• 검색 결과가 없습니다.

Pilot Plant Study on Non-Thermal Plasma Flue Gas Treatment Process

N/A
N/A
Protected

Academic year: 2022

Share "Pilot Plant Study on Non-Thermal Plasma Flue Gas Treatment Process"

Copied!
6
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

&N 2¢®î¢ šÏ‚ V&Ê ¾Ò; 2¢% 2ÂÞ ’

Ï'FÁfãÁΞ*

“Öë"’ö &V~ã’&

*“"&v ~ã¦

(1999j 2ú 25¢ 7>, 1999j 8ú 23¢ j)

Pilot Plant Study on Non-Thermal Plasma Flue Gas Treatment Process

Young Sun Mok, Kyong Tae Kim and In-Sik Nam*

Air Protection Research Team, Research Institute of Industrial Science and Technology

*School of Environmental Engineering, Pohang University of Science and Technology (Received 25 February 1999; accepted 23 August 1999)

º £

Æ7C ²Ö;öB VÂ>º V&ʂ¦V SO2f NOx¢ ÿö B–~V *~ ªÊ z‚¾ O*j šÏ~º &N çÏzB *V÷êV~ *’–f ÿ¢~² ’W~&. ªÊ *{j Bʺ ªÊBË~‚B ¶VªÊ{»V¢ Ò Ï~&. 2¢®î >wVö &“j ÷R‚ Ö~ ªÊ j 1µsšÚ‚ *¢ > ®îb–, &“ö ž{V¢ çR Ö Ê *Kj 2¢®î >wVö /† > ®î. SO2f NOx~ B–ÎNj ËçÊV *~ zÎîjf *‚j2j Î&

B‚ "«~&.  ’~ ªÊ z‚¾ O* ;öBº ®" 3.0 Wh/Nm3~ ö.æ&êöB V&Ê~ SO2f NOx¢ ' ' 95%f 60% šç B–† > ®î.

Abstract−A non-thermal plasma process using pulsed corona discharge was applied to the simultaneous removal of SO2 and NOx from an iron-ore sintering flue gas. This study was performed on a pilot scale, which is the most advanced demon- stration of this process. The electrode structure of the plasma reactor is the same with that of conventional electrostatic pre- cipitator. We made use of magnetic pulse compressor to produce high voltage pulse. The pulse length was reduced to less than 1µs by connecting a resister in parallel with the plasma reactor. An inductor was added to the resister in series to minimize the loss by restricting the current flowing through it. By this way, we were able to deliver pulse power with peak voltage of 110 kV and peak current of 2.3 kA to the plasma reactor. Additives such as ammonia and propylene were used to increase the removal efficiencies of SO2 and NOx. In this pulsed corona discharge process, the removal efficiencies of SO2 and NOx obtained at an energy density of only 3.0 Wh/Nm3 were 95% and 60%, respectively.

Key words: Non-thermal Plasma, SOx, NOx, Pulsed Corona Discharge, Additive

1. B †

ªÊ z‚¾ O*j šÏ~º &N 2¢®î ;f &‚'ž ÿ

î/îî VFš. ‚" 10 j* š VFö &š ôf ’& >

Úr[1, 2-7]. &N 2¢®î¢ šÏ‚ î, îî VFf Vš~ 

;ö jš Fš‚ &VJ"bj ÿö B–† > ®º 6, š

;šæ‚ 2N'ž ö>¾Ò ^B& ìº 6, ¦æš' »² ~

Ë6š ®[5, 8, 9].

O*" 7æ* Қö Ö †ž çß* 5 f j &ê

š –š~öBº îïš Ö ·f *¶º ³b‚ &³>º >

šö îïš – šNf f * ÿnö –~ &³>æ á‚. V

¢B šN 5 7W«¶~ Nêº Ô *¶~ Nêº ¸f jï; 2

¢®î(non-equilibrium plasma) ç& B. ªÊ z‚¾ O*ö ~

*¶š SO2f NOx  Fš&Êf ç7 Ïò† {†º î², Ö², >ª " ?f VãVÚ(background gas)f Ïò† &ËWš

R ¸. V¢B î/îî ";f WB ¶F*¶& ç7 Fš &

Wš – ¢:¢j WB šš šÖz 5 î²zb" >w~

º zšî¾j <² B[1, 10]. &N 2¢®î î/îî ;~ "

5-20 eV º*ž ¶F*¶~ W; (2) SO2f NO¢ '' Ö" îÖ

E-mail: mokys@risnet.rist.re.kr

(2)

z B38² B1^ 2000j 2ú

b‚ *~ʺ– jº‚ O, OH, HO2 ¢:¢ 5 Jš W; (3)

Ö 5 îÖj zΪ"b‚ *~~V *‚ NH3~ Î&; (4) ÷ê Vö ~‚ zΪ"~ ÷[11]. V&Ê 7~ Ö², î², >ª f z‚¾ O*ö ~š O, N, OH ¢:¢ 5 Jšj WÊ, š

‚ Wªš SO2 5 NOxf >w~ '' Ö" îÖj WÎ . Ö" îÖf zÎîjf ?f "VW bîö ~š 7z>Ú >

µm &ï~ «¶;ž (NH4)2SO4f NH4NO3‚ *~>Ú *V÷ê V 6º "÷êVö ~š ÷B.

&N 2¢®î VFf .VR¶j 5 J~¦æ& ·² ï&> ¦ Öb~ ¾Òê *‚ >š îÎNö jš î²Özb B–ÎNš

Ô Ú**Kš – ^B6š ®[5, 8]. šÒ~ ENELöB >¯‚

2¢% 2ÂÞ ’Ö"¢ š 2¢®î î/îî ;~ Ú**K f zKB*² B*ï~ £ 5.3%ö ššº ©b‚ >î[9, 10, 12]. ‚Þ, &N 2¢®î ;" F҂ *¶z ;~ ãÖ zKB

*² B*ï~ £ 1.5%ö ššº *Kj ÒÏ~ ®[12]. V¢B, Ëê 2¢®î ;~ Ïz¢ *šBº Ú**K²Î& ‚²‚ * Î~ Ë~öB ôf Z'ž Ö"š áÚrjæ¢ê,  VF~

ê¢ >Ú 2¢% 2ÂÞ ΂ ’¢ >¯~¢ † ©b‚ 6

B. "öê ®’~ æ.ræº 2¢% 2ÂÞ šç~ &;  J~ ãþš ¦—‚ ^B6š ®[9, 11].

&N 2¢®î ;f ç~ *{j ªÊ *{b‚ æ~B"º ªÊBË~¢ Òς. *Òræ 6Ò ÒÏ>î~ ªÊBË~º jv' £ 8² B·† > ®º ²* Ê2’ S Ê*~(rotary spark gap switch)š[11]. ¾, š Ë~º >>º Ê*“ ÿ·

b‚ žš Ê2’ S *š îÎ>Ú Ö“öº Ë~ >«š .Z

f &N 2¢®î ;~ Ïz¢ *š j>'b‚ šÖš¢ † ^ Bš. >«ö &NB ^Bº ¶VªÊ{»VF(magnetic pulse com- pression technology)j šÏ~ ªÊBË~¢ B·Žb‚B šÖ

~ >« öò jî¢ ç~/ªÊ æ~ ÎN 6‚ ªÊBË~& <º Ú¢ † 7º‚ º²š.

 ’öBº 2¢% 2ÂÞ Î~ &N 2¢®î î/îî J j¢ Æ7C ²ÖË(iron-ore sintering plant)öB VÂ>º V&Ê

¾Òö 'Ï~&. 2¢% 2ÂÞº ªÊBË~‚B 2ê ¶Vª Ê{»V(2-stage magnetic pulse compressor)¢ ÒÏ~ ®. 2¢

% 2ÂÞ ’~ Ï'f &; JjöB 2¢®î î/îî ʂ

~ V&Ê ¾Ò ËKf 5,000 m3/hš, >wV~ * ’–º Vš

~ çÏzB *V÷êVf ÿ¢~² ’W~&. î/îî ÎNj Ã

&B *Ú'ž ²º Ú* *Kj &6ÊV *‚ >wÎ&B‚B zÎîjf *‚j2š ÒÏ>î.

2. þÚÏ" O»

2-1. 2¢% 2ÂÞ ’W 5 þO»

 ’öB Òς 2¢% 2ÂÞº Æ7C ²ÖË~ V&Ê ¢

¦¢ F«B ¾Ò~ ®. 2¢% 2ÂÞº Fig. 1" ?š î/

îîj Fê~º 2¢®î >wVf Wbj ÷~º *V÷êV‚

’W>Ú ®. 2¢®î >wV~ O*öº ·W ç~ *{j ªÊBË~¢ šÏ~ ªÊ *{b‚ æ~~ ž&~–, *V

÷êVöº rW ç~ *{j ž&‚. 7zB‚B ÒÏ>º zÎ îjf >wÎ&Bž *‚j2f >wV «’öB "«>–, SO2f

NOx~ ³êªCj *‚ ò j’& >wV «Â’ö J~>Ú ® . >wV *" êöº V&Ê Nê¢ G;† > ®êƒ *3 (thermocouple)š J~>Ú ®. V&ʺ Ú㚠340 mmž V&

>wVö F«>º V&Ê~ SO2f NOxº >wV¢ Û"~– Ú çž zΪ"b‚ *~>Ú *V÷êVöB ÷B. ‚« W bž ÖzΪ" îÖzΪ~ *Vj&“f &Û 105ohm-cm &

ïš[11].

 ’~ 76f î/îî 2¢®î >wVš– š~ Ú¦ ’–

º Fig. 2f ?. O*b‚ ÒÏB ;ÆF~ çãf 3 mmš, 7 æ>Ú ®º ï6~ .jf ^šº '' 2 mf 5 mš. 7æ>Ú

®º ï6*~ –Òº 200 mmš– O*f v B~ 7æ6 Қö

V&Ê& Û">– ¾Ò>º >wV~ FÎ f 1.2 m‚ B·>Ú 2¢®î >wVº C 6B~ V&Ê F‚¢ &æ ®. 2¢®î

>wVº O*(·)" 7æ6(r)b‚ ’W>Ú ®Ú ¢«~ ~

šB¢ " > ®b–, ;*Ïï(capacitance)f £ 4.0 nFš. v B~ 7æ6 Қö *~~ ®º O*~ ’–º Fig. 3" ?.

7æ6~ ¸š& 2 mšæ‚ ÊÞÒ^ z‚¾ O*š ¢ÚÆ > ®º O* 1B~ FÎ^š 6‚ 2 m¢ † > ®b–, Fig. 3" ?f O* 1 ^Þº C 16B~ O*b‚ ’W>Ú ®, 2¢®î >

wVº 6B~ V&Ê F‚¢ &æ ®Ú 2¢®î >wV~ C O

* ^šº 192 m& B.

Fig. 1. Schematic of the non-thermal plasma deSO2/deNOx pilot plant.

1. Ammonia injection 4. Dust sampling port 2. Additive injection 5. Gas sampling port

3. ID fan 6. Hopper

MPC: Magnetic pulse compressor, ESP: Electrostatic precipitator, DCHV: DC high voltage power supply

Fig. 2. Electrode structure of the pilot plant.

(3)

>wV «Â’ Nêº ²ÖV Ú*–šö V¢ –.O æz~¾ &

Û «’ Nêº 150oC, ’ Nêº 100oCš. ²ÖV V&Ê~ – Wf 15%~ O2, 70%~ N2, 8%~ H2O, 5%~ CO2Ò 1%~ CO

‚ ’W>Ú ®. >wV «’~ SO2f NOx³êº ~ 150 ppm

;Ꚗ ²ÖV Ú*–šö V¢ –.O æz‚. ²ÖV~ V&Ê öº £ 30-50 mg/Nm3~ Æ7C ªêš ŽF>Ú ®º–, ªê~ ï

 çãf £ 10µmš. î/îî þf V&Ê Fï 3,500 m3/ h(150oC)öB >¯>î. š Fïj ‚&ç(0oC, 1 V{)‚ ~Ö~

š 2,260 Nm3/hš B. NOx³êº zB7»j šÏ~º NO-NO2- NOx Analyzer(Model 42H, Thermo Environmental Instrument, Inc.)¢

šÏ~ ªC~&, SO2 ³êº Pulsed Fluorescent SO2 analyzer (Model 43C, Thermo Environmental Instrument, Inc.)¢ šÏ~ ª C~&. zÎîjº >wV «’öB 0-360 ppm º*‚ "«>î,

*‚j2f 0-121 ppm º*‚ "«>î. >w *‚j2~ ³êº VÚ ’‚îƾb¢ šÏ~ ªC~&.

2-2.¶VªÊ{»V

Fig. 4º 2ê ¶VªÊ{»V~ BzB *V²‚êš. ç~ 

*{ power supply(Maxwell CCDS-1040-P-1-220)~ ç~ *{(30 kV)š »*V C1j Ï*‚. ž¦^ö ~š š¢Þ†(thyratron) Ê*~(EEV, CX1525A)& ®š, C1ö &ËB ö.æº £ 4µs~ Ï**j &æ C2‚ O*>–, šr *{š 1 : 5 jN‚ ß{B . C2& Ï*>º ÿnöº ²‚ö – ž{ZÊ& "Ú^ Ñ ®

¶VÊ*~(L2)& & ®² B. Ñ ® ¶VÊ*~& z> ¾

š C2ö Ï*B ö.æº C3‚ ~ Ï*j ~– šr~ Ï**f

&Û 1µsš. v ® ¶VÊ*~(L3)& z>š C3~ ö.æº >

wV‚ *B. O*ö ªÊ *{š ž&>š *{f †š² ç ß~– >wV¢ Ï*ÊV ·‚[13]. O*" 7æҚ~ * {š z‚¾ B*{ö ê‚ ê Ûê' æ*(statistical time lag)š¢º ¢;*š 澚 O*b‚¦V z‚¾ O*š ·>

Ú V&Ê~ .š 2ZB[10, 13].

' ~ ¶VÊ*~º 2605CO Metglas Amorphous Core(15 µm thick, 2" wide sheet)¢ šÏ~ Jê>î. 2¢®î >wVº z

‚¾ B *öº »*V‚ z‚¾ B êöº &æ»*Vf &æ

&“~ ÷R’–‚ ‚*>Ú¢ ‚[11]. Fig. 4öB LLf >wV~ ¦ F ž{ZÊ(stray inductance)š–, CLf &æ»*V, RLf &æ&“

j ¾æÞ. z‚¾ O*š j’ O*b‚ *š>æ pbJš ªÊ

š 1µs šÚ‚ §j^¢ ‚[10]. z‚¾ «òê >wVö Îj®

º **~º >wVö ÷R‚ &“(Rp)j J~~š ²Î>æ‚ ª Ê š §jî > ®. ¾ >wVö ÷R‚ &“j J~~²

>š ªÊ *{š ž&>º ÿn &“b‚ê *~& ~ *K ¶ V(Lp)š. ž{Vº z>V *ræ &“ OËb‚ všº *~¢

R‚ J~B &“f 400 ohmš, ž{V~ ž{Zʺ 200µHš.

Fig. 4~ ç~ *{ power supply~ ‚& ÂKf 40 kWš–, ªÊ

>†f 200 Hzræ &æ &Ë~.  ªÊBË~~ >«f ªÊ

²> 3×109šçš.

*{f 1/10,000~ 6j¢ < ®º *{ªVV(voltage divider)

¢ šÏ~ G;~&, *~ G;f "^ B·B 5 kAræ G; &

˂ æ~V(current transformer)¢ ÒÏ~&. *{" *~ ^º

3. Ö" 5 V

3-1. *{ 5 *~ 2;

Fig. 5º Fig. 4~ VD1, VD2, VD3öB G;B *{, Ò Fig.

6f Fig. 4~ CT1, CT2, CT3öB G;B *~¢ ¾æÞ. ªÊ {

*{ 5 *~ 2;f VD3f CT3öB G;B ©š–, b’ *{"

b’ *~º '' 110 kVf 2.3 kAš. z‚¾ *~º £ 500 nsš

Úö «òNj r > ® ªÊ f £ 1µsš. „öB Þ/‚ : f ?š ¸f ö.æ¢ &ê ¶F*¶¢ BB ¢:¢ Wö š Fig. 3. Arrangement of the 3 mm wires used as discharging electrode.

Fig. 4. Electrical circuit of the 2-stage magnetic pulse compressor.

Fig. 5. Voltage waveforms measured at VD1, VD2 and VD3 indicated in Fig. 4.

(4)

z B38² B1^ 2000j 2ú

B >wVö ž&B *{~ çß*f £ 200 ns‚ Ö †š² * {š çߎj r > ®. *{ 2;(V)" *~ 2;(I)j ~š

*Kš >– >wVö ž&>º b’ *Kf £ 250 MWö šš

®. *Kj *ö &š 'ª~š ªÊ >wVö /B ö.æ (E)& B:

(1)

Fig. 4~ CT3öB G;‚ *~º B‚ >wVö ÷R‚ ÖB

&“b‚ všº *~¢ Ž~ ®bæ‚ VD3f CT3öB G;‚

*{" *~~ j  (1)" ?š 'ª~š * ªÊ >wV‚

R«B ö.æf ÷R &“öB ²ÎB ö.æ~ š B. VD3f CT3öB G;‚ *{" *~¢ &æ  (1)j êÖ~š ªÊ ¦

~(>wVf ÷R &“)‚ /B ö.æº 60 J/pulseš B. *~G

; *~¢ TÎ B>® >wV‚ všº *~òj &æ  ?f êÖj >~š &“öB ²Î>º ö.æº ®" ªÊ £ 3 J  òb‚ Ö ·rj r > ®º–, š šFº >wVö ÷R‚ ž{

V¢ J~~ *~& &“ OËb‚ všæ á~² >îV r^š

*Kj jv~š ªÊæ~ÎNf £ 65% &ïb‚ Všö 2¢®î î/îîj *š ÒÏ>Ú J~ ²*Ê2’SÊ*~~ 30%f jv Fig. 2~ 2¢®î >wVº C O* ^š& 192 m‚B ªÊ >

wVö /B ö.æ 60 J/pulsej O* *^š /B ö.æ

‚ ~Ö~š £ 0.3 J/pulse/m& B. ^òö ~~š 2¢®î >wV Jêö ®ÚB ªÊ O* 1 mö />º ö.æ¢ 1-3 J/pulse/m

~~š 1-3 J/pulse/m >&b‚ ö.æ¢ Ã&ʺ ©š ®&Ë~&

. ‚ö~š, />º ö.æ¢ Ã&ÊV *~ *{j çß

ʚ O*" 7æҚö Ê2’& B>îV r^š.

3-2.ªÊ z‚¾ O*j šÏ‚ ÿ î/îî

Fig. 7f î/îî B–WËö ~º zÎîj ³ê~ 'Ëj ¾ æÞ. VB ö.æ &ê P/Q(*K/V&ÊFï)º ‚&ç(0oC, 1 V{)öB~ V&Ê Fï" ï O**Kj &æ êÖ~&. ï

 O**Kf ªÊ>†(f)" ªÊ R«B ö.æ(E)‚¦V r

" ?š êÖB:

(2)

 (2)ö ~~š ªÊ>†š 100 Hz¢ r ï O**Kš 6 kW&

>Ú  þöB~ ö.æ&ê(P/Q)º ï O**Kj V&b‚ £ 2.6 Wh/Nm3& B. ¾ ªÊB²‚~ ªÊæ~ÎN 65%¢  J~š B ö.æ&êº 4.0 Wh/Nm3š B. ²Ö; V&Ê7 š Öz" î²Özb ³êº 130-170 ppm º*‚ æ~ ®b¾,  ïjº šÖz" î²Özb ³ê¢ '' 150 ppmj V&b‚ ê Ö~&. "«B zÎîj ³êº ïj~ 0.8ö š~º 360 ppm ræ æz>î. Civitano[11]ö ~~š >w zÎîj VÂj Û B~V *šBº zÎîj¢ ïj~ 0.8 š~‚ "«š¢ ‚

~ ®. SO2f NOxº zÎîjf '' 2 & 1 Ò 1 &

1

(3)

î²Özb~ ãÖ B–ÎNš zÎîj ³êö ’² ~šWš ìî b¾, SO2 B–ÎNf "«B zÎîj ³êö ’² ~š~ ®b

– zÎîj¢ Î&~æ pbš £ 10% &ï~ SO2òš B–>Ú zÎîj "«š j>'ªj r > ®. Fig. 7ö Všš SO2º z Îîj "«ïö V¢ 95% šçræê B–& &Ë~. ªÊ z‚

¾ O*š SO2 B–¢ /êκ ©f ª«~æò, š-² ¸f B–ÎNf r" ?f SO2, NH3 Ò H2O*~ z>wö V

ž‚ ©b‚ 6B[11].

(4) (5) 6‚, ²Ö;~ V&Êöº çï~ Æ7C ªêš Ž>Ú ®Ú ªê~ ‚šöB ¢Ú¾º SO2, NH3 Ò H2O*~ ®¢ z

>w(heterogeneous chemical reaction)š SO2 B–ö ’² 'Ëj  j ©b‚ ž. &N 2¢®î ;" F҂ *¶z »(electron beam irradiation process)j šÏ‚ V&Ê î/îîö ®ÚB ®

¢ z>w~ 'Ëf ¢~ Tokunaga [14]ö ~š ’B : ® µm ;ê~ Қ ªöj Î&®j

&N 2¢®î ;öBê ªê‚šöB ¢Ú¾º ®¢ z>wf î/îîö ç® 3''ž 'Ëj † ©š. Clements [1]f

E VIdt′

0

t

=

P=fE

SR [NH3] 2 SO[ 2]+[NOx] ---

=

SO2+NH3+H2O 1 2O+ ⁄ 2→NH4HSO4( )S SO2+2NH3+H2O 1 2O+ ⁄ 2→(NH4)2SO4( )S Fig. 6. Current waveforms measured at CT1, CT2 and CT3 indicated

in Fig. 4. Fig. 7. Effect of ammonia addition on the removal of SO2 and NOx.

(Inlet concentration of SO2: 150±20 ppm; Inlet concentration of NOx: 150±20 ppm)

(5)

V&Êö ªêš ŽB ãÖf Ž>Ú ®æ pf ãÖ~ þj

>¯~&. V&Êö ªêš ŽB ãÖ~ î/îî ÎNš ªê

š ìº ãÖ R ¸~º–, šº ªê~ ‚šöB ¢Ú¾º ®

¢ z >w r^š. V&Êö ªêš Ž>Ú ®j r, ªê

~ ‚šöB Ö 5 îÖ~ öڂž W˚ ¢Ú¾æ‚ î/îî

;öB :²ç~æ pf >wj ç® 6²ʲ B.

*öB ÚÚ :f ?š SO2B–º ç&'b‚ ’ò *K²Î&

·æò, NOxº V&Ê& 2¢®î ç& >Ú¢ šr B>º Ö

~š~² B. V¢B, / *Kj Ã&B ö.æ &ê¢ ¸šš

¸f NOxB–ÎNš áÚî ©š. ¾ ãBW GšöB š

/*Kj ¸šº ©f :²ç~æ á~–, šº &N 2¢®î 

;~ – ^B6b‚ æ'> ®[5]. NO~ Öz";öº OH, HO2, O~ ¢:¢š "‚ ^~º ©b‚ >Ú ®b– >wf r

" ?[11]:

(6) (7) (8) (9) (10) (11) î²Özb B–~ ãÖº  (11)" ?š ¢¦~ NO2& îÖb‚

*~>Ú zΪ"j ;W~º ãÖê ®b¾, B–>º î²Özb

~ &¦ªf  (6)-(10)ö ~š WB NO2& >ª 5 zÎîjf

/îî >wV’ö ®ÚB ªÊ z‚¾ O*~ "º †f NO¢

NO2‚ Özʺ ©š¢ † > ®[5, 11].

^òö ~~š V&Êö êz>² ê~ bîj "«~š NOx~ 3, 5-7]. š êz>² >wÎ&Bº O, OH 6º Jš" >w~

rÒ, r{, j" ?f ¶F ¢:¢j WB NO Öz³ê¢

Ã&ʺ ©b‚ š–, V¢B >wÎ&B~ WËf O, OH 6º

[2]f Î&B‚ zÎîj & C2H4¢ Î&Žb‚Ž ªÊ z‚¾

Wb ªC Ö" Î&B‚ C2H4¢ ÒÏ®j r N2O Wïš ’²

[7]f W˚ Ö>‚ >wÎ&B¢ F;~V *~ O, OH, Jš

"~ >wWj V&b‚  «~~ êz>²~ WËj jv ªC

~&º–, r*~ êz>², ß®, *‚j2š O, OH, Jš"~ >w

xB–ö &Ë Ö>‚ WËj ¾ Î&B‚ ÒÏ®j r~ î/îî Ö"¢ ¾æÞ. Fig. 7ö ž : f ?š SO2º zÎîj šÒ £² B–>æ‚ B–ÎNš *‚j 2 "«¦ö ’² &ê& ìb¾, NOxB–ÎNf *‚j2 "«

ö V¢ ’² ËçNj r > ®. Fig. 8ö BB :f ?š, *‚

j2š Î&>æ p~j rº ö.æ&ê 3.0 Wh/Nm3öB £ 40%

~ î²Özbš B–B. ¾, V&Êö *‚j2j 73 ppm, 121 ppm "«~² >š ÿ¢‚ ö.æ&êöB NOxB–ÎNš '' 51%

f 70%‚ Ã&B. "«B *‚j2 73 ppm, 121 ppmf >wV

«’~ NOx ³ê¢ V&b‚ ®j r ïj~ 0.5f 0.8ö š‚

. Table 1f z‚¾ O* B>º ‚W Wªž O, OH, Jš 

" >w~ *‚j2b‚¦V W>º rÒ, j, r{ ¢:¢

3" CH3Oº Ö²f >w~ CH3O2f HO2¢:¢j W~º–, CH3O2º ~ö

>– NO¢ ÖzÊ, HO2¢:¢f ;K‚ ÖzWj &ê Wªb

‚  (7)" ?š NO¢ ç7 ÖzÒ > ®.  (R3)‚¦V B>

º HCHOº  (R5)f (R6)j –ö HO2 ¢:¢j W~ NO Ö zö êæj "–, *‚j2" Jš~ >wb‚¦V W>º CH3CHO º  (R7)" (R8)ö ~š Özç& :2Ú  (R9)f ?š NO¢

ÖzÎ.  (R9)öB B>º CH3º   (R1)-(R4)¢ –~

r{ ¢:¢f OH, O, Jš"~ >wö ~š BB. V¢B, Î Table 2öº >wÎ&B‚B Ö>‚ WËj ¾æÚº r*~ êz>

²ö &~ OH, O, Jš"~ >w³êç>& B>Ú ®[15].

Table 2öB r > ®š *‚j2f ö2 OH, O, O3"~

º 1-¦v" O 5 Jš"~ >w³êê jÞ B>Ú ®º–, 1-

¦vö &‚ NOxB– WËþj >¯~æº p~b¾, *‚j2"

F҂ >w³ê¢ &æº ©b‚ j NO Öz>wö ®Ú *‚j 2" F҂ Ö"¢ ¾æâ ©b‚ 6B. *‚j2f >BWFV zb VÂBö š~æ‚ *‚j2~ "«ö ~~ Ú**Kš

’² &6>z¢ê >w *‚j2š ®š ~ã^B& F ©šæ

‚ >w *‚j2j ÛBB¢† jº& ®. VÚ ’‚îƾ b ªCÖ"ö ~~š *‚j2 1ª¶ ªšö &Û 30 eV~ ö.æ NO O+ →NO2

NO HO+ 2→NO2+OH NO O+ 3→NO2+O2 NO OH+ →HNO2 HNO2+OH→NO2+H2O NO2+OH→HNO3

Fig. 8. Removal of SO2 and NOx as a function of energy density.

(Inlet concentration of SO2: 150±20 ppm; Inlet concentration of NOx: 150±20 ppm; Ammonia addition: 360 ppm)

Table 1. Oxidation of nitric oxide by alkyl, acyl and alkoxy radicals Reactions0000 Rate constants at 298 K*

CH3+O2→CH3O2 8.0×1031[M] (R1) CH3O2+NO→CH3O+NO2 7.6×1012 (R2) CH3O+O2→HCHO+HO2 1.9×1015 (R3)

HO2+NO→OH+NO2 8.3×1012 (R4)

HCHO+OH→HCO+H2O 1.1×1011 (R5)

HCO+O2→CO+HO2 5.6×1012 (R6)

CH3CHO+OH→CH3CO+H2O 1.6×1011 (R7) CH3CO+O2→CH3CO3 5.0×1012 (R8) CH3CO3+NO→CH3+CO2+NO2 1.4×1011 (R9)

*Boulch et al.[15]; unit: cm3molecules−1s−1; M: three-body reaction partner.

(6)

z B38² B1^ 2000j 2ú

& ²Î>º ©b‚ ¾æÒ. ¯, V&Êö />º ö.æ 1 Wh/

Nm3 28 ppm~ *‚j2š ªšB. V¢B, ‚&‚ 3.0 Wh/Nm3

~ ö.æ& />º  þ–šöBº 84 ppm šçb‚ *‚j2

*Òræ ^òö B 1,000 Nm3/h/ šç~ 2¢% Ê&¢ &

N 2¢®î î/îî ’º šÒ~ ENELöB >¯®~ Òf&

F¢~[9, 11]. ENELöB >¯®~ 2¢% Ê&¢ þj V&b‚

~š î 80% šç, îî 50% šçj W~V *šBº £ 12 Wh/Nm3~ *Kj /š¢ ~º ©b‚ > ®. z’¾ 12 Wh/Nm3¢º 8f ÎNj Z‚ O**Kj ¾æÚº ©šÚB ª Êæ~ÎN 30%(ENEL~ ²*Ê2’SÊ*~öB áÚê ªÊæ~

ÎN)¢ J~š ENEL~ B *K²Îº 40 Wh/Nm3 šçš.

 þöB~ ‚& ö.æ&ê 3.0 Wh/Nm3º O**Kö V.‚ ©

š. šÒ~ ENELöB &çb‚ ®~ V&Êf  ’~ V&

Ê –Wš B‚ ¢ B jvº Ú[Ææò,  ’~ Ú**Kf ENEL~ Ö"f jv~š 1/4ö ®"~. Ò,  ’öB áÚ ê ªÊæ~ÎNf £ 65 %&ïb‚B O**K 3.0 Wh/Nm3~ B

*K&êº 4.6 Wh/Nm3

Ö"¢ jv~š *K²Îïš ENEL~ 1/8-1/9 >&ö ®"~. 

¾, ENEL~ ’º >wV «’~ NOx³ê&  ’ 2V

šç ¸f 350 ppmöB >¯>îbæ‚, ¸f .V NOx³ê& ¦ ª'b‚ Ú**K çߺžb‚ ·Ï~&j ©b‚ 6B.

4. Ö †

2¢% 2ÂÞ Î~ &N 2¢®î ʂöB Î"'b‚ z‚

¾ O*j Fê† > ®îb–, ²Ö;~ V&ʂ¦V SO2f NOx

¢ '' 95%f 60% šç B–& &Ë~&. ªÊBË~‚ ÒÏ B ¶VªÊ{»Vº ç~ *{j ªÊ *{b‚ æ~ʺ–

®ÚB Ö Ö>‚ WËj "î, >wVö b’ *{" b’

*~& '' 110 kVf 2.3 kAž ªÊ *Kj /† > ®î. ¶ VªÊ{»V~ ªÊæ~ÎNf £ 65%‚B Všö ªÊBË~‚

ÒÏ>Ú J~ ²*Ê2’SÊ*~~ 30%f jv~š ÎNš ç®

BF>î. SO2 B–º zÎîj ³êö Ö "6~² æz~, R«*Kö ’² 'Ëj Aæ p~. >šö NOxB–º zÎîj

³êö –~ Z&~– R«B *Kö jf~ Ã&>î. >wÎ&

B‚ ÒÏB *‚j2f î²Özb B–ÎN Ëçö Ö Î"'š

îb–, šö V¢ Ú**Kj &6Ò > ®î.

^^ò

1. Clements, J. S., Mizuno, A., Finney, W. C. and Davis, R. H.: IEEE Trans. Ind. Applcat., 25, 62(1989).

2. Mizuno, A., Shimizu, K., Chakrabarti, A., Dascalescu, L. and Furuta, S.: IEEE Trans. Ind. Applicat., 31, 957(1995).

3. Oda, T., Kato, T., Takahashi, T. and Shimizu, K.: IEEE Trans. Ind.

Applicat., 34, 268(1998).

4. Shimizu, K., Kinoshita, K., Yanagihara, K., Rajanikanth, B. S., Kat- sura, S. and Mizuno, A.: IEEE Trans. Ind. Applicat., 33, 1373(1997).

5. Song, Y., Choi, Y., Kim, H., Shin, W., Keel, S., Chung, S., Choi, K., Choi, H., Kim, S. and Chang, K.: J. Korea Air Pollut. Res. Assoc., 12, 487(1996).

6. Vogtlin, G. E. and Penetrante, B. M.: “Non-Thermal Plasma Tech- niques for Pollution Control: Part B,” Penetrante, B. M. and Schulth- eis, S. E., Eds, Springer-Verlag, 187(1993).

7. Mok, Y. S., Nam, I., Chang, R. W., Ham, S. W., Kim, C. H. and Jo, Y. M.: “Application of Positive Pulsed Corona Discharge to Removal of SO2 and NOx,” in Proc. 7th International Conference on Electro- static Precipitation, Hilton, Kyungju, South Korea, 270(1998).

8. Masuda, S.: “Non-Thermal Plasma Techniques for Pollution Control:

Part B,” Penetrante, B. M. and Schultheis, S. E., Eds, Springer-Ver- lag, 131(1993).

9. Dinelli, G., Civitano, L. and Rea, M.: IEEE Trans. Ind. Applicat., 26, 535(1990).

10. Bhasavanish, D., Ashby, S., Deeney, C. and Schlitt, L.: “Flue Gas Irradiation using Pulsed Corona and Pulsed Electron Beam Technol- ogy,” in Proc. 9th IEEE Pulsed Power Conference, Albuquerque, New Mexico, 441(1993).

11. Civitano, L.: “Non-Thermal Plasma Techniques for Pollution Con- trol: Part B,” Penetrante, B. M. and Schultheis, S. E., Eds, Springer- Verlag, 103(1993).

12. Penetrante, B. M.: “Pollution Control Applications of Pulsed Power Technology,” in Proc. 9th IEEE Pulsed Power Conference, Albu- querque, New Mexico, 1(1993).

13. Rea, M. and Yan, K.: IEEE Trans. Ind. Applicat., 31, 507(1995).

14. Tokunaga, O., Namba, H. and Suzuki, N.: Int. J. Appl. Radiat. Isot., 36, 807(1985).

15. Baulch, D. L., Cox, R. A., Hampson Jr., R. F., Kerr, J. A., Troe, J.

and Watson, R. T.: J. Phys. Chem. Ref. Data, 18, 881(1989).

16. Seinfeld, J. H.: “Air Pollution,” McGraw Hill, Inc., New York, 142 (1975).

Table 2. Rate constants for the reactions of olefin with OH, O and O3 at 298 K.

Component OH O O3

Ethylene 5.1×1012 8.1×1013 2.0×1018 Propylene 1.7×1011 4.6×1012 1.1×1017

1-Butene - 4.6×1012 9.9×1016

*Seinfeld et al.[16]; Unit: cm3 molecules1 s1

참조

관련 문서

The range of measuring heads includes thermal power sensors as well as highly sensitive diode power sensors, peak power sensors, probes and insertion units for

“With the MySQL Query Analyzer, we were able to identify and analyze problematic SQL code, and triple our database performance. More importantly, we were able to accomplish

Electronic-cigarettes (e-cigarettes) are devices designed to deliver nicotine without tobacco smoke by heating a solution of nicotine, flavoring, additives, propylene glycol,

The objectives of the present study were to investigate the effects of replacing wheat and maize with micronized dehulled barley (MDB) on pig growth performance,

Therefore, the objectives of the current study were (1) to prepare BMP2-OpgY with an alkyne group and to examine the osteogenic differentiation of hPLSCs induced by BMP2-OpgY,

Effect of process parameters such as surface temperature, flow rate, plasma power and exposure time has been investigated.. Oxygen plasma effectively oxidized the PR

Effects of plasma treatment time and power input on perme- abilities for CO 2 , N 2 and actual separation factor in Ar plasma treated

• The practical output voltage is always smaller than the supply voltage, which depends on the load resistance value.. Determine the peak-to-peak and the maximum