Eigenvalue
Decomposition
Wanho Choi (wanochoi.com)
Eigenvalues & Eigenvectors
Av
i=
λ
iv
iA : n by n matrix
v
i: the i-th eigenvector
λ
i: the i-th eigenvalue
λ
i, v
i(
)
: the i-th eigen-pair
(
i : 1, 2, 3, ! , n)
Geometrical Meaning
Av
i=
λ
iv
iThe transformed vector (Ax) is a scalar multiple of the vector (x).
Ax is parallel to x.
eigen = characteristic
eigenvector : strectching direction eigenvalue: stretching factor
https://www.youtube.com/watch?v=8UX82qVJzYI
When A is a symmetric matrix, …
• Two different eigenvectors are orthogonal each other. viTAv j = viT
( )
Av j = viT( )
λjvj = viTλjv j = λjviTv j viTAv j = viTATv j = v(
iTAT)
v j = Av( )
i T v j =( )
λivi T v j = λiviTv j ⇒ λjviTv j = λiviTv j ⇔(
λi − λj)
viTv j = 0 ∴viT v j = 0 ∵(
λi ≠ λj)
Avi = λivi, Av j = λjv j(
λi ≠ λj, i ≠ j)
AT = AHow to calculate eigenvalues
Av
i=
λ
iv
i⇔ A −
(
λ
iI
)
v
i= 0
⇔ det A −
(
λ
iI
)
= 0
λ
i: the i-th roots of the n-th order polynomial
Invertible Matrix Theorem
• The matrix A is invertible
if and only if 0 is not an eigenvalue of A.
Avi = λivi If A-1 is exist, then vi = A-1λivi. ∴A-1 vi = 1 λi vi ⇔ A-1 = 1 λ1 0 ! 0 0 1 λ2 ! 0 " " # " 0 0 0 1 λn ⎡ ⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥
Some Useful Properties
• • • • det(A) = λ1 × λ2 ×!× λn trace(A) = λ1 + λ2 +!+ λnrank(A) = the number of non-zero eigenvalues
Eigenvalue(Spectral) Decomposition
AV= − a1 − − a2 − ! − an − ⎡ ⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ | | | v1 v2 ! vn | | | ⎡ ⎣ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥= a1⋅v1 a1⋅v2 ! a1⋅vn a2⋅v1 a2⋅v2 ! a2⋅vn ! ! " ! an⋅v1 an⋅v2 ! an⋅vn ⎡ ⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ = | | | Av1 Av2 ! Avn | | | ⎡ ⎣ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥= | | | λ1v1 λ2v2 ! λnvn | | | ⎡ ⎣ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥= | | | v1 v2 ! vn | | | ⎡ ⎣ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥ λ1 0 ! 0 0 λ2 ! 0 ! ! " ! 0 0 ! λn ⎡ ⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ = VΛ Avi = λivi ⇔ AV = VΛ ⇔ A = VΛVT ⇔ A = λi i=1 n∑
viviT V−1= VT V : orthonormal( ) A = | ! | v1 ! vn | ! | ⎡ ⎣ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥ λ1 ! 0 " # " 0 ! λn ⎡ ⎣ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥ − v1 − ! " ! − vn − ⎡ ⎣ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥ a b c d ⎡ ⎣ ⎢ ⎤ ⎦ ⎥⎡ α 00 β ⎣ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ a c b d ⎡ ⎣ ⎢ ⎤ ⎦ ⎥ =⎡ a bc d ⎣ ⎢ ⎤ ⎦ ⎥⎡ αa αcβb βd ⎣ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ = αaa + βbb αac + βbd αac + βbd αcc + βdd ⎡ ⎣ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥=α aa acac cc ⎡ ⎣ ⎢ ⎤ ⎦ ⎥ + β⎡ bb bdbd dd ⎣ ⎢ ⎤ ⎦ ⎥ =α a c ⎡ ⎣ ⎢ ⎤ ⎦ ⎥ a c⎡⎣ ⎤⎦ + β⎡ bd ⎣ ⎢ ⎤ ⎦ ⎥ b d⎡⎣ ⎤⎦ rotation inverse rotation stretchingEigenspace
n unknowns n equations Ax = b VΛVT(
)
x = b Λ VT x( )
= VT b Λy = d VTx = y x = Vy linear system(globally coupled system) eigenvalue decomposition
decoupled n equations in eigenspace
Eigenvalue Analysis
• It gives the solution of Ax=b, and simplifies the
solution of a certain problem by reducing a coupled system to a collection of scalar problems.
• It gives insight into the behavior of evolving
systems governed by linear equation.
Am = VΛV
(
T)
m = VΛV(
T)
(
VΛVT)
! VΛV(
T)
= VΛVT VΛVT(
)
! VΛV(
T)
= VΛIΛV(
T)
! VΛV(
T)
= VΛΛV(
T)
! VΛV(
T)
= VΛ2 VT(
)
! VΛV(
T)
= ! = VΛm VT Ax = b ⇔ VΛV(
T)
x = b ⇔ Λ V( )
Tx = VTb ⇔ Λy = dApplications of Eigenvalue Analysis
• Analyzing natural frequency in vibration
• Analyzing stability or convergence in iteration
• Approximation with lower computation
Applications of Eigenvalue Analysis
• Analyzing natural frequency in vibration
• Analyzing stability or convergence in iteration
• Approximation with lower computation
yn = 1+ Δt( λ)n y0 (λ < 0 in this case) : It converges when 1+ Δtλ ≤ 1. ⇔ −1 < 1+ Δtλ < 1 ⇔ − 2 < Δtλ < 0 ∴Δt < −2 λ yn+1 = yn + Δt ⋅ f (yn) = yn + Δt ⋅Ayn = yn + Δt ⋅ Λyn = I + Δt ⋅ Λ( )yn
Applications of Eigenvalue Analysis
• Analyzing natural frequency in vibration
• Analyzing stability or convergence in iteration
• Approximation with lower computation
A = λi i=1 n
∑
viviT ≈ λi i=1 m∑
viviT m( ≪ n)Square-Root Matrix
A−1 = VΛ−1VT ∵ VΛ(
−1VT)
(
VΛVT)
= VΛ−1( )
VTV ΛVT = VΛ−1IΛVT = VΛ−1ΛVT = VVT = I A1/2 = VΛ1/2VT ∵ VΛ1/2 VT(
)
(
VΛ1/2VT)
= VΛ1/2( )
VTV Λ1/2VT = VΛ1/2IΛ1/2VT = VΛ1/2Λ1/2VT = VΛVT = A ∴A1/2 = VΛ1/2 VT = λi i=1 n∑
viviTSimilarity Transformation
• A and B are similar, if there exists a non-singular matrix X such as B=XAXT.
• A and B shares many properties.
• If X is non-singular, then A and B have the same
characteristic polynomial and eigenvalues.