• 검색 결과가 없습니다.

The effect of Na-K-Cl cotransporter inhibition on osteoclastogenesis induced by 1α,25-Dihydroxyvitamin D3

N/A
N/A
Protected

Academic year: 2021

Share "The effect of Na-K-Cl cotransporter inhibition on osteoclastogenesis induced by 1α,25-Dihydroxyvitamin D3"

Copied!
49
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

Th e Eff ect of N a-K-Cl cotran sp orter

in h ib iti on on o ste oclastog en e si s i n du ce d by

1α,25-D ihy droxy v itam i n D

3

Eu n-You n g Kim

Th e Gradu ate Sch o o l

Yo n se i U n iv ersity

(2)

Th e Eff ect of N a-K-Cl cotran sp orter

in h ib iti on on o ste oclastog en e si s i n du ce d by

1α,25-D ihy droxy v itam in D

3

A d esser tation

su bm itted to th e Dep ar tm en t of Den tistry

an d th e Gra d u ate Sch ool of Yon sei Un iv er sity

in p ar tial fu lfillm en t of th e

requ irem en ts for th e d egree of

Doctor of Ph ilosop h y

Eu n -You n g Kim

(3)

Th is cer tifies th at th e d issertation of

Eu n -You n g Kim is ap p rov ed

____________________

Th esis Sup ervisor : Jon g-Gap Lee, D .D .S., Ph . D .

________________________

Th esis Com m ittee Mem ber : H eu n g-Kyu Son, D .D .S., Ph . D .

________________________

Th esis Com m ittee Mem ber : Byun g-Jai Ch oi, D .D .S., Ph . D .

________________________

Th esis Com m ittee Mem ber : Hyun g-Jun Ch oi, D .D .S., Ph . D .

________________________

Th esis Com m ittee Mem ber : Syn g-Ill Lee, D .D .S., Ph . D.

The Gradu ate Sch ool Yonsei University

(4)

A ck n ow le dg e m e nts

First of all, I w ou ld like to app reciate Professor Jon g-Gap Lee on his kin d concern an d w arm su p p ort throu gh ou t m y course of gradu ate school years. His acad em ic kn ow led ge and advices have alw ays been helpfu l in accom plishing m y d octoral d egree.

My sincere gratitu d es w ou ld h ave to go to Professor Syn g-Ill Lee. With ou t his th ou ghtfu l su pp ort an d gu id e, it w ould have been im p ossible for m e to finish the th esis. I adm ire his p assion an d d evotion tow ard th e basic science researchin g w hich encou raged m e to stu dy an d research m ore.

My d eep est ap preciation s to Professor H eun g-Kyu Son, Byu ng-Jai Ch oi an d Hyu ng-Ju n Choi for th eir kin d su pp orts. Also, m y gratitu d es to Research Assistant Professor Seu n g-H o Ohk an d Assistant Hyu n-Ah Lee for th eir sacrifices and encou ragem ents.

I w ould like to th ank m y m oth er, for ju st bein g there w h en I w as in trou ble. She gave m e th e ju st right advices w hen ever I n eed ed th em . Also, m y loving hu sban d an d sw eet d au ghter, So-You n, d eserves m uch ap preciation s. Th ey gave m e th e strength to w ithstan d th e hardtim es th at I had to go throu gh . An d fin ally I d evote this th ese to m y secon d child abou t to be born n ext April w ith all m y love.

(5)

Tab le of Co nte nts

List of Figu res

Abstract iii

I. Introduction 1

II. Materials an d Method s 9

1. TRAP staining of osteoclasts 9

2. In du ction of osteoclasts in coculture 11

3. Viability test (MTT assays) 11

4. Measurem ent of m ean cell volu m e 12

5. Reverse transcrip tase-p olym erase chain reaction (RT-PCR) 12

6. Western blot 13

7. Data analysis 14

III. Results 15

1. Effect of bum etanid e on 1α,25(OH)2D3-indu ced osteoclast

form ation 15

2. Evalu ation of ch an ges in cell viability by bum etanid e 15 3. Decrease of cell volu m e by bu m etanid e 18 4. Ch an ges in m RN A expression profile in RAN KL, OPG, an d

M-CSF 21

5. Ratio of RAN KL/ OPG m RN A in resp on se to bu m etanid e 21 6. Th e effect of bu m etanid e on t-JN K and p -JN K 26

IV. Discu ssion 28

V. Conclu sion 33

VI. References 35

(6)

Li st of Figu re s

Fig. 1. General ou tline of bon e rem od elin g 2 Fig. 2. Sch em atic diagram of osteoclast differentiation 4 Fig. 3. Mechanism s of osteoclastogen esis and osteoclastic bon e

resorp tion 6

Fig. 4. Hyp othetical m od el for m odu lation of osteoclastogen esis 7 Fig. 5. Cocultu re system of osteoblastic cell an d bone m arrow 10 Fig. 6. Inhibition of osteoclast differentiation by 10 μM

bu m etanid e 16

Fig. 7. Ch anges in VitD3-in du ced TRAP p ositive cells in resp on se

to bum etanid e 17

Fig. 8. Effect of bum etanid e on cell proliferation in cocu lture 19 Fig. 9. Effect of bum etanid e on osteoblastic cell volu m e 20 Fig. 10. Effect of bu m etanid e on th e expression of RAN KL

m RN A in osteoblastic cell 22

Fig. 11. Effect of bu m etanid e on th e expression of M-CSF m RN A

in osteoblastic cell 23

Fig. 12. Effect of bu m etanid e on th e expression of OPG m RN A in

osteoblastic cell 24

Fig. 13. Relative exp ression of RAN KL and OPG m RN A in

osteoblastic cells 25

Fig. 14. Effect of bu m etanid e on th e activation of JN K 27 Fig. 15. Prop osed m od el for the alteration of osteoclastogen esis

(7)

A b stract

Th e Ef f ect of N a-K-Cl cotran sp o rter inh ib itio n o n o ste o clasto g en e s is in du ce d by 1α,25- D ihy dro xy v itam i n D3

Kim, Eu n-Yo u n g D ep artm e nt of D e ntistry , Th e G radu ate Sch o o l, Yo n se i U n iv ers ity

(Directed by Prof. Jon g-Gap Lee, D.D.S., Ph .D)

N a/ K/ Cl cotran sp orters (N KCC1) h ave been rep orted in nu m erou s, diverse tissu es, an d several cellu lar fu nction s. N KCC1 is involved in ion tran sp ort across th e secretory an d absorp tive ep ith elia, regulation of cell volum e, and p ossibly m odu lation of cell grow th and d evelopm ent . Fu rtherm ore, recent stu dies sh ow ed th at N KCC1 is p resent in osteoblasts. In this stu dy physiological role of N KCC1 in th e p rocess of osteoclastogen esis w as exploited in coculture system . 10 an d 100 μM bum etanid e, a sp ecific inhibitor of N KCC1, d ecreased the nu m ber of tartrate-resistant acid p hosph atase (TRAP) p ositive m u ltinu cleated cells. One m icrom olar bum etanid e did not show any effect on the 1α,25(OH)2D3-indu ced osteoclast differentiation . To clarify th e role

of bu m etanid e on the inhibition of osteoclastogen esis, m RN A exp ression of RAN KL and OPG w as analyzed by RT-PCR.

(8)

Exp osu re of osteoblastic cell to th e bu m etanid e treated m ediu m resu lted in th e reduction of RAN KL m RN A expression indu ced by 1α,25(OH)2D3, being d ep en d ent on the bu m etanid e

concentration . On the other h an d, the expression of OPG m RN A, a n ovel TN F receptor fam ily m em ber w as increased . Th ese resu lts im p ly th at 10 μM bum etanid e inhibits osteoclast differentiation via inhibition of th e RAN KL m RN A expression an d enh ancem ent of th e OPG m RN A expression in osteoblastic cell. H ow ever the exp ression of M-CSF m RN A w hich has been kn ow n to be a su rvival factor of osteoclasts w as n ot ch anged at tested concentration s (1, 10, 100 μM). Also, w e exam in ed th e expression an d p hosph orylation of c-Ju n N H2-term in al kin ase (JN K). Th e

p h osp horylation of JN K w as redu ced . Fu rth erm ore, bu m etanid e cau sed the d ecrease in the relative cell volum e u p to 36% of th e original volum e. Taken all togeth er, these resu lts su ggest th at N KCC1 in osteoblastic cell h as an im p ortant role in the osteoclast differentiation an d the inhibition of N KCC1 activity reduced th e osteoblastic cell volum e ch an ge, w hich in tu rn resu lts in th e inhibition of osteoclastogen esis, d ecreasing th e ph osph orylation of JN K.

______________________________________________________________ Key w ord s : N KCC1, bu m etanid e, osteoclast, RAN KL, OPG, JN K

(9)

I. Intro du ctio n

Bone rem od eling is regu lated by th e activity of bon e-form in g osteoblasts an d bone-resorbing osteoclasts. Both osteoblasts an d osteoclasts are regulated by a variety of h orm ones and local factors. Osteoblasts stem s from m esenchym al stem cells, w hereas osteoclasts arise by th e differentiation of osteoclasts p recu rsors of m on ocyte/ m acroph age lin eage and their fu nction is requ ired n ot only for the d evelopm ent of th e skeleton, but also for m in eral h om eostasis an d n orm al rem od elin g of bon e (Raise, L., 1998). An im balance betw een bone form ation an d bon e resorption cau ses su ch m etabolic bone diseases like osteop etrosis and osteop orosis (Au bin, J.E., 1998). Therefore, osteoblasts an d osteoclasts are kn ow n to h ave close relation ship s in th e process of rem od elin g an d the relation ship is also continu ou s (Fig. 1).

A cocu ltu re system of sp leen cells w ith osteoblastic cell or bone m arrow strom al cells h as been establish ed to produ ce osteoclasts (Takah ashi, N . 1999). In th e cocu lture system , osteoclast-like cells are form ed from spleen cell in th e p resence of su ch stim ulators of bon e resorption as interleu kin 6 (IL-6), IL-11, p arathyroid horm one (PTH), p rostaglandin E2 (PGE2), and

1α,25-dihydroxyvitam in D3 (Fu ller, K. et al., 1998). Th erefore,

m ature osteoclasts are produ ced by th e action of osteoblastic cells as a resu lts of m any stim ulators. Th e cell-to-cell interaction betw een osteoblasts/ strom al cells and osteoclast p rogenitors in th e

(10)

Fig . 1. General outlin e of bone rem od elin g. Bone rem od elin g is

regu lated by th e activity of bon e form in g osteoblasts and bone resorbing osteoclasts.

(11)

cocu ltu res has been foun d to be essential for the osteoclast form ation (Fig. 2).

In th e p rocess of d eveloping m atu re osteoclasts, certain kin d s of signal m olecu les w hich are exp ressed from the osteoblasts h ave m ajor role in osteoclastogen esis. Recently, m any researchers h ave tried to elu cid ate th e role of th ese sign al m olecu les in the p rocess of osteoclastogen esis. As a resu lt of stim u lation of osteotropic factors such as p arathyroid horm one, sign al m olecules seem to act on osteoblast/ strom al cells to in du ce osteoclastogen esis hyp oth esized th at a m em bran e-boun d, d esignated as "recep tor activator of N F-κB ligand (RAN KL)," is exp ressed on osteoblasts/ strom al cells in resp on se to osteotrop ic factors, an d th at it tran sdu ces, to osteoclast progenitors, a sign al essential for osteoclastogenesis, throu gh cell-to-cell interaction (Jim m i, E. et al., 1999). It is now kn ow n th at in ord er to differentiate m atu re osteoclasts from osteoclast p rogenitors, RAN KL w hich is p roduced from osteoblast an d m acrop hage-colony stim u latin g factor (M-CSF) are required also. M-CSF is know n to be th e survival factor of the osteoclastogen esis and is essential for the m acroph age to be tran sform ed into osteoclasts. H ow ever, osteoprotegerin (OPG), a d ecoy receptor of RAN KL is released from osteoblasts to inhibit th e osteoclastogen esis. OPG is a secreted m em ber of th e tu m or n ecrosis factor receptor (TN FR) fam ily, an d it inhibits osteoclastogen esis stim ulated by 1,25(OH)2D3, PTH, or IL-11

(12)

Fig . 2. Sch em atic diagram of osteoclast differentiation . Mature osteoclasts are form ed from m acroph age in th e presence of stim ulators as 1α,25(OH)2D3, PTH, PGE2 or IL-11.

(13)

(Takah ashi, N . et al., 1999). It is believed th at RAN KL, M-CSF an d OPG w hich express from osteoblasts p lay an essential roles in regu lation of osteoclastogen esis an d osteoblast is the m ajor factor in th e process of bone rem od elin g (Fig. 3).

Recently, it is rep orted th at N a/ K/ Cl cotransp orter (N KCC1) is p resent in osteoblasts. Sim ply, it m ay be p ossible th at N KCC1 is involved in th e bone rem od elin g process. So, ou r qu estion w as w hat th e role of N KCC1 is in osteoblast . Of cou rse, N KCC1 is n ow kn ow n to be p resent in num erou s, diverse tissu es from a w id e variety of anim al sp ecies, an d their fu nction s are ion tran sp ort across secretory and absorp tive ep ith elia, m ainten ance an d regulation of cell volu m e an d ion gradients, an d p ossibly m odu lation of cell grow th an d d evelop m ent (H aas, M., Forbu sh, B., 1998). It can be hyp othesized th at N KCCl m ay cencern osteoclastogen esis in resp ect to th e RAN KL, OPG, M-CSF m RN A exp ression . Becau se there are several facts to be assu m ed that N KCC1 is involved in osteoclastogenesis, th ose are 1) N KCCl cotran sp orter exists in osteoblasts, 2) N KCCl transp orts th e ion inw ard and ou tw ard across th e epith elia and play an im p ortant role in regu latin g th e cell size an d volu m e, and 3) N KCCl affects th e d evelopm ent an d grow th of th e cells (Ru ssell, J.M. et al., 2000). N everth eless there is no plau sible exp lanation for th e role of N KCC1 in osteoblast in concern w ith osteoclastogen esis (Fig. 4). Therefore, w e aim ed at revealin g th e role of N KCC1 in osteoblast, inhibiting th e N KCC1 activity u sing bu m etanid e w hich

(14)

Fig . 3. Mechanism s of osteoclastogenesis an d osteoclastic bone

resorption . Strom al cells/ osteoblasts express RAN KL an d M-CSF, w hich are up -regulated by osteoclastogenic m olecules su ch as PTH . PTH also blu nts expression of OPG. RAN KL an d M-CSF, interacting w ith th eir receptors on m onocyte-m acroph age cells, indu ce osteoclast differentiation, a p rocess inhibited by OPG. The differentiated osteoclast p olarizes on th e bon e surface. After form ation of th e ru ffled m em brane, the osteoclast acidifies an extracellular m icroenvironm ent by m ean s of p roton pu m p . Intracellu lar p H is m aintain ed by H CO3

-/ Cl

(15)

Fig . 4 . Hyp oth etical m od el for m odulation of osteoclastogen esis.

The above m od el for N KCC1 an d th e osteoclastogenesis w as inferred from th e evid ences th at N KCC1 is exist in osteoblast, an d p lay an im p ortant role in regu latin g th e cellu lar size an d volum e. Therefore, blockin g th e N KCC1 m ight be a p otent regu lator of both bon e form ation an d bone resorption .

(16)

is a sp ecific inhibitor of N KCC1. Un exp ectedly, w e fou n d that bum etanid e inhibited the osteoclastogenesis in cocu ltu re system , osteoblast/ strom al cell. This fact give u s th e new clu es th at N KCC1 is p robably resp on sible for th e d ow n-regu lation of osteoclastogen esis. Th erefore, in this stu dy w e app lied osteoblast/ strom al cell cocu ltu re system to evalu ate 1) Effect of bum etanid e on 1α,25(OH)2D3-in du ced osteoclast form ation, 2)

Decrease in cell volum e by bum etanid e, 3) Ch an ges in m RN A exp ression p rofile in RAN KL, OPG, an d M-CSF, 4) Effect of bum etanid e on t-JN K an d p-JN K.

(17)

II. M aterials an d M eth o ds

1. T RA P stain in g of o ste oclasts

osteoblastic cells w ere isolated from 1~2 d ay-old n ew born m ice. 30~50 calvariae w ere subjected to digestions u sing 10 m l enzym e solu tion containing 0.2% collagen ase (Wako, Jap an) an d 0.1% disp ase (GiBCO BRL, U .S.A) for 20 m inutes at 37。C in a sh akin g w ater bath . Th e su p ern atant w as discard ed and 10 m l enzym e solu tion w as ad d ed . After shakin g at 37。C for 20 m inu tes, th e su p ern atant w as then collected carefu lly an d tran sferred into a new tube. This digestion of calvariae w ith collagenase-disp ase w as rep eated three tim es. Collected su p ern atant (30 m l) w as app lied to centrifu ge at 1,500×g for 10 m inu tes to collect th e osteoblastic cells. Collected cells w ere resu sp end ed in α-MEM containin g 10% fetal calf serum (FCS) an d cultu red in 10 cm cu ltu re dish es at a concentration of 105 cells/ dish to confu lence. Cells w ere th en d etach ed from cultu re dish es by tryp sin-EDTA, su sp en d ed in α-MEM w ith 10% FCS an d u sed for cocu lture as osteoblastic cells (Lacey, D . et al., 1998). Fem orial and tibial bone m arrow cells w ere collected from 4-w eek-old m ice. Tibiae and fem ora w ere rem oved and dissected free of adhering tissu es. The bone en d s w ere rem oved and th e m arrow cavity w as flu sh ed by slow ly injectin g m edia in at one en d u sin g a 25-gau ge n eedle. Th e collected calvariae an d bon e m arrow cells w ere w ashed an d u sed for th e cocu ltu re (Fig. 5).

(18)

Fig . 5. Cocu ltu re system of osteoblastic cell an d bone m arrow .

Mou se calvarial cells (1 × 104

cells/ w ell) w ere cocu ltu red w ith bone m arrow cells (1 × 105 cells/ w ell) in α-MEM containing 10% fetal calf seru m in 48-w ell plates. All cu ltu res w ere m aintained at 37。C in a hu m idified atm osp h ere of 5% CO2 in

air . After treatm ent, the cells w ere su bjected to tartrate-resistant acid p hosph atase (TRAP, a m arker enzym e of osteoclasts) stainin g.

(19)

2. In du ctio n o f o ste o clasts in co cu ltu re

Mou se osteoblastic cells (1 × 104 cells/ w ell) w ere cocu ltu red w ith bon e m arrow cells (1 × 105 cells/ w ell) in α-MEM containin g 10% fetal calf seru m in 48-w ell plates (Cornin g Inc., Corning, N Y). Cu ltu re volum e w as m ad e u p to 400 μl p er w ell w ithα-MEM su pp lem ented w ith 10% fetal calf seru m (FCS), in th e p resence of 1 ,25(OH)2D3 (10 nM), w ith or w ith out

bum etanid e. All cu ltures w ere m aintained at 37。C in a hu m idified atm osp here of 5% CO2 in air . After treatm ent, the

cells w ere su bjected to tartrate-resistant acid ph osp hatase (TRAP, a m arker enzym e of osteoclasts) stainin g.

3. V iab ility te st (M TT as say s)

MTT (3-〔4,5-dim ethylthiazol-2-yl-〕-2,5-diph enyltetrazoliu m brom id e) test u ses th e p rinciple w hich tetrazoliu m salts be redu ced by reducin g enzym e (succin ate d ehydrogen ase) of m itoch on dria so th at th e toxicity of viable cells an d th e cellu lar differentiation s can be m easured . MTT w as dissolved in p h osp hate-bu ffered salin e (PBS) at 5 m g/ m l an d filtered to rem ove any in solu ble residu es (Slad ow ski, D. et al., 1993). Th e MTT solution w as ad d ed directly to the assay p lates at a rate of 10 μl to 100 μl cell cu ltu re m edium an d th en th e cells w ere incubated for a furth er 4 hou rs at 37。C. Th e p urp le form azan

(20)

crystals form ed w ere dissolved by th e ad dition of acidic isop rop an ol (100 μl 0.04 N H Cl inisop rop an ol) follow ed by th orou gh m ixin g. The plates w ere subsequ ently read on a sp ectroph otom eter at 570nm and 630 nm .

4 . M e asu re m e nt o f m e an ce ll v o lu m e

Poly-L-lysin e coated cover glass on w hich cells w ere cu ltu red w as m ou nted on a th erm al stage (37。C), w hich w as set on th e m ech anical stage of an inverted m icroscop e connected to a vid eo-im agin g system . The cells w ere p erfu sed w ith the 0.01% w / v-L-lysin e solu tion (McCarty, N .A ., O' N eil, R., 1991). Th e im ages of th e optical m icroscop e w ere continu ou sly record ed w ith a vid eo-im agin g system . To estim ate cell volum e, th e area of osteoclasts in th e vid eo im age (A ) w as m easu red . Th e averaged valu e of area m easu red in th e first 2 m in w as u sed as th e control (A0). Th e relative cell volu m e, V/ V0 = (A/ A0)

1 .5

w as estim ated, w h ere V is the volum e, A is th e area, an d subscript 0

is th e valu e of the control.

5. Rev erse tran scrip tase-p o ly m erase ch ain re actio n (RT- PCR)

cDN A can be p olim erized from m RN A throu gh reverse tran scription p rocedu re an d then am p lified by p olym erase ch ain reaction (PCR). RT-PCR is u sed n ot only in th e qu alitative but

(21)

also in the qu antitative an alysis of m RN A exp ressed in cells. RT-PCR exp erim ent con sists of RN A sep aration, cDN A p olym erization and PCR am p lification .

Trizole reagent, chloroform , isop ropyl and ethan ol w ere u sed to sep arate RN A from cells. Qu antitative an alysis of extracted tRN A for the p urity an alysis w as d on e. N ext step is to p rim e th e m RN A for cDN A synth esis. In the first, a 3' (antisen se) gen e-sp ecific p rim er is ann ealed to the m RN A and extend ed w ith reverse transcriptase. This generates a cDN A tem p late for th e 5' (sen se) p rim er . Wh en p rim in g cDN A w ith a gen e-sp ecific prim er, a nu m ber of exp erim ental p aram eters m ay n eed to be op tim ized, inclu din g prim er concentration an d ann ealin g tem p eratu re. Five to ten m icroliter dilu te cDN A is u sed for each 50 μl PCR reaction . In ord er to com p are the resu lts easily, the d ata w ere ru n throu gh d en stom ery. In th at w ay, th e d en sity of resu lts of RT-PCR can be easily distingu ish ed .

6. W e stern b lo t

Th e p rotein extracts from osteoblastic cells w ere prep ared . The bon e m arrow cell w ere resu sp end ed in th e p rew arm ed cracking bu ffer (80 m M Urea, 0.05% SDS, 0.4 % 10 m M Tris-H Cl, 1 μM EDTA, 40 μg/ m l Brom oph en ol blu e, 10 μl/ m l β -Mercap toeth anol, 70μl/ m l protease inhibitor solu tion, 50 μι 100× PMSF, 60。C), and tran sferred to a tu be containing glass

(22)

bead s (425-600 μm ; Sigm as #G-8772) to disrup t th e bon e m arrow cells. Th e cell resu sp ension s w ith glass bead s w ere lysed by h eatin g at 70。C for 10 m in follow ed by vigorou s vortexin g for 1 m in . Th e lysates as p rotein extracts w ere sep arated from u nbroken cells by centrifu gation at 14,000 rpm for 5 m in . For a w estern blot analysis, p rotein extracts w ere resolved by SDS-p olyacrylam id e gel electrop horesis (SDS-PAGE) an d transferred to a p olyvinylid ene diflu orid e m em brane (PVDF, Bio-Rad). Th e blot w as incu bated in a blocking solu tion containin g 4 % bovin e seru m album in (BSA) an d 10% norm al goat seru m (N GS) in p hosph ate buffered salin e plu s 0.15% Tw een-20 (PBS-T) at RT for 2 hrs. Th e blot w as th en probed w ith the p rim ary antibody (m on oclon al antibody of p-JN K or t-JN K, Clontech) for overnight at 4。C, follow ed by d etection w ith a h orseradish p eroxid ase-linked goat anti-m ou se IgG antibody (Jackson Im m u n oResearch Laboratories, Inc) an d enhanced chem ilum in escence (ECL) system (Am ersh am Ph arm acia Biotech).

7. D ata an aly sis

Com p arison betw een group s w as p erform ed by th e Stu d ent' s

t-test . Significant differences from each oth er w ere d eterm ined at P < 0.05.

(23)

III. Re su lts

1. Eff ect of b u m etan i de o n 1α ,25 (O H )2D3-in du ce d o steo clast

f o rm atio n

To investigate th e effect on th e differentiation of osteoclast, 1, 10, and 100 μM bu m etanid e w ere ad d ed to th e osteoblastic cell/ bone m arrow cocu ltu re w ith 1α,25(OH)2D3. 1α,25(OH)2D3

w as u sed to indu ce osteoclast differentiation . Ten nan om olar 1 α,25(OH)2D3 w as ad d ed to th e cocu ltu re, an d 42 TRAP p ositive

m u ltinucleated cells w ere form ed w hereas n o TRAP p ositive cell w as d etected w h en cocu ltu re w as incubated in m edia only . The ad dition of 10 or 100 μM bu m etanid e d ecreased th e nu m ber of TRAP p ositive m u ltinu cleated cells u p to 15 or 8 cells p er w ell, resp ectively . H ow ever, 1 μM bu m etanid e did not ch an ge 1 α,25(OH)2D3-in duced osteoclast differentiation (Figs. 6, 7). Th e

effect of bu m etanid e on differentiation of osteoclasts sh ow ed in d ose d ep en d ent m ann er .

2. Ev alu atio n o f ch an g e s in ce ll v iab ility by b u m etan i de

To d em on strate the effect of bu m etanid e on th e cell p roliferation, MTT assay w as p erform ed accordin g to the m ethod of Ferrari et al. 1989. One, ten, and a hu ndred m icrom olar bum etanid e w as ad d ed to th e cocu ltu re an d incu bated for 3 d ays

(24)

10 nM 1α,25(OH)2D3 10 nM 1α,25(OH)2D3 m edia only

+ 10 μM bu m etanid e

Fig . 6. Inhibition of osteoclast differentiation by 10 μM bum etanid e. Ten m icrom olar bu m etanid e w as ad d ed to osteoblastic cell/ bon e m arrow coculture to block N KCC1. Cells w ere treated w ith bu m etanid e an d / or 1α,25(OH)2D3. After

incubation for 4 d ays, cells w ere stained w ith TRAP staining m ethod . Pan els A, 10 nM 1α,25(OH)2D3; B, 10 nM 1α,25(OH)2D3

(25)

Fig . 7. Ch anges in VitD3-in duced TRAP p ositive cells in resp on se

to bu m etanid e (Bum ). Bum etanid e (1, 10, 100 μM) w as ad d ed to th e osteoblastic cell/ bon e m arrow cocu ltu re in th e presence of 10 nM 1α,25(OH)2D3. After incubation for 4 d ays, cells w ere stained

by TRAP stainin g m eth od . TRAP p ositive m ultinu cleated cells th at h ave m ore than 3 nu cleu s w ere counted .

(26)

(Fig. 8). Th e inhibition s of cellu lar p roliferation by bu m etanid e w ere less than 10% of control w hich w as incu bated w ith m ediu m only . This im p lies th at bu m etanid e did n ot sh ow toxic effect w hen ad d ed up to 100 μM to th e cocu ltu re. Th erefore, th e resu lts m ean th at th e effect of bu m etanid e on differentiation w as cau sed by controllin g N KCC1, n ot by its toxic effects on the cell.

3. D ecre ase o f cel l v o lu m e by b u m etan i de

Ten m icrom olar bum etanid e redu ced th e relative cell volu m e to th e half level (Fig. 9). Du rin g th e first 24 m inutes, n orm al m edia w as p erfu sed throu gh th e cover glass for stabilization of osteoclasts, and th en du rin g th e n ext 20 m inu tes, 10 μM bum etanid e w as p erfu sed . Th e relative cell volu m e w as reduced from on e to 0.6. The original volu m e of osteoclasts w as rep resented as V0 an d testing volu m e, as V. V/ V0 w as less th an

1, it w as regard ed as th e redu ction of cell volum e. As a result, th e relative cell volum e w as redu ced from 1 to abou t 0.6 level, su ggestin g that th e bu m etanid e reduced the relative volu m e of th e osteoclasts. Du rin g th e last 20 m inutes norm al m edia w as p erfu sed again for th e recovery of cell volum e. Un d er th e circu m stance of cell p erfu sed w ith n orm al m edia, cell volu m e w as not com pletely recovered to the origin al volu m e. H ow ever it is obscure w h at hap p en s in the cell volu m e regu lation before an d after bu m etanid e treatm ent .

(27)

Fig . 8. Effect of bu m etanid e on cell p roliferation in coculture.

Bu m etanid e (1, 10, 100 μM) w as ad d ed to th e osteoblastic cell/ bone m arrow cocu ltu re in the p resence of 10 nM 1α,25(OH)2D3. After incu bation for ad dition al 4 d ays, MTT assays

w ere carried out accordin g to th e m eth od d escribed in m aterials an d m eth od s.

(28)

Fig . 9. Effect of bu m etanid e on osteoblastic cell volu m e. Ten m icrom olar bu m etanid e w as treated to osteoblastic cell. In th e p resence of bu m etanid e, cell volu m e w as d ecreased su ggestin g th at th e blockad e of N KCC1 activity cau sed th e d ecrease in osteoblastic cell volu m e. After exp osin g th e osteoblastic cell to the n orm al m edia for 30 m in, 10 μM bu m etanid e w as treated to osteoblastic cell.

(29)

4 . Ch an g e s i n m RN A exp re ss io n p ro f ile in RA N KL, O PG, an d M -CSF

Osteoclastogenesis is kn ow n to be m ediated an d m odu lated by th e secretion of RAN KL, OPG, an d M-CSF by osteoblastic cells (Figs. 10, 11, 12). Therefore, bu m etanid e w as ad d ed to th e osteoblastic cell cu lture an d incubated for 3 d ays. Total RN A w as isolated an d th e exp ression s of RAN KL, OPG, and M-CSF w ere m onitored by RT-PCR. As th e bu m etanid e concentration ad d ed to th e osteoblastic cell cu ltu re increased, the expression of RAN KL m RN A indu ced by 1α,25(OH)2D3 w as d ow n-regu lated . Th e

d ecrease of RAN KL expression w as d ep en d ent on the increase in bum etanid e concentration . Moreover, the expression of OPG m RN A, a novel TN F receptor fam ily m em ber w as increased . These findings in dicate th at bu m etanid e inhibits osteoclast differentiation via inhibiting th e exp ression of RAN KL m RN A an d enh ancin g th e exp ression of OPG m RN A. H ow ever th e expression of M-CSF, a su rvival factor of osteoclasts, w as n ot chan ged regardless of bu m etanid e concentration . β-actin w as u sed as the control of th e m RN A exp ression in th e osteoblastic cells.

5. Ratio o f RA N KL/ O PG m RN A in re sp o n se to b u m etan i de

Ratio of RAN KL/ OPG m RN A w as illu strated in Figu re 13. As th e bu m etanid e concentration w as increased, th e ratio of

(30)

A B Vit D3 + + + + Vit D3 + + + + (10 n M ) (10 n M ) Bu m - 1 10 100 Bu m - 1 10 100 (μM ) (μM ) Bu m - 1 10 100 Bu m - 1 10 100 (μM ) (μM )

Fig . 10. Effect of bu m etanid e on th e expression of RAN KL m RN A in osteoblastic cell. Panels A, RAN KL; B, β-actin . Bu m etanid e (1, 10, 100 μM) w ere ad d ed to the osteoblastic cell in the presence of 10 nM 1α,25(OH)2D3. After incubation for 2

d ays, total RN A w as isolated and m onitored RAN KL m RN A u sin g RT-PCR.

(31)

A B Vit D3 + + + + Vit D3 + + + + (10 n M ) (10 n M ) Bu m - 1 10 100 Bu m - 1 10 100 (μM ) (μM ) Bu m - 1 10 100 Bu m - 1 10 100 (μM ) (μM )

Fig . 11. Effect of bu m etanid e on th e expression of M-CSF m RN A

in osteoblastic cell. Pan els A, M-CSF; B, β-actin . Bu m etanid e (1, 10, 100 μM) w ere ad d ed to th e osteoblastic cell in th e p resence of 10 nM 1α,25(OH)2D3. After incu bation for 2 d ays, total RN A

(32)

A B Vit D3 + + + + Vit D3 + + + + (10 n M ) (10 n M ) Bu m - 1 10 100 Bu m - 1 10 100 (μM ) (μM ) Bu m - 1 10 100 Bu m - 1 10 100 (μM ) (μM )

Fig . 12. Effect of bu m etanid e on th e exp ression of OPG m RN A in

osteoblastic cell. Panels A, OPG; B, β-actin . Bu m etanid e (1, 10, 100 μM) w ere ad d ed to th e osteoblastic cell in th e presence of 10 nM 1α,25(OH)2D3. After incubation for 2 d ays, total RN A w as

(33)

Fig . 13. Relative exp ression of RAN KL and OPG m RN A in osteoblastic cells. Agarose gel electroph oresis w as carried ou t and d en sities of th e ban d s w ere analyzed w ith d ensitom eter . Relative ratio of th e RAN KL and OPG m RN A w as calcu lated based on th e d ensity of each ban d .

(34)

RAN KL/ OPG m RN A w as d ecreased . This m eans that bu m etanid e cau sed th e ch anges in m RN A exp ression (RAN KL an d OPG) of signal m olecu les w hich are closely linked to th e osteoclastogen esis. Con sequ ently, bum etanid e inhibited osteoclastogen esis, leadin g to the alteration of RAN KL, OPG m RN A expression . Also su ch ch anges in expression levels of signal m olecules w ere d ep en d ent on bu m etanid e concentration .

6. Th e eff ect o f b u m etan i de o n t-JN K an d p-JN K

c-Ju n N H2-term in al kinase (JN K), on e of th e m itogen activated

p rotein kin ase (MAPK) fam ily, has been kn ow n to exhibit activation by hyp er osm olarity an d cellu lar volu m e chan ge (Janet

et. al., 1999). To investigate th e effect of bu m etanid e on the

exp ression an d ph osp h orylation of JN K (p -JN K), bu m etanid e w as ad d ed to the osteoblastic cells an d incubated for 3 d ays.

Bu m etanid e did n ot h ave any effect on the exp ression of JN K. Total am ou nt of JN K (t-JN K) w as rem ained con stant in th e ran ge of bu m etanid e concentration to be u sed . H ow ever, bu m etanid e au gm ented the ph osp horylation of JN K in the d ose d ep en d ent m ann er, in dicatin g that bum etanid e activated th e JN K in th e p rocess of osteoclastogenesis. (Fig. 14).

(35)

Fig . 14 . Effect of bu m etanid e on th e activation of JN K. Osteoblastic cells w ere exp osed to 10 μM bum etanid e for indicated tim e. Anti-p h osp ho-JN K or anti-JN K antibody w as u sed as a p rim ary antibody for th e Western blot.

(36)

IV . D iscu ssio n

In th e process of d evelop in g m ature osteoclasts, th e fu nction s of osteoblasts an d osteoclasts are intim ately related . Du rin g skeletal d evelop m ent an d bon e rem od elin g process, osteoblasts synth esize an d secrete sign al m olecu les th at control osteoclast differentiation (Ducy et al., 2000) an d cell-to-cell interaction s are n ecessary during th e w h ole procedure. This is a direct and crucial interaction th at has been w ell established in vivo (Bu rgess

et al., 1999). Thu s osteoblasts p lay a cru cial role in differentiatin g

th e m acroph age/ m onocyte to m ature osteoclasts. H ow ever, it has been only 4-5 year since clear m ech anism of m aturation of m acrop hages into osteoclasts has been id entified . There are tw o m olecules th at are essential and su fficient to prom ote osteoclastogen esis: M-CSF an d RAN KL (Teitelbau m , S., 2000). M-CSF bin d s to its recep tor, c-fm s, on m acrop h age to provid e signals requ ired for their survival and proliferation . OPG is kn ow n to be a solu ble "d ecoy " receptor th at com p etes w ith RAN K for RAN KL. It h as been d escribed th at th e balance betw een th e expression of the stim ulator of osteoclastogenesis, RAN KL, an d of th e inhibitor, OPG, is the cru cial factor th at governs the am ou nt of bone resorbed .

In th e conju ction of m achin eries in osteoblast, it h as been rep orted th at N a/ K/ Cl cotran sp orter (N KCC1) is present in osteoblasts recently . We still d o n ot kn ow the role of N KCC1 in

(37)

osteoblast . N evertheless, it m ay be p ossible to hyp oth esize that th e N KCC1 is involved in th e bon e rem od eling p rocess, ju d gin g from th e facts that 1) N KCC1 cotran sp orter exists in osteoblasts, 2) N KCC1 tran sp orts the ion inw ard an d outw ard across th e ep ith elia and p lay an im p ortant role in regu latin g th e cell size an d volu m e, and 3) N KCC1 affects the d evelopm ent an d grow th of the cells (Ru ssell, J.M. et al., 2000). H ow ever, th ere is n o p lau sible exp lan ation for th e role of N KCC1 in osteoblast in concern w ith osteoclastogen esis (Fig. 4). Therefore, w e aim ed at revealing th e role of N KCC1 in osteoblast, inhibitin g th e N KCC1 activity u sing bu m etanid e.

Unexp ectedly, w e fou nd that bu m etanid e inhibited th e osteoclastogen esis in cocu ltu re system , osteoblast/ strom al cell. This fact give u s th e new clu es th at N KCC1 is p robably resp on sible for the d ow n-regu lation of osteoclastogenesis. Therefore, in this stu dy w e app lied osteoblast/ strom al cell cocu ltu re system to evalu ate 1) effect of bum etanid e on 1α,25(OH)2D3-indu ced osteoclast form ation, 2) d ecrease in cell

volum e by bum etanid e, 3) chan ges in m RN A exp ression p rofile in RAN KL, OPG, an d M-CSF, 4) Effect of bu m etanid e on t-JN K an d p-JN K.

As sh ow n in Fig 6 an d 7, w h en 10 an d 100 μM bum etanid e w as ap plied to the cocu ltu re system , th e num ber of TRAP p ositive cells w ere m arkedly reduced in a d ose d ep en d ent m ann er com p are to th e control group . H ow ever, 1 μM

(38)

bum etanid e did not ch ange 1α,25(OH)2D3-in duced osteoclast

differentiation . Moreover, cell viability test sh ow ed th at bum etanid e did n ot sh ow toxic effect w hen ad d ed u p to 100 μ M to th e cocu ltu re (Fig. 8). It is clear th at bu m etanid e has som e effects on form ation of TRAP p ositive cell w ith no toxic effects. So, cell volu m e w as m easu red to d eterm ine w heth er bu m etanid e h as any effect on cell volu m e since N KCC1 plays a m ajor role in controllin g th e volu m e of cells. As sh ow n in Fig. 9, 10 μM of bum etanid e redu ced th e relative cell volum e to th e half level.

Osteoclastic bon e resorp tion con sists of m u ltip le step s such as th e differentiation of osteoclast p recu rsors into m on onuclear p refu sion osteoclasts (pOC), the fu sion of p OCs to form m u ltinucleated osteoclasts, an d the activation of osteoclasts to resorb bone. Several factors related in th e differentiation, m aturation and activation of osteoclasts h ave been rep orted, w hich inclu d e RAN KL, OPG and M-CSF. Since osteoclast differentiation h as been rep orted to be m ediated by th ese factors, m RN A exp ression s w ere investigated . Th e exp ression of RAN KL m RN A in duced by 1α,25(OH)2D3 w as d ow n-regulated w ith the

increase of bu m etanid e concentration . Moreover, the expression of OPG m RN A, a n ovel TN F receptor fam ily m em ber w as increased . These findings in dicate th at bu m etanid e inhibits osteoclast differentiation via inhibiting th e exp ression of RAN KL m RN A an d enh ancin g the expression of OPG m RN A.

(39)

inhibits cellu lar u ptake of N a+

, K+

, and Cl

-ion s, w hich resu lts in th e cellular volum e ch an ge. O'Donnell et. al. d em onstrated th at p h osp hatase inhibition results in th e elevation of en d othelial cell volum e, thu s su ggestin g th at restin g en d oth elial cell volum e is also d eterm in ed by th e integrated activities of kin ases an d p h osp hatases. The stim ulation of co-tran sp orter by cell shrinkage w as n ot enhanced by ph osp h atase inhibition, in dicating th at the effects of shrinkage an d p h osp hatase inhibition w ere n ot ad ditive, su ggestin g th at shrinkage inhibits th e p hosph atase. In this stu dy, bum etanid e did not h ave any effect on the expression of JN K. Total am ou nt of JN K (t-JN K) w as rem ained con stant in th e ran ge of bu m etanid e concentration to be u sed bu t th e activated form of JN K, ph osp horylated JN K (p -JN K), w as d ecreased accordin g to th e increase of bu m etanid e concentration . JN K is on e of the m itogen activated p rotein kinase (MARK) fam ily . It h as been kn ow n to exhibit activation by hyp er-osm olarity and cellu lar volum e ch an ge. Th e d ecrease of p -JN K in dicates th at th e cell volum e ch an ge of osteoclasts are du e to activation of JN K in osteoclasts.

From th ese resu lts, it m ight be inferred that cellu lar shrinkage of osteoblastic cell in du ced by th e ad dition of bu m etanid e, w hich resu lts the inhibition of N KCC1 activity, is an im p ortant m odu lator in regulating osteoclastogen esis.

(40)

Fig . 15. Prop osed m od el for th e alteration of osteoclastogen esis

via N KCC1 m odu lation . Th e osm otic shock on osteoblastic cell resu lts in m odu lation of N KCC1. It is p roved that th e shirinkage in osteoblasts resu lt in d ecrease of osteoclast activity.

(41)

V . Co n clu sio n

In th e process of osteoclastogenesis, th ere are several factors th at inhibit or stim u late th e w h ole process. The m atu re osteoclasts are produ ced in th e presence of osteoblasts and osteoclast p recu rsor cell togeth er w ith cell-to-cell interaction . Several sign al m olecu les, kn ow n as RAN KL, OPG, an d M-CSF w hich exp ressed from osteoblasts h ave im p ortant fu nctions in th e process of osteoclastogen esis.

Th ere are several w ays to control osteoblasts in th e p rocess of osteoclastogen esis but th e role of N a-K-Cl cotran sp orter of osteoblasts related to osteoclast differenciation h as not been clarified . Since it is rep orted that th e presence of N KCC1 in th e m em brane of osteoblasts an d the fact th at it controls the ion tran sp orts an d cell volum e, p ossibilities of N KCC1 en gaged in th e p rocess of osteoclastogenesis m ight be p resu m ed .

Th erefore, bu m etanid e, a sp ecific inhibitor of N KCC1, w as u sed in th e cocu ltu re system of osteoblasts and osteoclasts to evalu ate th e effect of N KCC1 on osteoclastogen esis,. When 10 an d 100 μM of bu m etanid e w as u sed, inhibition of osteoclasts w as n oted . Th e resu lts w ere run throu gh MTT test to evalu ate th e toxic effect of bu m etanid e on osteoclasts an d proved th at bum etanid e concentration low er th an 100 μM d oes n ot effect the cell p roliferation .

(42)

resu lted from th e effect of bum etanid e w ere m easu red . The resu lts show ed th at th e relative cell volum e w as redu ced to th e h alf level. To confirm the cell volum e ch an ges of osteoclasts, th e m odu lator for cell volu m e ch an ge, the JN K of osteoclasts w as an alyzed . Th e resu lt sh ow ed th at th e activated form of JN K w as increased accordin g to increase of bum etanid e concentration . Moreover, the m RN A exp ression of the sign al m olecu les, kn ow n as RAN KL, OPG, an d M-CSF w ere m easu red . The results sh ow ed that the m RN A expression of RAN KL an d M-CSF w ere d ecreased and th at of OPG w as increased .

Th ese resu lts su ggest th at w h en bu m etanid e, a sp ecific inhibitor of N KCC1, is u sed, th e p rocess of osteoclastogen esis is inhibited by controlling the m RN A expressions of sign al m olecules su ch as RAN KL an d OPG in osteoblasts an d also by redu cing the relative cellu lar volu m e of osteoclasts.

(43)

V I. Ref ere n ce s

1. Al-H abori, M . Macrom olecu lar crow din g an d its role as intracellular sign allin g of cell volu m e regu lation . Inter J of Biochem & Cell Bio 33: 844-864, 2001

2. Akatsu , T., Takahashi, N ., Ud agaw a, N ., Sato, K., N agta, N ., Moseley, J.,Martin, J., Su d a, T. Parathyroid h orm on e-related protein is a p otentstim u lator of osteoclast-like m ultinucleated cell form ation to th e sam e extent as PTH in m ou se m arrow cu ltu res. En d ocrinology 125: 20-27, 1989

3. Au bin, J.E. Bon e stem cells. J of Cell Bioch em su pp lem ents 30: 73-82, 1998

4. Bu rgess, T., Kau fm an, S., Ring, B., Van, G., Capp arelli, C., Kelley, M., H su , H ., Boyle, W ., Du nstan, C., Hu , S., Lacey, D . Th e ligand for osteoprotegerin (OPGL) directly activates m atu re osteoclasts. J of Cell Bio 145: 527-538, 1999

5. Du cy, P ., Shinke, T., Karsenty, G. Th e osteoblast : a sop histicated fibroblast u nd er central su rveillance. Science 289: 1501-1507, 2000

6. Ferrari, M., Fornasiero, M.C., Isetta, A .M. MTT colorim etric assay for testing m acroph age cytotoxic activity in vitro. J of Im m u n Method s 131: 165-172, 1990

7. Fu ller, K., Won g, B., Fox, S., Ch oi, Y., Cham bers, T. TRAN CE is n ecessary and su fficient for osteoblast-m ediated activation of bon e resorption in osteoclasts. J Biol Ch em 272: 25190-25194,

(44)

1998

8. H aas, M., Forbu sh, B. The N a-K-Cl cotran sp orters. J of Bioen erg & Biom em b 30: 161-172, 1998

9. Jim i, E., Akiyam a, S., Tsu rukai, T., Okah ashi, N ., Kobayashi, K., Ud agaw a, N ., N ishihara, T., Takah ashi, N ., Su d a, T. Osteoclast differentiation factor acts as a m ultifu nctional regu lator in m u rin e osteoclast differentiation an d fu nction . J of Im m u n 163: 434-442, 1999

10. Krieger, N .S. Parathyroid h orm on e, prostaglan din E2, and

1,25-dihydroxyvitam in D3 d ecrease th e level of N a +

-Ca2 +

exchan ge protein in osteoblastic cells. Calcif Tissu e Int 60: 473-478, 1997

11. Kon g, Y.Y., Yoshid a, H ., Sarosi, I., Tan, H ., Tim m , E., Capp arell, C. OPGL is a key regu lator of osteoclastogen esis, lym p hocyte d evelopm ent an d lym ph-n od e organogen esis. N atu re 397: 315-323, 1999

12. Lacey, D ., Tim m s, E., Tan, H ., Kelley, M., Dun stan, C., Burgess, T., Elliott, R., Colom bero, A ., Elliott, G., Scu lly, S., H su , H ., Su llivban, J., H aw kin s, N ., Davy, E., Cap p arelli, C., Eli, A., Dau fm an, S., Sarosi, I., Sh alh oub, V., Senal, G., Gu o, J., Delan ey, J. Osteop rotegerin lin gan d is a cytokine th at regu lates osteoclast differentiation an d activation . cell 93: 165-176, 1998

13. Maru n aka, Y., N iisato, N ., O' Brod ovich, H ., Post, M ., Tansw ell, A .K. Roles of Ca2 +

(45)

in su lin action on cell volum e via N a+

an d K+

channels and N a+/ K+/ 2Cl- cotransp orter in fetal rat alveolar typ e II pn eu m ocyte. J Mem b Biol 168: 91-101, 1999

14. McCarty, N .A ., O' N eil, R. Calcium -d ep en d ent control of volum e regu lation in renal p roxim al tu bu le cells: Roles of dihydrop yridine-sen sitive an d insen sitive Ca2 + entry p athw ays. J Mem b Biol 123: 161-170, 1991

15. N akagaw a, N ., Yasu d a, H ., Yano, K., Shin-ichi, M ., Kobayashi, N ., Fujim oto, H ., Yham agu chi, K., Shim a, N ., Morinaga, T., Higashio, K.Basic fibroblast grow th factor inhibits osteoclast form ation in du ced by 1α,25-dihydroxyvitam in D3 throu gh

su pp ressin g th e produ ction of osteoclast diffentiation factor . Bioch em & Biop hys Res Com m 265: 45-50, 1999

16. Raise, L. Physiology and p athop hysiology of bon e rem od eling. Bone 23: 339-409, 1998

17. Rod an, A.R. Control of bone form ation an d resorp tion : Biological and clinical p ersp ective. J of Cell Bioch em su pp lem ents 30: 55-61, 1998

18. Ru ssell, J.M. Sodium -p otassium -chlorid e cotran sp ort . Physiol Review s. 80: 211-227, 2000

19. Sim on et, W .S., Lacey, D .L., Dun stan, C.R., Kelly, M ., Ch an g, M.S., N gu yen, H ., Wood en, S., Benn ett, L. Boon e, T., Shim am oto, G., DeRose, M . Osteoprotegerin : a n ovel secreted protein involved in th e regulation of bon e d en sity. Cell 89: 309-319, 1997

(46)

20. Slad ow ski, D ., Steer, S.J., Clothier, R.H ., Ball, M. An im p roved MTT assay . J of Im m u n Meth od s, 157: 203-207, 1993

21. Su d a, T., Ud agaw a, N ., N akam ura, I., Miyau ra, C., Takah ashi, N . Modulation of osteoclast differentiation by local factors. Bon e 17: 87s-91s, 1995

22. Takahashi, N ., Ud agaw a, N ., Su d a, T. A new m em ber of

tum or n ecrosis factor ligan d fam ily,

ODF/ OPGL/ TRAN CE/ RAN KL, regu lates osteoclast differentiation an d fu nction . Biochem & Biop hy Res Com m 256: 449-455, 1999

23. Tsu d a, E., Goto, M., Mochizuki, S., Yano, K., Kobayashi, F., Morinaga, T., Higashio, K. Isolation of novel cytokin e from hum an fibroblasts that sp ecifically inhibits osteoclastogenesis. Biochem & Biop hy Res Com m 234: 137-142, 1997

24. Tsu kii, K., Shim a, N ., Mochizu ki, S., Yam agu chi, K., Kin osaki, M., Yan o, K., Shibata, O ., Ud agaw a, N ., Yasu d a, H . Osteoclast differentiation factor m ediates an essential signal for bon e resorption in du ced by 1α,25-dihydroxyvitam in D3,

prostaglan din E2, or p arathyroid h orm one in th e

m icroenvironm ent of bon e. Bioch em & Biophy Res Com m 146: 337-341, 1998

25. Yasu d a, E., Shim a, N ., N akagaw a, N ., Yam agu chi, K., Kn osaki, M. Osteoclast differentiation factor is a ligand for osteop rotegerin / osteoclastogenesis-inhibitory factor an d is id entical to TRAN CE/ RAN KL. Proc N atl Acad Sci USA

(47)

95:3597-3602, 1998

26. Whisen ant, N ., Zh ang, B., Khad em azad, M., Loessberg, P., Mu allem , S. Regu lation of N a-K-2Cl cotran sp ort in osteoblasts. Am . J of Physiol 257: C433-440, 1991

(48)

국 문 요 약

N a- K-Cl cotran sp orter의 비 활 성 화 가 비 타 민 D3에 의 해

유 도 되 는 파 골 세 포 의 분 화 에 미 치 는 영 향

연세대학교 대학원 치의학과 김은영

N a-K-Cl cotransp orter (N KCC1)은 다양한 세포와 조직에 분포 하며 N KCC1의 기능은 세포 내외로 이온을 전달하고 세포의 부피 와 이온의 균형을 이루고 또한 세포의 성장과 발육에 영향을 준다. 이 연구에서는 비타민 D3에 의해 유도되는 파골세포에 N KCC1이 미치는 영향을 검토하였다. N KCC1의 선택적 억제제인 bum etanid e 를 10, 100 μM 첨가하였을 경우 TRAP 양성 세포의 수는 각 w ell 당 평균 42에서 15로 감소하였다. Bu m etanid e 1 μM를 첨가하였 을 경우 비타민 D3에 의해 유도되는 파골세포의 분화에는 영향을 주지 못하였다. 결과적으로 N KCC1의 억제로 인하여 파골세포의 분 화가 억제된 것을 알 수 있다. Bu m etanid e의 억제 효과를 확인하기 위하여 RT-PCR을 통한 RAN KL, OPG 그리고 M-CSF의 m RNA의 발현을 측정한 결과 조골세포에 대한 bu m etanid e의 농도가 높아질 수록 RAN KL과 M-CSF의 발현 정도는 감소하였고 RAN KL의 d ecoy receptor인 OPG의 발현 정도는 증가하였다. 이러한 결과로 부터 조

골세포에 bu m etanid e를 첨가하는 경우 조골세포내의 RAN KL,

OPG, M-CSF의 발현을 조절하여 파골세포로의 분화가 억제됨을 확 인하였다. 또한 bum etanid e를 첨가하여 N KCC1을 억제할 경우 원

(49)

래 파골세포의 부피에 비하여 상대적인 파골세포의 부피가 36% 정 도까지 감소하였으며, 이러한 변화의 기전을 밝히기 위하여 세포의 용적 변화의 매개 물질인 JN K를 검사한 결과 약물의 농도가 증가할 수록 활성화된 JN K가 증가하는 것을 확인할 수 있었다.

결과적으로 N KCC1은 파골세포의 분화에 중요한 역할을 가지고 있으며, bum etanid e에 의하여 억제된 N KCC1의 활성은 조골세포의 부피의 변화를 초래하고, 파골세포 분화 조절 인자인 RAN KL, M-CSF의 감소 및 OPG의 증가를 유발한다.

_____________________________________________________________________

핵심되는 말 : N KCC1, bu m etanid e, 파골 세포, RAN KL, OPG, JN K

수치

Fig . 1. General outlin e of bone rem od elin g. Bone rem od elin g is
Fig . 2. Sch em atic diagram of osteoclast differentiation . Mature osteoclasts are form ed from m acroph age in th e presence of stim ulators as 1α,25(OH) 2 D 3 , PTH, PGE 2 or IL-11.
Fig . 3. Mechanism s of osteoclastogenesis an d osteoclastic bone
Fig . 4 . Hyp oth etical m od el for m odulation of osteoclastogen esis.
+7

참조

관련 문서

P.( Kidney

The foreign policy triumphs with China and the Soviet Union and the administration’s announcement that peace “is at hand” in Vietnam helped reelect Nixon as

Research income from industry scaled against the number of academic staff to give an indication of how successful an institution is at acquiring income from industry

Therefore, in discussing the motion of an electron of known energy or momentum about a nucleus, it is necessary to speak only in terms of the probability of finding that

Since it is found that the self-regulation counseling program has an positive effect on the reduction of addiction in psychological factor, behavior․social

And that result interpreted that water hydrolysis of adhesive resin cause porphyrin value loss, so that adhesive resin was degradated.. Thus, by using the

Objective :::: The neovascularization is an essential a factor for the growth of solid organ cancer, and especially vascular endothelial growth factor (VEGF)

(d) displays the CA curves of the Ni2P2O7 electrocatalyst at an applied potential of 1.47 V (vs. • The steady-state CA curve acquired by the Ni 2 P 2 O 7 microsheets