• 검색 결과가 없습니다.

Where, Fixed Frame R t ti F b t OXYZ O OXYZ

N/A
N/A
Protected

Academic year: 2022

Share "Where, Fixed Frame R t ti F b t OXYZ O OXYZ"

Copied!
37
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

3D D i

3D Dynamics

2010 vds-3D

Professor Kyongsu Yi

©2010 VDCL

©2010 VDCL

Vehicle Dynamics and Control Laboratory

1

(2)

• Kinetics of Rigid Bodies in Three Dimensions

m a

G

F

• Translational Dynamic Equation of Rigid Body (Newton Equation)

F   m a

G

• Rotational Dynamic Equation of Rigid Body (Euler Equation)

M

G

H

G

(3)

• Relation between Positions in the Two Frame:

Fixed Frame and Rotating Frame Fixed Frame and Rotating Frame

• unit vectors,

i j ˆ ˆ ,

 

ˆ( ) cos(

z

) sin(

z

) i t     t   t

 

ˆ( ) j t   sin( 

z

t ) cos( 

z

t )

z

t

 

ˆj ˆi

• time derivative of unit vectors

 

ˆ zsin( z ) z cos( z ) z ˆ

di t t j

dt  

 

 

 

Where,

Fixed Frame

R t ti F b t

OXYZ

O OXYZ

 

 

ˆ cos( z ) sin( z ) z ˆ

dt

dj t t i

dt  

 

   

Rotating Frame about

Angular Veocity of w.r.t.

Oxyz OXYZ

Oxyz OXYZ

  • time derivative of unit vectors

(General Form)

ˆ ˆ 0 ˆ ˆ

ˆ ˆ 0 ˆ ˆ

ˆ 0 ˆ ˆ ˆ

z z

i i i i

d j j j j

dt

k k k k

          

           

         

          

       

• Relation between Positions in the Two Frame

ˆ cos( ) sin( )

ˆ sin( ) cos( )

z t z t X

xi

t t Y

yj

 

 

 

     

 

           

 

3

0 z

k k   k k

       

sin(

z t

) cos(

z t

)

Y yj

        

 

(4)

• Rate of Change of a particle in the Two Frame:

Fixed Frame and Rotating Frame Fixed Frame and Rotating Frame

• Position Vector of a particle,

Q ˆ ˆ ˆ

QQ i   Q   j Q k

ˆj • Rate of Change of with respect to

Q Oxyz

x y z

Q Q iQ jQ k

ˆi

j g p

y

  Q

Oxyz

Q i

x

  ˆ Q

y

  ˆ j Q k

z

ˆ

k

ˆ

• Rate of Change of with respect to

Q OXYZ

ˆ ˆ ˆ

di dj dk

 

 

 

ˆ ˆ ˆ

Oxyz

x y z x y z

OXYZ

Q Q

di dj dk

Q Q i Q j Q k Q Q Q

dt dt dt



           

   

 

Where,

Fixed Frame

Rotating Frame about OXYZ

Oxyz OXYZ

 

Q

Oxyz

Q

   

g

Angular Veocity of w.r.t.

y

Oxyz OXYZ

 

(5)

• Three-dimensional Motion of a Particle Relative to a Rotating Frame.

V

/

V

P F

• Velocity Vector of Particle P w.r.t.

OXYZ

   

P OXYZ Oxyz

Vr   r    r

'

V

P

/ '

OXYZ Oxyz

P F P

V V

 

VP = absolute velocity vector of particle P Where,

r

'

VP

V

= velocity vector of point P' of moving frame coinciding with P

l i f P l i i f

r

F

VP/ = velocity vector of P relative to moving frame

Where,

Fixed Frame

Rotating Frame about OXYZ

Oxyz OXYZ

5

g

Angular Veocity of w.r.t.

y

Oxyz OXYZ

 

(6)

• Three-dimensional Motion of a Particle Relative to a Rotating Frame. Coriolis Acceleration

• Absolute Acceleration of Particle P w.r.t.

OXYZ

   

a

P

V

P

d    r

Oxyz

  r

a V r r

dt  

Where, dtd

  

r Oxyz

 

r Oxyz  

 

r Oxyz

/

 

P F Oxyz

V  r

   

   

OXYZ

d r r r

dt

r r r

    

     

 

 

 

c

2

Oxyz

a    r

   

   r r Oxyz  r

Therefore,

r

       

     

2

P Oxyz Oxyz Oxyz

Oxyz Oxyz

a r r r r r

r r r r

        

       

   

  

 

/ '

/ '

P F aP c

a a

P F P c

a a a

  

  

   

coriolis acceleration Where a

= coriolis acceleration

ac

Where,

(7)

• General Motion in Rigid Body.

• Absolute Position Vector of Position P

/

P A P A

r   r r

• Absolute Velocity Vector of Position P

/

P A P A

/

/

P P A P A

A P A

V r r r

V V

  

 

  

/ /

0

V

A

r

P A

r

P A

     constant

r

• Absolute Acceleration Vector of Position P

  

/

constant r

P A

 

/

/

(

/

)

P P A P A

A P A P A

a V V V

a r r

  

    

Where, Fixed Frame

Rotating Frame about OXYZ

Oxyz OXYZ

7

g

Angular Veocity of w.r.t.

Angular Acceleration of w.r.t.

y

Oxyz OXYZ Oxyz OXYZ

 

 

(8)

• Rigid Body Translational Dynamics

F m a

• Translational Dynamic Equation of Rigid Body

(Newton Equation)

F   m a

G

• Acceleration Vector of the Rigid Body

in the Global Frame

 

( )

x x x x

G A

a v w v

a a V V v w v

       

       

             

 

in the Global Frame

 

( )

( )

G y Axyz Axyz y y y

z z z z

x z y y z

a a V V v w v

a v w v

v v w v w

  

       

       

       

    

   

 ( )

( )

( )

x z y y z

y x z z x

z y x x y

v v w v w v v w v w

   

          

 

    

   

 (

x z y y

v v w v   

 )

( )

z

y x z z x

w v v w v w

  

     

 

 

( v v w v w

z y x x y

)

     

  

(9)

• Rigid Body Rotational Dynamics

i l i i f i id d

H

G

M  

• Rotational Dynamic Equation of Rigid Body (Euler Equation)

: Angular momentum of the Rigid body

Where,

   

1 n

G i i

i

H r v m r r dm

        

i i

v   r

with respect to the frame of fixed orientation.

• Angular momentum about x-axis

 

2 2

   

x x y z x

H y w y w x z w x w z dm

w y z dm w xy dm w zx dm

         

    

  

• Angular momentum about x-axis

     

x y z

x x y xy z xz

w y z dm w xy dm w zx dm w I w I w I

      

     

  

x

x x xy y xz z

G y yx x y y yz z

H I w I w I w

H H I w I w I w

   

 

 

 

        

 

There,

z zx x zy y z z

H I w I w I w

 

 

    

   

9

(10)

• Rigid Body Rotational Dynamics

H

M

• Rotational Dynamic Equation of Rigid Body (Euler Equation)

H

G

M

• Angular Momentum (Symmetric moment of inertia)

x x x

G y y y

H I w

H H I w

   

   

     

   

xy xz yz

0

I I I

   

• Rigid Body Rotational Dynamics

z z z

H I w

   

   

 

( )

( )

G G xyz G

H H H

II I w w

 

   

     

 

• Rigid Body Rotational Dynamics

 

 

 

( )

( )

( )

x x z y y z

x x x x x

y y y y y y y x z z x

I I I w w

I w I w

I w I w I I I w w

I w I w I I I

 

 

    

       

       

    I

z

z

                   w

z

I w

z z

      I

z

z

( I

y

    I

x

) w w

x y

  

(11)

Major Course Contents

Part 1: Lateral Vehicle Dynamics

1 1 Vehicle Dynamic Model

j

1.1 Vehicle Dynamic Model 1.2 Planar Model

1.3 Tire Models 1.4 Bicycle Model y

Bank angle/crosswind 1.5 Understeer/oversteer

1.6 Dynamic model interms of error wrt road 1 7 lane keeping model

1.7 lane keeping model 1.8 Lateral stability Control

Part 2: Longitudinal Vehicle Dynamics Part 2: Longitudinal Vehicle Dynamics

1 Longitudinal Dynamic Model 2 Engine model

3 Transmission 3 Transmission 4 Brake

Part 3: Vehicle Control Systems

Part 3: Vehicle Control Systems

(12)

Part.1

L t l V hi l D i

Lateral Vehicle Dynamics

1 Vehicle Dynamic Model 1. Vehicle Dynamic Model 2. Planar Model

3. Tire Models 4. Bicycle Model

5. Understeer/oversteer

6 Dynamic model in terms of error w.r.t. road 6. Dynamic model in terms of error w.r.t. road 7. lane keeping model

8 V hi l St bilit C t l

8. Vehicle Stability Control

(13)

1. Vehicle Dynamic Model

• Vehicle State

- Roll:

- Pitch:

Rear View

Left Vie - Yaw:

- X: x

Left View

X:

- Y:

- Z:

x

z

y

l

f

l

r

Z: z

Top View

13

(14)

1. Vehicle Dynamic Model

F   m a

G

• Translational Dynamic Equation of Vehicle (Newton Equation)

• Rotational Dynamic Equation of Vehicle (Euler Equation)

G G

MH

obal YGlo

(15)

1. Vehicle Dynamic Model

F   m a

G

• Translational Dynamic Equation of Vehicle (Newton Equation)

. . . .

( )

( ) ( )

( )

x x x x z y

G y C G C G y y y x z

a v v v v v

a a V V v v v v v

  

  

 

       

     

   

     

                      

   

     

     

  

 

 

   

 

  (  )

z z z z y x

a v  v v vv

         

            

G G

MH

• Rotational Dynamic Equation of Vehicle (Euler Equation)

 

 

( )

( ) ( )

x z y

x x x x

G y y G xyz G y y y x z

I I I

I I I

H I H H I I I I I

  

   

      

      

     

 

         

   

                             

  

  

    

    

( )

z z z z

z y x

I I I

I I I

      

     

         

     

                    

15

(16)

2. 3DOF Planar Motion Model

2. 3DOF Planar Motion Model

(17)

2. 3DOF Planar Motion Model

• Assumption of 3DOF Vehicle Planar Motion Model

1) Ignore Roll, Pitch Motion ( ) 

  

T

0 0

T

2) Ignore Suspension Dynamics ( )Ftzi  constant  vz  0

• Translational Dynamic Equation of Vehicle (Newton Equation)

F   m a

G

0 ( )

x x x x y

a v v v   v

         

            

y q q

. . . .

( ) 0 ( )

0 0 0

G y C G C G y y y x

z

a a V V v v v v

a

         

                    

         

         

   

• Rotational Dynamic Equation of Vehicle (Euler Equation)

G G

MH

0 0 0 0

( ) 0 0 0 0

x x

G y y G xyz G

I

H I H H

I I I I

    

          

         

                 

         

         

 

   

17

z z z z z

II   II

            

         

(18)

i i i i

2. 3DOF Planar Motion Model

 

2

( )

x x x y

F  m a  m v  v

 

- x-axis Motion Dynamic Equation

F

f

 

3 4

1

txi cos( f ) tyi sin( f ) tx tx

i

FFF F

    

- y-axis Motion Dynamic Equation

ty1

F

F

ty2

   

2

3 4

( )

sin( ) cos( )

y y y x

txi f tyi f ty ty

F m a m v v

F F F F

 

     

     

 

y y q

v

x 1

F

tx

F

tx2

l

f

  

3 4

1

( ) ( )

txi f tyi f ty ty

i

M H I



- yaw-axis Motion Dynamic Equation

v

y

2 4

1 3

[ sin( ) cos( )]

z z z

f txi f tyi f r tyi

i i

M H I

l F F l F

 

  

       

 

 

 



l

r

   

 

1 2 3 4

1 2

cos( )

sin( )

w tx tx f w tx tx

w ty ty f

t F F t F F

t F F

 

         

 

   

 

 

 

F

tx3

4

F

tx 4

Fty 3

Fty

 

  tx4

2  t

w

(19)

3. Tire Model

3.1 Pacejka Tire Model 3 1 1

3.1.1 Slip Angle

3.1.2 Lateral Tire Model 3.1.3 Slip Ratio

3.1.4 Longitudinal Tire Model 3.1.5 Combined Tire Model 3 1 6 Self Aligning Moment 3.1.6 Self Aligning Moment 3.2 Dugoff’s Tire Model

19

(20)

3. Tire Model

Longitudinal Tire Force F

txi

Lateral Tire Force Self Aligning Moment

tyi tzi

F M

M

tzi

Slip Angle Wheel Angular Speed

i i

   i

i

F

txi

F

tyi txi

(21)

3. Tire Model

Tire Deformation

• Tire Deformation

x

 

• Longitudinal Tire Force

y

 

• Lateral Tire Force

txi

tzi

F x

F

  

  

 

tyi tzi

F y

F

  

  

 

F

txi

F

tyi

xy

L it di ll ti d ftzi ti L t ll ti d f ti

F

x

F

tzi

y

< Longitudinally tire deformation > < Laterally tire deformation >

REF: Reza N. Jazar, “ Vehicle Dynamics: Theory and Application”, pp101 ~ 105, Springer, 2008

(22)

3. Tire Model

• Longitudinally Tire Deformation

• Longitudinal Tire Force

V

ti

r

i

 

i

txi

tzi

F x

F

  

  

 

x r

i

i

V V

ti

   

i i ti

x rV

   

• Longitudinally Tire Deformation

(23)

3. Tire Model

• Laterally Tire Deformation Laterally Tire Deformation • Shear Stress Distribution• Shear Stress Distribution

< Bottom view of a laterally deflected and turning tire >

• Lateral Tire Force and Self Aligning Moment

y

ction of l Travel

x

• Lateral Tire Force

Direc Wheel

tyi y

F    dA F

txi

a

F

tyi

y M

tzi • Self Aligning Moment

tzi tyi x

MFa

a

x

tyi

Pneumatic Trail

(24)

3. Tire Model

3.1 Pacejka Tire Model 3 1 1

3.1.1 Slip Angle

3.1.2 Lateral Tire Model 3.1.3 Slip Ratio

3.1.4 Longitudinal Tire Model

3.1.5 Combined Tire Model

3 1 6 Self Aligning Moment

3.1.6 Self Aligning Moment

3.2 Dugoff’s Tire Model

(25)

3.1.1 Slip Angle

• The angle between the orientation of the tire and the orientation of the Wheel

f

tan

1 tyi

txi

V

 

V

V

tyi

i

V

tyi

i i i

    

Tire Slip Angle at - i th Wheel

 

Where,

V

txi

Tire Slip Angle at Wheel Steering Angle at - Wheel

Angle between and at i-th Wheel

i i

i txi tyi

i th i th

V V

Where,

i

g

txi tyi

y f y f

v   l   v   l  

1 2

tan( ) tan( )

tan( ) tan( )

y f y f

x w x w

y r y r

v t v t

v l v l

 

 

 

 

 

 

   

   

 

 

 

3 4

tan( ) tan( )

x w x w

v t v t

 

 

 

     

25

(26)

3.1.2 Lateral Tire Model

x

sin( tan (

1

))

tyi y y y y vy

FD C

B   S

• Lateral Tire Force at the i-th Wheel

(1 )( )

y

tan (

1

( )

y y i hy y i hy

y

E S E B S

B

     

Where,

F

y

M

tzi

2

5200 5200

0.22 1.26

40000 32750

0.00003 1.0096 22.73

tzi tzi

y y

y tzi tzi

F F

B C

D F F

 

   

     

F

tyi

1.6 0 0

y

y hy vy

E

 

S

S

• Normal Tire Force at the i-th Wheel

< Lateral Tire Force >

     

1 1 1 1 2 2 2 2

2 2

r r

tz t o tz t o

f r f r

m l m l

F K r r g F K r r g

l l l l

m l m l

 

         

 

     

3 3 3 3 4 4 4 4

2 2

f f

tz t o tz t o

f r f r

m l m l

F K r r g F K r r g

l l l l

 

         

 

Original Radius of the Tire Effective Rolling Radius of the - Wheel

io i

rri th

Where,

(27)

3.1.2 Lateral Tire Model

• Slip Angle versus Lateral Tire Force Curve

27

(28)

3.1.3 Slip Ratio

• During Braking

cos( )

i i ti i

rV

    

r

i

• During Traction

cos( )

i

ti i

V

 

cos( )

rV

i

cos( )

ti i

V

cos( )

i i ti i

i

i i

r V

r

 

 

  

  

f

V

Side View

Where,

Angular Velocity of the - Wheel Tire Radius of the - Wheel

Tire Slip Angle at Wheel

i i

i th

r i th

i th

 

i

V

txi

V

tyi

Tire Slip Angle at - Wheel

i

i th

 

2 2

1

( ) ( )

t y f x w

Vv   l    v   t  

V

ti

1

2 2

2

2 2

( ) ( )

( ) ( )

( ) ( )

t y f x w

t y f x w

V v l v t

V v l v t

 

 

 

     

     

 

 

3

( ) ( )

t y r x w

Vv   l   v   t

(29)

3.1.4 Longitudinal Tire Model

• Longitudinal Tire Force at the i-th Wheel

sin( tan (

1

))

txi x x x x vx

FD C

B   S

(1 )( ) x tan (1 ( ))

x x i hx x i hx

x

E S E B S

B

     

Where,

1940 1940 1940

22 1.35 2000

645 16125 0 956

tzi tzi tzi

x x x

F F F

B    C    D   

• During Traction ( )

i

0

645 16125 0.956

3.6 0 0

x hx vx

E   SS

1940 1940 1940

22 F

tzi

1 35 F

tzi

1750 F

tzi

B    C    D   

• During Braking ( )

i

 0

22 1.35 1750

430 16125 0.956

0.1 0 0

x x x

x hx vx

B C D

E S S

 

  

29

(30)

3.1.4 Longitudinal Tire Model

• Slip Ratio versus Longitudinal Tire Force Curve

(31)

3.1.5 Combined Tire Model

jk i d l

• Pacejka Tire Model

1) Longitudinal Tire Model:

2) L l Ti M d l

0

( , )

txi tx i tzi

F

F

F

( )

F F F

2) Lateral Tire Model:

F

tyi

F

ty0

( 

i

, F

tzi

)

▲ There is no correction between Longitudinal and Lateral Tire Model

• Normalized Slip

• Normalized Slip

1) Normalized Slip Ratio: * i

i

m

 

 

Where,

0.058 ( 0)

m

0.1

if

elsewhere

 

 

2) Normalized Slip Angle: i* i

m

 

 

*

* 2 * 2

6.3 650

3500

tzi m

   F

• Correction Factor:

• Combined Tire Model based on Pacejka Tire Model

* * 2 * 2

( ) ( )

i i i

    

j

*

*

* 0

*

(

i

, )

i

txi tx m tzi

i

FF   F

  

*

*

* 0

(

i

, )

i

i

tyi ty m tzi

FF   F

  

(32)

3.1.5 Combined Tire Model

• Combined Tire Force

Longitudinal Tire Force g Lateral Tire Force a e a e o ce

* *

* *

0 0

*

(

i

, )

*

(

i

, )

i

i i

txi tx m tzi tyi ty m tzi

i

FF   F FF   F

 

   

4000

l h 0[d ]

3000 4000

0 2000

alpha=20[deg]

alpha=15[deg]

alpha=10[deg]

alpha=5[deg]

alpha=0[deg]

nal force [N]

0 1000 2000

Slip ratio=0.1 Slip ratio=0.05 Slip ratio=0.01 Slip ratio=0.005 Slip ratio=0

orce [N]

-2000

Longitudin

-2000 -1000 0

Lateral fo

-1.0 -0.5 0.0 0.5 1.0

-4000

-30 -20 -10 0 10 20 30

-4000 -3000

Slip ratio Slip angle [deg]

(33)

3.1.6 Self Aligning Moment

sin( tan (

1

))

tzi z z z z vz

MD C

B   S

• Self Aligning Moment at the i-th Wheel

x

(1 )( )

z

tan (

1

( )

z z i hz z i hz

E S E B S

B

     

Where,

Direction of Wheel Travel

Bz

1.86 10

-6

Ftzi2

2.73 10

-3

Ftzi

B C D

      

D Wh

 

   

exp 0.11 10

-3

2.40

z z z

tzi

z

B C D

F C

  

   

 

F

tyi

y M

tzi

-2.72 10

-6

2

-2.28 10

-3

z tzi tzi

z z z

z

D F F

B C D

B C D

     

 

 

< Self Aligning Moment >

-0.0 10

-6

2

-0.643 10

-3

4.04

0

z z

z tzi tzi

hz

C D

E F F

S

      

Svz

 0

g g

hz vz

(34)

3.1.6 Self Aligning Moment

• Slip Angle versus Self Aligning Moment Curve

80

40 60

]

Fz = 2500 N Fz = 3500 N Fz = 4500 N

20 40

oment [Nm

-20 0

Aligning Mo

-60

Self A -40

-15 -10 -5 0 5 10 15

-80 -60

Slip Angle [deg]

Slip Angle [deg]

(35)

3.2 Dugoff’s Tire Model

Longitudinal Tire Force

1 ( )

i

txi x i

F Cf

   

i

Lateral Tire Force

1  

i

tan( )

i

( )

F Cf

i

1 ( )

i

tyi y i

i

F C f

   

Where,

F

tzi

1

i

 

Ftyi

Ftxi

 

 

2

 

2

2 tan( )

i

x i y i

C C

    

  (2 ) ( 1)

1 ( 1)

i i i

i

i

f if

if

  

 

  

    

Longitudinal Tire Stiffness Lateral Tire Stiffness

Ti /R d F i ti C ffi i t

x y

C C

35

Tire/Road Friction Coefficient

 

(36)

3.2 Dugoff’s Tire Model

Longitudinal Tire Force Lateral Tire Force

1 ( )

i

txi x i

F Cf

   

tan( ) 1 ( )

i

tyi y i

F Cf

   

1  

i

1  

i

Where,

i

 0

Where,

i

 0

4000 4000

2000 3000 4000

[N]

Fz = 2500 N Fz = 3500 N Fz = 4500 N

2000 3000 4000

Fz = 2500 N Fz = 3500 N Fz = 4500 N

0 1000

nal Tire Force

0 1000

Tire Force [N]

-2000 -1000

Longitudin

-2000 -1000

Lateral T

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

-4000 -3000

Slip Ratio

-20 -15 -10 -5 0 5 10 15 20

-4000 -3000

Slip Angle [deg]

(37)

3.2 Dugoff’s Tire Model

Longitudinal Tire Force Lateral Tire Force

1 ( )

i

txi x i

F Cf

   

tan( ) 1 ( )

i

tyi y i

F Cf

   

4000

Sli A l 0 d 4000

Sli R ti 0

1  

i

1  

i

Where,

F

tzi

 4500 N

Where,

F

tzi

 4500 N

2000 3000

e [N]

Slip Angle = 0 deg Slip Angle = 3 deg Slip Angle = 6 deg Slip Angle = 9 deg

2000 3000

N]

Slip Ratio = 0 Slip Ratio = 0.04 Slip Ratio = 0.08 Slip Ratio = 0.12

0 1000

nal Tire Force

0 1000

l Tire Force [N

3000 -2000 -1000

Longitudi

3000 -2000 -1000

Lateral

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

-4000 -3000

Slip Ratio

-20 -15 -10 -5 0 5 10 15 20

-4000 -3000

Slip Angle [deg]

37

참조

관련 문서

- 축산업으로 인한 환경부담을 낮추고, 사회로부터 인정받아야 중장기적으로 축산업 성장 가능 - 주요과제: 가축분뇨 적정 처리, 온실가스 저감, 축산악취 저감

[r]

Our analysis has shown that automation is already widespread among both domestic and foreign investors in Vietnam, and that both groups plan to continue investing

이는 아직 지부지사에서 확인 및 승인이 완료되지 않은 상태. 지부지사에서 보완처리 및 승인처 리 시

Dept.. 교사 는 제가 어린 시절부터 꿈꾸던 일이었습니다. 그 꿈을 이루기 위해 국어교육과를 선택하게 되었습니다. 둘째, 전주 대학교 국어교육과 커리큘럼이

해설 교차로나 그 부근에서 긴급자동차가 접근하는 경우에는 차마와 노면전차의 운전자는 교차로를 피하여 일시정지 하여야 한다.. 27.&gt; 모든 차와 노면전차의

재무제표

채점 기준 민영이가 추론한 방법을 잘 파악하여 자신의 경험을 떠올렸다는 내용으로 썼으면 정답으로 합니다... 5 첫 번째 문단에 글쓴이의