wr:. f, çÊ~® Ê/& ®Ê vrnê ‚«& ®Êr ÒÖ ’Ê ¢O ’² êV² B Z& †B®ê Ù ² &

// /

(a) (b)

Figure 4. Scanning electron micrographs of (a) the cross-section (b) the surface of IPMC from ZAN0.

Figure 5. Initial current and displacement responses of IPMC by the applied voltage of 4V ; (ŠŠŠ) ZAN0, (-- . -- . -- ) ZAN3, (-- . . -- . . --) ZAN7, ( - - - - -) ZAP3, (...) ZAP7.

0 1 2 3 4 5 0 0 0 0

3# 5# 7# 9# ;# 43#

Time(sec) 73

63 53 43

8 7 6

5 4 3

Displacement(mm) Current(mA)

Table 3. Tensile Properties of Wet Acrylic Copolymer Films

Sample

Tensile modulus (MPa)

Tensile strength at break

(MPa)

Elongation at break

(%)

ZAN 0 0.43 2.23 68

ZAN 3 1.20 3.37 78

ZAN 7 0.61 2.03 33

ZAP 3 1.02 3.63 46

ZAP 7 0.61 2.37 34

Figure 3. Stress-strain curve of wet acrylic copolymer film ; (a) ZAN0, (b)ZAN3, (c)ZAN7, (d) ZAP3, and (e)ZAP7.

8#

7#

6#

5#

4#

3#

Stress(MPa)

# 3# 53# 73# 93# ;3# 433

Strain(%)

0 1 2 3 4 5

(a) (b)

(c) (d)

(e)

Table 2. Water Uptake of Film and IPMC

Water uptake (g-water/100 g-dry sample) Sample

film IPMC

ZAN0 22.3 67.2

ZAN3 14.7 78.0

ZAN7 25.0 68.7

ZAP3 21.2 76.1

ZAP7 35.7 66.1

(d)

(b)

(c) (a) (e)

(5)

Β² 3Wr:.1,3,11 Figure 5&r sodium montmorillonite² r² ZAN3, ZAN7, ZAP3, ZAP7® Z®– Z h þ¦V ZAN0& šÊ çâ îþš R n ޒÆ, sodium montmorillonite® ¾& †Î ò² ª û– V†¶ n :. Êê sodium montmorilloniteV IPMC ® Ê~ ãÒ óV2ú†ê ®", ÎÖZZ& ®Ê PFMAA

® -COO-Na+†& Ör Na+ Ê~Ê ’R ¾. Ê/®ê ٚ  Ê®ê çÿÊ Þ¢š JBV:.

Figure 6&ê 1^ Zÿ’² +2 V, -2 VÒ Þ^š IPMC& ÖV² 

 Z®– Z® ªš 2®V:. Figure 5&r– oÊ ^R®

â ¾ f§®ê Z®– ÊJ: æâ f§®ê ZV îþš

R n ޒÆ, sodium montmorillonite² r²  ZZ& ®² Z

®– Z® f§Ê f⾚ V†¶ n Þ:.

4. û«

X-v â^ Ús Rê sodium montmorillonite æ – macromerV

Ûr sodium montmorillonite® Ê ®&r FMA– AAÒ ÒjÒ Kg¿®ê  sodium montmorillonite& PFMAAV Ûr K¿

"Ò þ~W’² rƶ n Þ¢š JBR:. ZAN0R ÊÒ sodium montmorillonite² r² K¿"Ò Êÿ®B IPMCÒ rÆ®6, V Ê Z«& ®Ê vr Z®– Z hš wk² R:– sodium montmorilloniteV IPMC g& Ê~® ãê óV2úî Ê~® Ê /š Ê®B Z®– Z h® fâÒ VŽŠš JBR:.

[÷£# KÜN FÂê JÊKÖ JÊ®"†v»® &

& ®®B Ê> ÙÚ(Rrގ: 02-PJ3-PG10- 31402-0001).

S+S

G

1. Y. Bar-Cohen (Editor), Electroactive Polymer(EAP) Actuators as Artificial Muscles, SPIE Press, Washington, 2001.

2. M. Watanabe, M. Suzuki, Y. Hirako, H. Shirai, and T. Hirai, J. Appl. Polym.

Sci., 79, 1121 (2001).

3. K. Asaka, K. Oguro, Y. Nishimura, M. Mizuhata, and H. Takenaka, Polym.

J., 27, 436 (1995).

4. M. Shahinpoor and K. J. Kim, Smart Mater. Struct., 10, 819 (2001).

5. Y. Abe, A. Mochizuki, T. Kawashima, S. Yamashita, K. Asaka, and K. Oguro, Polym. Adv. Technol., 9, 520 (1998).

6. S. Nemat-Nasser and J. Y. Li, J. Appl. Phys., 87, 3321 (2000).

7. J. Y. Li and S. Nemat-Nasser, Mechan. Mater., 32, 303 (2000).

8. C. Heitner-Wirguin, J. Membr. Sci., 120, 1 (1996).

9. K. J. Kim and M. Shahinpoor, Polymer, 43, 797 (2002).

10. H. M. Jeong, S. M. Woo, H. S. Kim, B. K. Kim, J. H. Bang, S. Lee, and M.

S. Mun, Macromol. Res., 12, 593 (2004).

11. K. Oguro, N. Fujiwara, K. Asaka, K. Onishi, and S. Sewa, Proc. SPIE-Int.

Soc. Opt. Eng., 3669, 64 (1999).

12. L. Holliday (Editor), Ionic Polymers, Wiley, New York, 1975.

13. Y. Lvov, K. Ariga, I. Ichinose, and T. Kunitake, Langmuir, 12, 3038 (1996).

14. R. A. Vaia, B. B. Sauer, O. K. Tse, and E. P. Giannelis, J. Polym. Sci., Phys., 35, 59 (1997).

15. P. Aranda and E. Ruiz-Hitzky, Chem. Mater., 4, 1395 (1992).

16. J. Wu and M. M. Lerner, Chem. Mater., 5, 835 (1993).

17. T. Rashid and M. Shahinpoor, Proc. SPIE-Int. Soc. Opt. Eng., 3669, 289 (1999).

18. Y. Kojima, A. Usuki, M. Kawasumi, A. Okada, T. Kurauchi, and O. Kamigaito, J. Appl. Polym. Sci., 49, 1259 (1993).

19. S. Nemat-Nasser and J. Y. Li, J. Appl. Phys., 87, 3321 (2000).

20. G. Xie and T. Okada, J. Electrochem. Soc., 142, 3057 (1995).

21. P. C. LeBaron, Z. Wang, and T. J. Pinnavaia, Appl. Clay Sci., 15, 11 (1999).

22. H. M. Jeong, K. H. Jang, and K. Cho, J. Macromol. Sci.-Phys., B42, 1249 (2003).

23. K. Y. Kim, H. J. Lim, S. M. Park, and S. J. Lee, Polymer(Korea), 27, 377 (2003).

24. M. Xu, Y. S. Choi, K. H. Wang, J. H. Kim, and I. J. Chung, Macromol.

Res., 11, 410 (2003).

25. J. E. Lee and H. J. Kim, Polymer(Korea), 29, 177 (2005).

26. M. S. Cho, S. H. Choi, J. D. Nam, and Y. Lee, Polymer(Korea), 28, 551 (2004).

Figure 6. Current and displacement responses of IPMC by 1 Hz·2 V step, voltage repeatedly applided ; (--- ) ZAN0, (-- . -- . --) ZAN3, (-- . . -- . . --) ZAN7, ( - - - ) ZAP3, (...) ZAP7.

# 4# 5# 6# 7# 8#

Time(sec) 5

4 3 04 05

483 433 83 3 083 0433 0483 413 318 313 0318

Displacement(mm) Current(mA) Voltage(V)

5 0 5 0 0 0 0 0 0 0 0 -2 -1 0 1 2

참조

관련 문서

When pin 42 (GSET) is high (simultaneous gain set mode), the full-scale output current for both DACs is determined by the ratio of the internal reference voltage (1.2 V) and

There are four major drivers to the cosmetic appearance of your part: the part’s geometry, the choice of material, the design of the mold (or tool), and processing

12) Maestu I, Gómez-Aldaraví L, Torregrosa MD, Camps C, Llorca C, Bosch C, Gómez J, Giner V, Oltra A, Albert A. Gemcitabine and low dose carboplatin in the treatment of

Levi’s ® jeans were work pants.. Male workers wore them

Current density-Voltage characteristics and performance parameters of a representative DSSC fabricated by using the counter electrode having catalytic layer of platinum

5A that current of cyclohexanol oxidation on Cu/CuDMG electrode is 2500 nA, more than three times higher than Cu electrode 1000 nA; for both of the two

The forward current through a conducting diode &amp; the reverse voltage across a cutoff diode are determined by an external circuit.. à most frequently employed in the

A single-phase equivalent circuit is used to calculate the line current and the phase voltage in one phase of the Y-Y structure.. 11.3 Analysis of