• 검색 결과가 없습니다.

 1.  Nitrite Accumulation Characteristics in the Nitrificationof High Strength Ammonia Wastewater with Biofilm Airlift Suspension Reactor       

N/A
N/A
Protected

Academic year: 2022

Share " 1.  Nitrite Accumulation Characteristics in the Nitrificationof High Strength Ammonia Wastewater with Biofilm Airlift Suspension Reactor        "

Copied!
7
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

      

   !"

*

 

*   

(2001 8 3 , 2001 11 16 )

Nitrite Accumulation Characteristics in the Nitrification

of High Strength Ammonia Wastewater with Biofilm Airlift Suspension Reactor

Jae-Sun Chang, Gi-Cheol Cha* and Dong-Jin Kim

Department of Environmental Science, Hallym University, Chunchon 200-702, Korea

*Department of Environmental Engineering, Yonsei University, Seoul 120-749, Korea (Received 3 August 2001; accepted 16 November 2001)

 

         ! "# $%&'.  ( )* + ,- ./) 0 12 3 4567 89 15 g/L :; ;<='. >?@ A 

1 2.5 kg NH4+-N/ m3/d

 LE0 ! "#J $%<='.   456  >? ? @A  " "#M free ammonia M XC YQ Z [\ ]^ free ammoniaJ O_` a PQ bcEF d  " e fg hE0 ijk'.

Abstract−Selective nitrifications of high strength ammonia wastewater was performed with biofilm airlift suspension reac- tor for the economical removal of nitrogen via nitrite. Biofilms were successfully attached on the surface of the carriers(sand) and the biomass concentration reached up to 15 g/L with the reactor. During the experiment more than 90% nitrification was obtained at 2.5 kg NH4+- N/m3/d and selective nitrification was successfully carried out to have more than 90% nitrite accu- mulation of the total oxidized nitrogen. Nitrite accumulation was achieved by the inhibitions on nitrite oxidizers with free ammonia and low dissolved oxygen in the biofilm airlift suspension reactor. From the batch nitrification analysis it was shown that the existence of free ammonia is the main cause of nitrite accumulation.

Key words: Biofilm Airlift Suspension Reactor, Nitrification, Nitrite Accumulation, Nitrogen Removal

1.  

       

, - ./, & 0 1 2, 3456 7 8 "9 

& ' 9 :;!" <, =#$. #>9  ?@ ABC8 D/E! AB 'E! AB# FG H & %I J?!"

AB" *'K #09 'E! AB LM% NOP QR&#$.

WX Y1 T(U 1/ Z [\ 0]8 ^0 _` 

Z hydroxylamine(NH2OH)

de 61 1/f(nitrite oxidizer)  #bFg # hK i i nitritation nitratationC8 jk  $. IU  !

" 3456 1/fC8 Nitrosomonas, Nitrosococcus, Nitrosospira `

 61 1/f" Nitrobacter, Nitrococcus, Nitrospina, Nitrospira `

=# $[1]. 3456 1/f#l 61 1/f yield coefficient%

mn(0.06 g biomass/g N) 1/ *'# m I `oZ p q r 1/ sh#  shU tu v"# w$[2-4].

1/ [ h" nitritation nitratation x h $y 1 (4.6 g O2/g NH4+-N)% zv$. {|U } zv9 ~F  a h

zv9  20C8 "€ J?!C8  .‚# n $[5].

To whom correspondence should be addressed.

E-mail: dongjin@hallym.ac.kr

(2)

n  N Œ>F shU Ž m ‡U w$. #‘

56 1/f N K •/den 61 1/f N K m– 3

X ^0 AB 9 LM% QRn $[6-9].

#>9 JŽ S 1/ š)U „ 25% 1 vMyK › dœ  n a š)U  ž" [\s€] Ÿ yK 40% ƒ„

k   COD/TKN 2% m JŽo Z ¡¢!C8 ?@

k  $[10]. a `o £9 1.5-2¤% ¥|¦ I+ §  d¨

2Z ƒ›k   I©K Fª$[11]. H «o biomass yieldZ

¬­  Cg pH FZ ® zv9 alkalinity ƒ› ¡o % 

$.

°0 ±€ "\8 ²³—F ´µQ ”8 pH, ¶o, 0 1

‰o[12], free ammonia ‰o, ammonium . =# $. pH ·/

{| 3456 ¸ free ammonia(NH3),

acid(HNO2) ¹ºT% · qr #Z #0€ 1/ *',

»P 61 1/f N K ¯ free ammonial nitrous acid

ammonia(NH3) 9 61 1/f N ¯ ¿À 0.1-1.0 mg/L

U d° ‘C8 rÁ ´µ¦ $[15]. 0 1 ‰o  6 1 1/f IK ¯ ‘ 3456 1/f 1  9 KsÂ# 30µmol O2/L(0.96 mg/L)"à 2 61 1/f Ks 125µmol O2/L(4 mg/L)8 1 Ä/Å# T!C8 m qr 0 1 Z mÆ

Fk JŽ 61 1/f N K . !C8 ?9k  $[15-17].

'E!  sh & nh/w *'K #0 'Ç sh

' WX ÈZ § den Œ>F WÉ# zvn v.F

†!# ¬ J?!#$. £9 # Ž$ I©#  n o sh # !0n $. »P # sh ÊU j9 ”¸ Ë

# ÌÍ `o% ÎÏ 1/ *' = ¤ $. 'Ç s

! ¼Ð# 6ª ‹JUo ’  ¡¢K ¿€Ñˆ$[18-21]. '

Ç# º w ÒÓ 'Ç WX *' Œ>F% ;Ô³ †

'ÇC8 .Õ I qr ‚] 2 †!# Ȇ Ö×

biomass K ÈÆ k  $. £9 Œ>F ­Ø# ÙÚ8 $_$9 'T Û n‰o biomass8 " '/E!" WX `o% ¥|

 $[22].

Ü LMU ݋ ÒT 'Ç WX(biofilm airlift suspension reactor)

fK ¯ dÞßK M§ ŠàK Rá$. £9 ⠊à K R€ WX ã 3456 1/f 61 1/f N K

TK ¨åá$. Šà ^0w ݋ ÒT 'Ç WX }¸

æW# Òd RçC8è #éK ii Rk q ¿$ ~F% ƒ

„n 'ÇK #0Ú8 ’ biomassZ Fk   »êK p n $.

2. 

2-1. Biofilm Airlift Suspension Reactor   

Ü LMU ^0w ݋ ÒT 'Ç WX 6Èë ³ #

& žº±C8 ?°ˆ$. WX riser¸ down comer, T. ì[

íK  în (gas-liquid-solid separator), pH controller8 M w ݋ Ò WX#$.  . ï % hy ðñ 

WX  †C8.ò sóˆn s º blower  s ó s só ô ‚]% WX ã.Z ݋o× á$.

WX ’# 100 cm,  ãJ 40 mm,  «J 100 mm, riser ãJ 40 mm, down comer ãJ 70 mm, riser¸ WX . ”õ ö

÷ 10 mm#$. s y ¼ƒøùZ #0€ ¼ƒáCg 

.  † Ë ’# ®+á$. pH ?Z #0€

WX ã pHZ 7.3-7.5 ú®U Fá$. Fig. 1 WX I+

ûüoZ lýþ ‘#$.

Šà ^0w ‚] :J# 180-215µm" 4ÿ#n WX ã

„ 45-50 g/L8 Fˆ$. ‚] *'# .Õw º(8 s 

€ WX ã.Z ݋o× á$.

Table 1 Ü Šàö Ò ݋ ÒT 'Ç WX [¼ÐK

dn $. Šà 1/ *' # hTT( # ™ „ 150­

 ŠàöC8 x %F ŠàK Rá$. Šà I ö A, B  

Fig. 1. Schematic experimental setup of the biofilm airlift suspension reactor.

Table 1. Experimental conditions of biofilm airlift suspension reactor

Period Experiment I Experiment II

A B a b c d

Operation(days) 1-46 47-147 1-37 38-63 64-131 132-150

NH4+- N(mg/L) 500 500 500 500 500 500

NH4+- N load(kg N/m3·d) 2.0 2.5 2.5 2.5 2.5 2.5

Air flow rate(L/min) 2.5 2.5 2.5 3.0 2.5 3.5

(3)

 40 1 2002 2

 §!  Šàá$. Šà II ö a-d ö só s  yK ·/d WX ã 0 1  K ·/d Šà9 ö#$.

2-2.      

Šà ^0w WX ã 3456 1/f 61 1/f N K ´6¿ ®9 ⠊à 3456 1/f 61 1/f# 3

Šà ¼Ð Table 2 lýãˆ$. ⠊à 500 mL Erlenmeyer flask 3456 1/(AO)  61 1/(NO) ¤FZ 400 mL8 2â

#T Šdá$. Šà ^09 'y(Mixed Liquor Volatile Suspended

Solid, MLVSS) Šà# _9 ™ H yK …há$. ⠊à

U 3456  61 1/ ⠊àU 1.5 g/L MLVSSZ ^0

á$. Šà# QR [ döÒ 0 1 ‰o, ¶o, pHZ L

`!C8 …há$.  Šà ¼Ð pH 7.2, ¶o 28oC8 Šà K RáCg Šà ö & pH 6 #8 › F 6U pH

¯8 "9 1/ ¯% o× á$.

2-3.    

Ü ŠàU ^09  žC8 (NH4)2SO4Z ^0án 1/% QR Ò WX pH ¯Z Ç ®U NaHCO3Z ^ 0á$. pH controller 1 M NaHCO3Z ^0áCÚ8 #Û!C8 )1w 7.14 g/g NH4+-N 1/2 " 3.57 g/g NH4+- NK Ñ d Ñ

ˆ$. #q WX pH 7.3U 7.5 ú®U FˆCg    #  7V *'" 1/ *'# Ñ8 Io× á$. *yž 8 MgSO4· H2O 5 mg/L, KCl 7 mg/L, NaHPO4· 12H2O 29 mg/L, CaCl2· 2H2O 7 mg/L, KH2PO4 11 mg/L, FeCl3

· 6H2O 1 mg/LZ  ш$.

 ¸  ‰o  ii NH4

+- N, NO2- N, NO3- NZ Standard Method @€ áCg 4 d

0.45µm GF/C filter8 €€ . K ?@9 ™ Šàá$[23].

3456 Nesslerlization method  425 nmU o

(UV 1601, Shimadzu) µm

syringe membrane filterZ ^0€ 9  * .K @ ™ ion chromatography(DX 500, Dionex)8 …há$. WX ã MLVSS Standard Method Fixed and Volatile Solids …h @U 550oC

U 15 ö â/€ …háCg WXã 0 1 ‰o(Istek 215D), ¶o, pH(Istek 720P) = L`!C8 …há$.

3. 

3-1.   !" #$  %

Ü WX #0w 1/ *' ‚] † .Õ I€ '

ÇK º áCg Fig. 2 Ü ŠàU ‚]8 ^09 4ÿ¸ #

† º w 'ÇK [\ ²*JC8 ±9 ‘#$. Fig. 2(A) WX  ³ 4ÿ 4K SEM(scanning electron microscopy) C8 ±…9 ‘#$. # 'Ç# º  [ ‚]Z ¿n\ 9 ‘ C8 †# @ 2 †!# ÈÚ8 *'# .Õ I 0#

9 º(K ´  $. Fig. 2(B) 4ÿ ‚] º  d° '

Ç ºTK ¿€Ñg † Mº º( *'Ç# º  

# ¿"$. Fig. 2(C) 'Ç# h!C8 º w ™ ‚] [

Æ .Õ I9 'ÇK SEMC8 ±9 ‘C8  granule º(

X \Z º á$. Fig. 2(D) TEM(transmission electron microscopy) C8 ±9 WX ã *' X \#$. ¤¢ 110,000¤U 0.28µm È#g Ç º w intracytoplasmic membranes(ICM) 1/

*'# 1 %  k q lýl ¯[\o(low electron density) 8 Q 4K ¿#n $. # *' 1/ *'" Nitrosomonas europaea¸ 29 »êK ¿"$[24-25].

Fig. 3 Ü WXZ [ d°€ WX ã $ 1/

*'# In K C8 ä"9 ™ WXã MLVSS ‰o Z …h d°9 d©U *'y# ­h9 ‡C8 Fw d

©—F profile#$. [ öÒ MLVSS  7 g/L(70­ J

)U 15 g/L(280­ J)—F !‡P Ì% ²TK ¿áCg ¹ f 12 g/L8 Fˆn, # & .Õw *'# $8 Fˆ$.

3-2. I: &'()* + ,-. /0 12 )* +

3"

݋ ÒT 'Ç WXZ #0€ n‰o 3456  1 /Z Rá$.    3456 ‰oZ 500 mg/L C8 ­hÆ Fd‡ T(U yK 400 mL/hr(ö A)U 500 mL/hr(

 ammonium ‰o¸ ¶o, WX ã pH8.ò 6ÿ ÍC8 ) 1á$[26].

(1) (2)

€U Ka¸ Kw ammonia¸  #¶/ T#n T ¶o(oC)#$.

ö A 3456 .Z 2.0 kg-N/m3/d8 F€ 1/

¡¢K Šà9 ö#$. ï  3456 ‰o 500 mg/L

 yK 400 mL/hr8 E! ]döK 6.25döC8 Šàá$.

¹f 1/¢ 99% #TK Fá$. WX  ?@F

n ³ 3456 Ž m6U • 30 mg/L #8  FˆCg ¹f 4 mg/L ‰o8 F hw 1/ ¡¢K ¿

 §! hoZ ´6¿ ®€ nitrite ratioZ $ Ë# WX

lýãˆ$.

nitrite ratio = (3)

# ö Ò nitrite ratio ¹f 0.88 FˆCg free ammonia

 ¹f ‰o 0.05 mg/L8 Fˆ$. # ‰o UÛU ¨å9

”¸ Ë# 61 1/f N  ¯Z Ñ $ m Â#$.

NH3–N

[ ]={([NH4–N])10pH⁄(Ka⁄Kw+10pH)} Ka⁄Kw=exp 6334 273 T{ ⁄( + )}

NO2–N

[ ]

NO2–N

[ ]+[NO3–N] --- Table 2. Experimental conditions of batch nitrification kinetic analysis

Condition Batch test of AO and NO

AO medium NO medium

NH4+- N(mg/L) 100 0

NO2- N(mg/L) 0 100

Wastwater: trace elements 1:1 1:1

MLVSS(g/L) 1.5 1.5

Mixing velocity(rpm) 100 100

Initial pH 7.2 7.2

Temperature(oC) 28 28

Medium amount(mL) 400 400

(4)

"Pµ # ö Ò WX 01 ‰o% 2 mg/L ¿$ „ö m

 T(Z F€ 61 1/f N ¯ €#K  $.

ö BU 3456 .Z 25% Ì%d˜ 2.5 kg-N/m3/d 8 F€ Šàá$.    3456  ‰o H

8 n E! ]döK $Æ(6.25döU 5döC8) €

.Z Ì%d%$. # {| 1/¢# „ö ¯çK ¿#l ¹f 92%

75 mg/L

‰o ¹f 372 mg/L#$. #q nitrite ratio 0.83 ho8 F

ö AU¿$ „ö Ì%á$. ö B Ò free ammonia ‰o ¹f 0.5 mg/LK Fá$.

Free ammonia 9 ¯ *' !X ¡%  Iö 

[ ¡% &Q$[27]n ´µ¦ FG Ü WX 61 1/

f [ö 150­ #T ŠàU H Ë ²T '  ˆ$.

ö A 2 Ì%á$. {|U free ammonia ‰o% ’6Fg Fig. 2. Electron micrographs of nitrifying bacteria.

(A) Sand as biofilm media(SEM, ×800). (B) Nitrifying biofilm on the media(SEM, ×600). (C) Nitrifying biofilm on the media, as granule(SEM, ×200).

(D) Nitrifying bacteria(TEM, ×110,000)

Fig. 3. Mixed liquor volatile suspension solid profile of the biofilm airlift suspension reactor.

(5)

 40 1 2002 2

61 1/f N K ¯9 ‘C8 +šw$.

3-3.  II: 4 + 5. /0 12 )* + 3"

6¿ ®U 3456 . ­hÆ F9 8 WX

8 s sóyK ·/d 61 §! ,K ¼^á$. s  yK 2.5-3.5 L/min `o8 ·/Z шn Hq { 0 1 ‰o

Šàá$. Fig. 5 WX 1/ (Z lýþ ‘#$. ö a-d 4x 3456 .Z 2.5 kg-N/m3· d8 FáCg Table 3

Šà(Z h9 ‘#$.

ö aU só s yK 2.5 L/minC8 F€ 1/

nitrite ratio 0.83C8 Fˆ$. WXU  3456

‰o% „ 80 mg/L ‡C8 …hˆ$. #q free ammonia 1.0 mg/

L

/¢# m ‘ 3456 .% ’@l £ 1/ h zv9 1 %  P sóF )9 (8 'ik  $. WX 0 1 ‰o% 1U 2.5 mg/L ‡U FˆCg ¹f 1.8 mg/L#$.

# ‰o ­W!C8 61 1/f N # ¯Z - $n ´µ Q 2 mg/L¿$ m ‰o#$. s sóy# › † 01 % m

‰o% ’Æ Fw$. #q free ammonia ‰oo ’6FÆ Ú8

0 01 ‰o% mK JŽ 01 ‰o \]% 61 1/f «

3456 1/f N o › d 1/ ¡¢# m6Fg H8 "

€ free ammonia ‰o% ’6FÆ Ú8 m 01 ‰o¸

free ammonia

ö bU WX 0 1 ‰oZ Ì%de ®€ s  yK 3.0 L/minC8 ¼ƒán H ( 0 1 ‰o% ¹f 2.6 mg/

L

‰o% Ì%€ 100 mg/L %— ‰oZ ¿á$. # {|

nitrite ratio% 0.798 „ö › w (Z 1K  ˆ$. # só

8 [‹d% qr#$. FG   3456  [y#

‰oUo 61 1/f N # Î ho ¯Z -n $n +šw$.

yK 2.5 L/minC8 m– ш$. #q WX ã 0 1  ‰ o F`!C8 m T(U FçK ´  $. # {| 1 Fig. 4. Effect of NH4+- N load on nitrification in the biofilm airlift sus-

pension reactor.

(: NH4+- N; : NO2- N; : NO3- N; : nitrification efficiency; :

NH4+- N load)

Fig. 5. Effect of air flow rate on nitrification in the biofilm airlift sus- pension reactor.

(: NH4+-N; : NO2- N; : NO- N; : nitrification efficiency; :

air flow rate)

Table 3. Effect of dissolved oxygen concentration on the nitrification of the biofilm airlift suspension reactor

Period ..

Characters a b c d

Nitrification efficiency(%) 85 95 82 97

Nitrite ratio 0.83 0.79 0.95 0.96

Dissolved oxygen concentration(mg/L) 1.8 2.6 1.2 2.7

(6)

Ž ! ‰o8 çK ¿á$. {|U nitrite ratio 0.958 .

ö Ò 0 1 ‰o% aöU …h9 ‘¿$  m ‘K '

  à # # ö Ò WX *'y# 15 g/L8 Ì%€

*'# zv8  0 1  #  6U lý2 (8 +š

w$. #8 "€ Ì%w free ammonia¸ m 0 1 ‰o% Ë#

ö dU Ž m ‰o8 Fw 01 ‰oZ b ö¿$

o ’ ‰o8 Fd%K q 61 §! ²TK ¿ ®€ air flow rateK 3.5 L/minC8 Fá$. H>l 01 ‰o  ¹ f 2.7 mg/LC8 c ö¿$ T3á$.  1/¢ 10­ ho

+!C8 Ž m `o8 UUP Ì%ˆ$. # 61 1/f# "

6 ö ¯Z -6U ¡ N K â7 `o% Î@l 3456 1/f 2 2 I`o% m6 wash-out# ­2 ‘C8 +šw$.

Ê Šà a-dU ´   ‘ 01  (8 3456  1/¸ 61 1/f N  ¯Z ‡$ ‘#$. 3456  1/¢# mC† WX ã ammonium free ammonia ‰ o% ’6Fg # $d 61 1/f N  ¯Z ÑÆ w$. {

 1 ‰o •! ?% &v9 v % w$.

3-4. .  )* + 3" 6

C8 x %F% K  $. 9 :8 free ammonial 0 1

1 1/f# F`!C8 ¯Z -6 m 2 I`o8 WX ã I

ö Æ † 61 1/f *' ‰o \]% 3456 1/f

2 › k  $. #é x %F %h &U ; ‘# ² WX

61 §! ²TK häP ¨å FZ ä" ®€ 3456¸

Fig. 6(A) 3456% w ¤F8 3456 1/f 61 1

/f 9 3456¸ 61 1/ WXK Ü ‘#$. dö# J

ç {| [º!" 1/ hK lýãˆ$. 3456 1/f !

6>K ä"k  ˆ$.

n 3456% @ $ % n 2 ™.ò Ü÷!C8 n

$. #‘ 61 1/f# ¤Fã 3456  ¯Z -n

 qr#@l ݋ ÒT WXU.ò 61 1/ ±)w ¡ dÞß O²# ??@l ¯ 9 F]²T#|n 'ik  o $. #Z ä" ®€ 61G  8 ⠊àK á

/f 61 1/¡ dÞß O² ??l ¯ 9 F]²T#

65n 3456 ¯ 9 ‘K ¿€Ñ :;!" Ì@% w$.

WXU "9 *'C 3456 1/  61 1/

specific activity Fig. 6(A) 3456   `o¸ Fig. 6(B)

activity ¹f 5 mg-N/g VSS/hrC8 61 1/ specific activity(¹f 3 mg-N/g VSS/hr) ¿$ í#  DK ¿á$. # ­W!"

U 61 §! ²T# lýlF  $. 0 3456 1/ specific activity 2 61 1/ specific activity%  ’ qr#$. Ü Š àU #09 ݋ ÒT 'Ç WXU 61 §! ²T

⠊àU ä"9 3456¸ 61 1/ specific activity (

U8 ­+n $. Ü ŠàU ^0w *'C ­W N Œ>

FZ ;_€ ^0áCl Iö WX [K À F`!C8 61 1/f N K ¯€ E qr 3456 1/f 2 Þß N ¯ "9 ‘C8 +šw$.

4. 

Ü Šà n‰o 3456 Z 9 Z  sh

¾! 1/ hK R ®€ ݋ ÒT 'Ç WXZ # 0á$. 1/ *'# hÆ .Õw 'Ç *'# •

Fig. 6. Batch nitrification kinetic analysis of nitrite accumulating bio- mass from the biofilm airlift suspension reactor[(A): ammonia oxidation, (B): nitrite oxidation].

(: NH4+- N; : NO2- N;: NO3- N)

(7)

 40 1 2002 2

15 g/L n‰o8 Fˆ$. 3456 ?@Z s!C8 R

( $ Ë (ÛK 1K  ˆ$.

(1) ݋ ÒT 'Ç WX [ (   3456 

 º(8 ˆ$. [ ö 3456 . 2.5 kg NH4 +- N/m3/d

90% #T §!k  ˆ$.

(2)

K m–Æ w$.

(3)

ã 2æ! ’ free ammonia ‰o 9 61 1/f N ¯ q r#|n +šw$. # ⠊àU 61 1/f# free ammonia%

9$. WX ã m 01 ‰o £9 61 1/f N K ¯

€ 61K §! v"C8 +šw$.

(4) ݋ ÒT 'Ç WX *'C 3456  61 1 / specific activityZ 2æ Ü ( 3456 1/ specific activity%

 ’Æ lýlg # "6 öÒ 61 1/f 9 ¯ ² T (8  w$.

 

Ü LM & FG 1EL FH I dJ ^F  Fžˆ

5$. # ›^KV5$.



1. Stefan, J., Gabriele, T., Markus, S., Karl-Heinz, S., Andreas, P. R., Hans-Peter, K. and Michael, W.: Appl. Environ. Microbiol., 64, 3042 (1998).

2. Painter, H. A. and Loveless, J. E.: Wat. Res., 17, 237(1983).

3. Keen, G. A. and Prosser, J. I.: Arch. Microbial., 147, 73(1987).

4. Groenewg, J., Sellner, B. and Tappe. W.: Wat. Res., 28, 2561(1994).

5. EPA, “Manual: Nitrogen Control,” EPA/625/R93/010(1993).

6. Abelling, U. and Seyfried, C. F.: Wat. Sci. Tech., 28, 165(1993).

7. Elisabeth, V., Münch, Paul Lant and Jurg Keller: Wat. Res., 30, 277 (1996).

8. Garrido, J. M., van Benthum, W. A. J., van Loosdrecht, M. C. M.

and Heijnen, J. J.: Biotechnol. Bioeng., 53, 168(1997).

9. Fdz-Polanco, F., Villaverde, S. and Garcia, P. A.: Wat. Sci. Tech., 31, 121(1994).

10. Turk, O. and Mavinic, D. S.: JWPCF., 61, 1440(1989).

11. Sheng-Kun, C., Chin-Kun, J. and Sheng-Shung, C.: Wat. Sci. Tech., 23, 1417(1991).

12. Joo, S. H., Kim, D. J., Yoo, I. K., Park, K. and Cha, G. C.: Biotech- nol. Lett., 22, 937(2000).

13. Wiesmann, U.: Advances in Biochemical Eng. & Biotechnol., 51, 113(1994).

14. Villaverde, S., Fdz-Polanco, F. and Garcia, P. A.: Wat. Res., 34, 602 (1998).

15. Villaverde, S., Garcia-Encin, P., Turk, O. and Mavinic, D.: Wat. Res., 23, 1383(1989).

16. Joeseph, A.: Wat. Sci. Tech., 30, 297(1994).

17. Ryhiner, G.: Wat. Sci. Tech., 29, 111(1994).

18. Yoo, I., Kim, G. and Kim, D.: HWAHAK KONGHAK, 36, 945(1998).

19. Tschui, M.: Wat. Sci. Tech., 29, 53(1994).

20. Ceçen, F. and Gonenç, I.: Wat. Sci. Tech., 29, 409(1994).

21. Lee, S. and Kim, D.: HWAHAK KONGHAK, 39, 123(2001).

22. Tijhuis, L., Huisman, J. L., Hekkelman, H. D., van Loosdrecht, M. C. M.

and Heijnen, J. J.: Biotechnol. and Bioeng., 47, 585(1995).

23. APHA, Standard Methods for the Examination of Water and Waste- water, 18th ed., Washington DC(1992).

24. Wolfe, R. L., Lieu, N. I., Izaguirre, G. and Means, E. G.: Appl. Envi- ron. Microbiol., 56, 451(1990).

25. Eberhard, B., Ingo, S., Ralf, S. and Dirk, Z.: Arch. Microbiol., 163, 16(1995).

26. Ford, D. L.: J. Wat. Pollut. Control Fed., 52, 2726(1980).

27. Villaverde, S., Fdz-polanco, F. and Garcia, P. A.: Wat. Res., 34, 602 (2000).

28. Kuai, L. and Verstraete, W.: Appl. Environ. Microbiol., 64, 4500(1998).

29. Anthonisen, A. C., Loehr, R. C., Prakasam, T. B. S. and Srinath, E. G.: J.

WPEF., 48, 835(1976).

참조

관련 문서

By this way, we were able to deliver pulse power with peak voltage of 110 kV and peak current of 2.3 kA to the plasma reactor.. Additives such as ammonia and propylene were

Insulating oil containing PCBs was converted into harmless synthetic gas via pyrolysis in the HTPG reactor with thermal energy obtained from the combustion of the synthetic

The portion of nitrite intake through consuming processed meat in total nitrite intake is relatively low. However, consumers still want to have low nitrite concentration

At high nitrite levels, although the typical cured color that is induced by thermal treatment did not present by pressure alone, the PT treatment still showed a pinker color

노인 만성폐쇄성폐질환 환자들은 인플루엔자에 대한 합 병증의 위험이 높아서 매년 인플루엔자 예방접종을 받아야 한다. 폐렴구균 예방접종은 논란이 되기는 하지만 평생 1회

노인에서의 수면 무호흡으로 인한 장기적 합병증이 중년 환자와 비교하여 차이가 있는지 여부는, 노인의 수면 무호 흡을 하나의 특정질환으로 간주할 것인지 아니면 노인의

혼합제를 사용하여도 천식 조 절이 되지 않는 경우 경구 약제인 류코트리엔 조절제 그리 고 (또는) 테오필린을 추가하여 사용한다. 류코트리엔은 효 과 면에서는

12) Maestu I, Gómez-Aldaraví L, Torregrosa MD, Camps C, Llorca C, Bosch C, Gómez J, Giner V, Oltra A, Albert A. Gemcitabine and low dose carboplatin in the treatment of