• 검색 결과가 없습니다.

[18] Dejean, T., Valentini, A., Miquel, C., Taberlet, P., Bellemain, E., & Miaud, C. (2012). Improved detection of an alien invasive species through environmental DNA barcoding: The example of the American bullfrog Litho-bates catesbeianus. Journal of Applied Ecology, 49(4), 953–959.

https://doi.org/10.1111/j.1365-2664.2012.02171.x

[19] Lodge, D. M., Turner, C. R., Jerde, C. L., Barnes, M. A., Chadderton, L., Egan, S. P., Feder, J. L., Mahon, A. R.,

& Pfrender, M. E. (2012). Conservation in a cup of water: Estimating biodiversity and population abun-dance from environmental DNA. Molecular Ecology, 21(11), 2555–2558. https://doi.org/10.1111/j.1365-294X.2012.05600.x

[20] Bylemans, J., Furlan, E. M., Hardy, C. M., McGuffie, P., Lintermans, M., & Gleeson, D. M. (2017). An environ-mental DNA-based method for monitoring spawning activity: a case study, using the endangered Mac-quarie perch (Macquaria australasica). Methods in Ecology and Evolution, 8(5), 646–655.

https://doi.org/10.1111/2041-210X.12709

[21] Thomsen, P. F., Møller, P. R., Sigsgaard, E. E., Knudsen, S. W., Jørgensen, O. A., & Willerslev, E. (2016). Envi-ronmental DNA from seawater samples correlate with trawl catches of subarctic, deepwater fishes. PLoS ONE, 11(11), 1–22.

https://doi.org/10.1371/journal.pone.0165252

[22] Collins, R. A., & Cruickshank, R. H. (2012). The seven deadly sins of DNA barcoding. Molecular Ecology Re-sources, n/a-n/a. https://doi.org/10.1111/1755-0998.12046

[23] Oliver, P. M., Adams, M., Lee, M. S. Y., Hutchinson, M. N., & Doughty, P. (2009). Cryptic diversity in verte-brates: molecular data double estimates of species diversity in a radiation of Australian lizards (Diplodacty-lus, Gekkota). Proceedings. Biological Sciences / The Royal Society, 276(1664), 2001–2007.

https://doi.org/10.1098/rspb.2008.1881

[24] Bálint, M., Domisch, S., Engelhardt, C. H. M., Haase, P., Lehrian, S., Sauer, J., Theissinger, K., Pauls, S. U., &

Nowak, C. (2011). Cryptic biodiversity loss linked to global climate change. Nature Climate Change, 1(6), 313–318. https://doi.org/10.1038/nclimate1191

[25] Fišer, C., Robinson, C. T., & Malard, F. (2018). Cryptic species as a window into the paradigm shift of the species concept. Molecular Ecology, 27(3), 613–635. https://doi.org/10.1111/mec.14486

[26] Leaché, A. D., Fujita, M. K., Minin, V. N., & Bouckaert, R. R. (2014). Species delimitation using genome-wide SNP Data. Systematic Biology, 63(4), 534–542.

https://doi.org/10.1093/sysbio/syu018

[27] Dincă, V., Lee, K. M., Vila, R., & Mutanen, M. (2019). The conundrum of species delimitation: A genomic perspective on a mitogenetically super-variable butterfly. Proceedings of the Royal Society B: Biological Sciences, 286(1911). https://doi.org/10.1098/rspb.2019.1311

[28] Pozzi, L., Penna, A., Bearder, S. K., Karlsson, J., Perkin, A., & Disotell, T. R. (2020). Cryptic diversity and spe-cies boundaries within the Paragalago zanzibaricus spespe-cies complex. Molecular Phylogenetics and Evolu-tion, 106887.

생명 다양성 보전에 활용되는 보전유전학 연구동향 전형배 Page 30 / 38 [29] Min, M. S., Baek, H. J., Song, J. Y., Chang, M. H., & Poyarkov, N. A. (2016). A new species of salamander of

the genus Hynobius(Amphibia, Caudata, Hynobiidae) from South Korea. Zootaxa, 4169(3), 475–503.

https://doi.org/10.11646/zootaxa.4169.3.4

[30] Baek, H.-J., Lee, M.-Y., Lee, H., & Min, M.-S. (2011). Mitochondrial DNA data unveil highly divergent popu-lations within the genus Hynobius (Caudata: Hynobiidae) in South Korea. Molecules and Cells, 31(2), 105–

112. https://doi.org/10.1007/s10059-011-0014-x

[31] Kim, D., Jeon, H.-B., & Suk, H. Y. (2014). Tanakia latimarginata, a new species of bitterling from the Nak-dong River, South Korea (Teleostei: Cyprinidae). Ichthyol. Explor. Freshw, 25.

[32] Jeon, H. B., Anderson, D., Won, H., Lim, H., & Suk, H. Y. (2018). Taxonomic characterization of Tanakia spe-cies (Acheilognathidae) using DNA barcoding analyses. Mitochondrial DNA Part A: DNA Mapping, Se-quencing, and Analysis, 29(6), 964–973.

https://doi.org/10.1080/24701394.2017.1398746

[33] Jeon, H.-B. (2018). Evolutionary History of Acheilognathid Fish Inferred based on Genetic and Genomic Analyses [Yeungnam University].

https://doi.org/10.13140/RG.2.2.21682.66249

[34] Moritz, C. (1994). Defining “Evolutionarily Significant Units” for conservation. Trends in Ecology and Evolu-tion, 9(10), 373–375. https://doi.org/10.1016/0169-5347(94)90057-4

[35] Funk, W. C., McKay, J. K., Hohenlohe, P. A., & Allendorf, F. W. (2012). Harnessing genomics for delineating conservation units. Trends in Ecology and Evolution, 27(9), 489–496.

https://doi.org/10.1016/j.tree.2012.05.012

[36] Fraser, D. J., & Bernatchez, L. (2001). Adaptive evolutionary conservation: Towards a unified concept for defining conservation units. Molecular Ecology, 10(12), 2741–2752. https://doi.org/10.1046/j.1365-294X.2001.t01-1-01411.x

[37] Galtier, N., Nabholz, B., Glémin, S., & Hurst, G. D. D. (2009). Mitochondrial DNA as a marker of molecular diversity: a reappraisal. Molecular Ecology, 18(22), 4541–4550.

https://doi.org/10.1111/j.1365-294X.2009.04380.x

[38] Schlötterer, C. (2000). Evolutionary dynamics of microsatellite DNA. Chromosoma, 109(6), 365–371.

[39] Ellegren, H. (2004). Microsatellites: simple sequences with complex evolution. Nature Reviews Genetics, 5(6), 435–445.

[40] Selkoe, K. A., & Toonen, R. J. (2006). Microsatellites for ecologists: a practical guide to using and evaluat-ing microsatellite markers. Ecology Letters, 9(5), 615–629.

[41] Evanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology, 14(8), 2611–2620.

[42] Castric, V., & Bernatchez, L. (2004). Individual assignment test reveals differential restriction to dispersal between two salmonids despite no increase of genetic differences with distance. Molecular Ecology, 13(5), 1299–1312.

https://doi.org/10.1111/j.1365-294X.2004.02129.x

[43] Diniz-Filho, J. A. F., Soares, T. N., Lima, J. S., Dobrovolski, R., Landeiro, V. L., Telles, M. P. de C., Rangel, T. F.,

& Bini, L. M. (2013). Mantel test in population genetics. Genetics and Molecular Biology, 36(4), 475–485.

https://doi.org/10.1590/S1415-47572013000400002

[44] Wright, S. (1943). Isolation by distance. Genetics, 28(2), 114.

[45] Anderson, E. C., & Thompson, E. A. (2002). A model-based method for identifying species hybrids using multilocus genetic data. Genetics, 160(3), 1217–1229.

[46] Campbell, E. O., Brunet, B. M. T., Dupuis, J. R., & Sperling, F. A. H. (2018). Would an RRS by any other name sound as RAD? Methods in Ecology and Evolution, 9(9), 1920–1927. https://doi.org/10.1111/2041-210X.13038

생명 다양성 보전에 활용되는 보전유전학 연구동향 전형배 Page 31 / 38 [47] Rudman, S. M., Barbour, M. A., Csilléry, K., Gienapp, P., Guillaume, F., Hairston, N. G., Hendry, A. P., Lasky, J.

R., Rafajlović, M., Räsänen, K., Schmidt, P. S., Seehausen, O., Therkildsen, N. O., Turcotte, M. M., & Levine, J.

M. (2018). What genomic data can reveal about eco-evolutionary dynamics. Nature Ecology and Evolution, 2(1), 9–15.

https://doi.org/10.1038/s41559-017-0385-2

[48] Schlötterer, C., Tobler, R., Kofler, R., & Nolte, V. (2014). Sequencing pools of individuals — mining ge-nome-wide polymorphism data without big funding. Nature Reviews Genetics, 15(11), 749–763.

https://doi.org/10.1038/nrg3803

[49] Jeffries, D. L., Copp, G. H., Handley, L. L., Håkan Olsén, K., Sayer, C. D., & Hänfling, B. (2016). Comparing RADseq and microsatellites to infer complex phylogeographic patterns, an empirical perspective in the Crucian carp, Carassius carassius, L. Molecular Ecology, 25(13), 2997–3018.

https://doi.org/10.1111/mec.13613

[50] Bohling, J., Small, M., Von Bargen, J., Louden, A., & DeHaan, P. (2019). Comparing inferences derived from microsatellite and RADseq datasets: a case study involving threatened bull trout. Conservation Genetics, 20(2), 329–342. https://doi.org/10.1007/s10592-018-1134-z

[51] Hider, J. L., Gittelman, R. M., Shah, T., Edwards, M., Rosenbloom, A., Akey, J. M., & Parra, E. J. (2013). Ex-ploring signatures of positive selection in pigmentation candidate genes in populations of East Asian an-cestry. BMC Evolutionary Biology, 13(1), 150.

https://doi.org/10.1186/1471-2148-13-150

[52] McKay, J. K., & Latta, R. G. (2002). Adaptive population divergence: markers, QTL and traits. Trends in Ecol-ogy & Evolution, 17(6), 285–291.

[53] Schoville, S. D., Bonin, A., François, O., Lobreaux, S., Melodelima, C., & Manel, S. (2012). Adaptive genetic variation on the landscape: methods and cases. Annual Review of Ecology, Evolution, and Systematics, 43, 23–43.

[54] Hansen, M. M., Olivieri, I., Waller, D. M., & Nielsen, E. E. (2012). Monitoring adaptive genetic responses to environmental change. Molecular Ecology, 21(6), 1311–1329.

[55] Tiffin, P., & Ross-Ibarra, J. (2014). Advances and limits of using population genetics to understand local adaptation. Trends in Ecology and Evolution, 29(12), 673–680. https://doi.org/10.1016/j.tree.2014.10.004 [56] Rosauer, D. F., Blom, M. P. K., Bourke, G., Catalano, S., Donnellan, S., Gillespie, G., Mulder, E., Oliver, P. M.,

Potter, S., Pratt, R. C., Rabosky, D. L., Skipwith, P. L., & Moritz, C. (2016). Phylogeography, hotspots and conservation priorities: an example from the Top End of Australia. Biological Conservation, 204, 83–93.

https://doi.org/10.1016/j.biocon.2016.05.002

[57] Cheng, P., Yu, D., Liu, S., Tang, Q., & Liu, H. (2014). Molecular phylogeny and conservation priorities of the subfamily Acheilognathinae (Teleostei: Cyprinidae). Zoological Science, 31(5), 300–308.

[58] Chen, H., & Kishino, H. (2015). Global pattern of phylogenetic species composition of shark and its conser-vation priority. Ecology and Evolution, 5(19), 4455–4465. https://doi.org/10.1002/ece3.1724

[59] Hedrick, P. W. (2001). Conservation genetics: Where are we now? Trends in Ecology and Evolution, 16(11), 629–636. https://doi.org/10.1016/S0169-5347(01)02282-0

[60] Waples, R. S., & Do, C. (2008). LDNE: A program for estimating effective population size from data on link-age disequilibrium. Molecular Ecology Resources, 8(4), 753–756.

https://doi.org/10.1111/j.1755-0998.2007.02061.x

[61] Nei, M., & Tajima, F. (1981). Genetic drift and estimation of effective population size. Genetics, 98(3), 625–

640.

[62] Luikart, G., Ryman, N., Tallmon, D. A., Schwartz, M. K., & Allendorf, F. W. (2010). Estimation of census and effective population sizes: The increasing usefulness of DNA-based approaches. Conservation Genetics, 11(2), 355–373. https://doi.org/10.1007/s10592-010-0050-7

생명 다양성 보전에 활용되는 보전유전학 연구동향 전형배 Page 32 / 38 [63] Waples, R. S. (2016). Tiny estimates of the Ne/N ratio in marine fishes: Are they real? Journal of Fish

Biol-ogy, 89(6), 2479–2504. https://doi.org/10.1111/jfb.13143

[64] Ferchaud, A. L., Perrier, C., April, J., Hernandez, C., Dionne, M., & Bernatchez, L. (2016). Making sense of the relationships between Ne, Nb and Nc towards defining conservation thresholds in Atlantic salmon (Salmo salar). Heredity, 117(4), 268–278. https://doi.org/10.1038/hdy.2016.62

[65] Waples, R. S. (1989). A generalized approach for estimating effective population size from temporal changes in allele frequency. Genetics, 121(2), 379–391.

[66] Waples, R. S., & Do, C. (2010). Linkage disequilibrium estimates of contemporary Ne using highly variable genetic markers: A largely untapped resource for applied conservation and evolution. Evolutionary Appli-cations, 3(3), 244–262. https://doi.org/10.1111/j.1752-4571.2009.00104.x

[67] Bernos, T. A., & Fraser, D. J. (2016). Spatiotemporal relationship between adult census size and genetic population size across a wide population size gradient. Molecular Ecology, 25(18), 4472–4487.

https://doi.org/10.1111/mec.13790

[68] Luikart, G., England, P. R., Tallmon, D., Jordan, S., & Taberlet, P. (2003). The power and promise of popula-tion genomics: From genotyping to genome typing. Nature Reviews Genetics, 4(12), 981–994.

https://doi.org/10.1038/nrg1226

[69] Excoffier, L., & Heckel, G. (2006). Computer programs for population genetics data analysis: a survival guide. Nature Reviews Genetics, 7(10), 745–758.

[70] Lowe, W. H., Kovach, R. P., & Allendorf, F. W. (2017). Population Genetics and Demography Unite Ecology and Evolution. Trends in Ecology and Evolution, 32(2), 141–152.

https://doi.org/10.1016/j.tree.2016.12.002

[71] Hendricks, S., Anderson, E. C., Antao, T., Bernatchez, L., Forester, B. R., Garner, B., Hand, B. K., Hohenlohe, P.

A., Kardos, M., Koop, B., Sethuraman, A., Waples, R. S., & Luikart, G. (2018). Recent advances in conserva-tion and populaconserva-tion genomics data analysis. Evoluconserva-tionary Applicaconserva-tions, 11(8), 1197–1211.

https://doi.org/10.1111/eva.12659

[72] Alexander, D. H., & Lange, K. (2011). Enhancements to the ADMIXTURE algorithm for individual ancestry estimation. BMC Bioinformatics, 12. https://doi.org/10.1186/1471-2105-12-246

[73] Frichot, E., Mathieu, F., Trouillon, T., Bouchard, G., & François, O. (2014). Fast and efficient estimation of individual ancestry coefficients. Genetics, 196(4), 973–983.

https://doi.org/10.1534/genet-ics.113.160572

[74] Martin, S. H., Davey, J. W., & Jiggins, C. D. (2015). Evaluating the use of ABBA-BABA statistics to locate in-trogressed loci. Molecular Biology and Evolution, 32(1), 244–257. https://doi.org/10.1093/molbev/msu269 [75] Green, R. E., Krause, J., Briggs, A. W., Maricic, T., Stenzel, U., Kircher, M., Patterson, N., Li, H., Zhai, W., Fritz,

M. H. Y., Hansen, N. F., Durand, E. Y., Malaspinas, A. S., Jensen, J. D., Marques-Bonet, T., Alkan, C., Prüfer, K., Meyer, M., Burbano, H. A., … Pääbo, S. (2010). A draft sequence of the neandertal genome. Science,

328(5979), 710–722. https://doi.org/10.1126/science.1188021

[75] Jones, O. R., & Wang, J. (2010). COLONY: a program for parentage and sibship inference from multilocus genotype data. Molecular Ecology Resources, 10(3), 551–555.

[76] Tokarska, M., Marshall, T., Kowalczyk, R., Wójcik, J. M., Pertoldi, C., Kristensen, T. N., Loeschcke, V.,

Gregersen, V. R., & Bendixen, C. (2009). Effectiveness of microsatellite and SNP markers for parentage and identity analysis in species with low genetic diversity: The case of European bison. Heredity, 103(4), 326–

332. https://doi.org/10.1038/hdy.2009.73

[77] Flanagan, S. P., & Jones, A. G. (2019). The future of parentage analysis: From microsatellites to SNPs and beyond. Molecular Ecology, 28(3), 544–567. https://doi.org/10.1111/mec.14988

생명 다양성 보전에 활용되는 보전유전학 연구동향 전형배 Page 33 / 38 [78] Sommer, S. (2005). The importance of immune gene variability (MHC) in evolutionary ecology and

conser-vation. Frontiers in Zoology, 2(1), 16.

https://doi.org/10.1186/1742-9994-2-16

[79] Man-, B. (1999). Complete sequence and gene map of a human major histocompatibility complex The MHC sequencing consortium *. October, 401(October), 921–923.

[80] Pancer, Z., & Cooper, M. D. (2006). the Evolution of Adaptive Immunity. Annual Review of Immunology, 24(1), 497–518. https://doi.org/10.1146/annurev.immunol.24.021605.090542

[81] Reche, P. A., & Reinherz, E. L. (2003). Sequence variability analysis of human class I and class II MHC mole-cules: Functional and structural correlates of amino acid polymorphisms. Journal of Molecular Biology, 331(3), 623–641. https://doi.org/10.1016/S0022-2836(03)00750-2

[82] Jeon, H. B., Won, H., & Suk, H. Y. (2019). Polymorphism of MHC class IIB in an acheilognathid species, Rhodeus sinensis shaped by historical selection and recombination. BMC Genetics, 20(1), 74.

https://doi.org/10.1186/s12863-019-0775-3

[84] Miller, H. C., & Lambert, D. M. (2004). Gene duplication and gene conversion in class II MHC genes of New Zealand robins (Petroicidae). Immunogenetics, 56(3), 178–191.

[85] Fraser, B. A., & Neff, B. D. (2010). Parasite mediated homogenizing selection at the MHC in guppies. Ge-netica, 138(2), 273.

[86] Jordan, W. C., & Bruford, M. W. (1998). New perspectives on mate choice and the MHC. Heredity, 81(2), 127–133.

[87] Milinski, M., Griffiths, S., Wegner, K. M., Reusch, T. B. H., Haas-Assenbaum, A., & Boehm, T. (2005). Mate choice decisions of stickleback females predictably modified by MHC peptide ligands. Proceedings of the National Academy of Sciences of the United States of America, 102(12), 4414–4418.

[88] Dudek, K., Gaczorek, T. S., Zieliński, P., & Babik, W. (2019). Massive introgression of major histocompatibil-ity complex (MHC) genes in newt hybrid zones. Molecular Ecology, 28(21), 4798–4810.

https://doi.org/10.1111/mec.15254

[89] Slade, R. W., & McCallum, H. I. (1992). Overdominant vs. frequency-dependent selection at MHC loci. Ge-netics, 132(3), 861.

[90] Klein, J., Sato, A., Nagl, S., & O’hUigín, C. (1998). Molecular trans-species polymorphism. Annual Review of Ecology and Systematics, 29(1), 1–21.

[91] Zhu, Y., Wan, Q. H., Yu, B., Ge, Y. F., & Fang, S. G. (2013). Patterns of genetic differentiation at MHC class i genes and microsatellites identify conservation units in the giant panda. BMC Evolutionary Biology, 13(1), 1. https://doi.org/10.1186/1471-2148-13-227

[92] Hedrick, P. W. (2001). Conservation genetics: Where are we now? Trends in Ecology and Evolution, 16(11), 629–636. https://doi.org/10.1016/S0169-5347(01)02282-0

[93] Castro-Prieto, A., Wachter, B., & Sommer, S. (2011). Cheetah paradigm revisited: MHC diversity in the world’s largest free-ranging population. Molecular Biology and Evolution, 28(4), 1455–1468.

https://doi.org/10.1093/molbev/msq330

[94] Sutton, J. T., Robertson, B. C., Grueber, C. E., Stanton, J.-A. L., & Jamieson, I. G. (2013). Characterization of MHC class II B polymorphism in bottlenecked New Zealand saddlebacks reveals low levels of genetic di-versity. Immunogenetics, 65(8), 619–633.

[95] Hedrick, P. W. (2002). Pathogen resistance and genetic variation at MHC loci. Evolution, 56(10), 1902–1908.

[96] Minias, P., Whittingham, L. A., & Dunn, P. O. (2017). Coloniality and migration are related to selection on MHC genes in birds. Evolution, 71(2), 432–441. https://doi.org/10.1111/evo.13142

생명 다양성 보전에 활용되는 보전유전학 연구동향 전형배 Page 34 / 38 [97] Schad, J., Dechmann, D. K. N., Voigt, C. C., & Sommer, S. (2011). MHC class II DRB diversity, selection

pat-tern and population structure in a neotropical bat species, Noctilio albiventris. Heredity, 107(2), 115–126.

https://doi.org/10.1038/hdy.2010.173

[98] Schad, J., Voigt, C. C., Greiner, S., Dechmann, D. K. N., & Sommer, S. (2012). Independent evolution of functional MHC class II DRB genes in New World bat species. Immunogenetics, 64(7), 535–547.

https://doi.org/10.1007/s00251-012-0609-1

[99] Lenz, T. L., Spirin, V., Jordan, D. M., & Sunyaev, S. R. (2016). Excess of Deleterious Mutations around HLA Genes Reveals Evolutionary Cost of Balancing Selection. Molecular Biology and Evolution, 33(10), 2555–

2564. https://doi.org/10.1093/molbev/msw127

[100] Reusch, T. B. H., Häberli, M. A., Aeschlimann, P. B., & Milinski, M. (2001). Female sticklebacks count alleles in a strategy of sexual selection explaining MHC polymorphism. Nature, 414(6861), 300–302.

https://doi.org/10.1038/35104547

[101] Araki, H., Cooper, B., & Blouin, M. S. (2007). Genetic effects of captive breeding cause a rapid, cumulative fitness decline in the wild. Science, 318(5847), 100–103. https://doi.org/10.1126/science.1145621

[102] Lamaze, F. C., Pavey, S. A., Normandeau, E., Roy, G., Garant, D., & Bernatchez, L. (2014). Neutral and selec-tive processes shape MHC gene diversity and expression in stocked brook charr populations (Salvelinus fontinalis). Molecular Ecology, 23(7), 1730–1748. https://doi.org/10.1111/mec.12684

[103] Hecht, B. C., Campbell, N. R., Holecek, D. E., & Narum, S. R. (2013). Genome-wide association reveals ge-netic basis for the propensity to migrate in wild populations of rainbow and steelhead trout. Molecular Ecology, 22(11), 3061–3076. https://doi.org/10.1111/mec.12082

[104] Fischer, M. C., Rellstab, C., Tedder, A., Zoller, S., Gugerli, F., Shimizu, K. K., Holderegger, R., & Widmer, A.

(2013). Population genomic footprints of selection and associations with climate in natural populations of Arabidopsis halleri from the Alps. Molecular Ecology, 22(22), 5594–5607.

https://doi.org/10.1111/mec.12521

[105] Narum, S. R., Buerkle, C. A., Davey, J. W., Miller, M. R., & Hohenlohe, P. A. (2013). Genotyping-by-se-quencing in ecological and conservation genomics. Molecular Ecology, 22(11), 2841–2847.

https://doi.org/10.1111/mec.12350

[106] Hohenlohe, P. A., Bassham, S., Etter, P. D., Stiffler, N., Johnson, E. A., & Cresko, W. A. (2010). Population genomics of parallel adaptation in threespine stickleback using sequenced RAD tags. PLoS Genetics, 6(2).

https://doi.org/10.1371/journal.pgen.1000862

[107] Martin, A., & Courtier-Orgogozo, V. (2017). Morphological evolution repeatedly caused by mutations in signaling ligand genes. In Diversity and Evolution of Butterfly Wing Patterns: An Integrative Approach.

https://doi.org/10.1007/978-981-10-4956-9_4

[108] Kon, T., Omori, Y., Fukuta, K., Wada, H., Watanabe, M., Chen, Z., Iwasaki, M., Mishina, T., Matsuzaki, S.

ichiro S., Yoshihara, D., Arakawa, J., Kawakami, K., Toyoda, A., Burgess, S. M., Noguchi, H., & Furukawa, T.

(2020). The Genetic Basis of Morphological Diversity in Domesticated Goldfish. Current Biology, 1–15.

https://doi.org/10.1016/j.cub.2020.04.034

[109] Bortoluzzi, C., Bosse, M., Derks, M. F. L., Crooijmans, R. P. M. A., Groenen, M. A. M., & Megens, H. J.

(2020). The type of bottleneck matters: Insights into the deleterious variation landscape of small managed populations. Evolutionary Applications, 13(2), 330–341. https://doi.org/10.1111/eva.12872

[110] MacArthur, D. G., Balasubramanian, S., Frankish, A., Huang, N., Morris, J., Walter, K., Jostins, L., Habegger, L., Pickrell, J. K., Montgomery, S. B., Albers, C. A., Zhang, Z. D., Conrad, D. F., Lunter, G., Zheng, H., Ayub, Q., DePristo, M. A., Banks, E., Hu, M., … Tyler-Smith, C. (2012). A systematic survey of loss-of-function variants in human protein-coding genes. Science, 335(6070), 823–828. https://doi.org/10.1126/science.1215040

생명 다양성 보전에 활용되는 보전유전학 연구동향 전형배 Page 35 / 38 [111] Maquat, L. E. (2004). Nonsense-mediated mRNA decay: Splicing, translation and mRNP dynamics. Nature

Reviews Molecular Cell Biology, 5(2), 89–99. https://doi.org/10.1038/nrm1310

[112] Yoshida, K., Ravinet, M., Makino, T., Toyoda, A., Kokita, T., Mori, S., & Kitano, J. (2020). Accumulation of Deleterious Mutations in Landlocked Threespine Stickleback Populations. Genome Biology and Evolution, 12(4), 479–492. https://doi.org/10.1093/gbe/evaa065

[113] Bortoluzzi, C., Bosse, M., Derks, M. F. L., Crooijmans, R. P. M. A., Groenen, M. A. M., & Megens, H. J.

(2020). The type of bottleneck matters: Insights into the deleterious variation landscape of small managed populations. Evolutionary Applications, 13(2), 330–341. https://doi.org/10.1111/eva.12872

[114] Robinson, J. A., Ortega-Del Vecchyo, D., Fan, Z., Kim, B. Y., Vonholdt, B. M., Marsden, C. D., Lohmueller, K.

E., & Wayne, R. K. (2016). Genomic Flatlining in the Endangered Island Fox. Current Biology, 26(9), 1183–

1189. https://doi.org/10.1016/j.cub.2016.02.062

[115] Robinson, J. A., Brown, C., Kim, B. Y., Lohmueller, K. E., & Wayne, R. K. (2018). Purging of Strongly Delete-rious Mutations Explains Long-Term Persistence and Absence of Inbreeding Depression in Island Foxes.

Current Biology, 28(21), 3487-3494.e4. https://doi.org/10.1016/j.cub.2018.08.066

[116] Grossen, C., Guillaume, F., Keller, L. F., & Croll, D. (2020). Purging of highly deleterious mutations through severe bottlenecks in Alpine ibex. Nature Communications, 11(1). https://doi.org/10.1038/s41467-020-14803-1

[117] Choi, Y., Sims, G. E., Murphy, S., Miller, J. R., & Chan, A. P. (2012). Predicting the Functional Effect of Amino Acid Substitutions and Indels. PLoS ONE, 7(10). https://doi.org/10.1371/journal.pone.0046688 [118] Cingolani, P., Platts, A., Wang, L. L., Coon, M., Nguyen, T., Wang, L., Land, S. J., Lu, X., & Ruden, D. M.

(2012). A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff:

SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly, 6(2), 80–92.

https://doi.org/10.4161/fly.19695

[119] Tiffin, P., & Ross-Ibarra, J. (2014). Advances and limits of using population genetics to understand local adaptation. Trends in Ecology and Evolution, 29(12), 673–680. https://doi.org/10.1016/j.tree.2014.10.004 [120] Richardson, J. L., Urban, M. C., Bolnick, D. I., & Skelly, D. K. (2014). Microgeographic adaptation and the

spatial scale of evolution. Trends in Ecology and Evolution, 29(3), 165–176.

https://doi.org/10.1016/j.tree.2014.01.002

[121] Beaumont, M. A. (2005). Adaptation and speciation: What can Fst tell us? Trends in Ecology and Evolu-tion, 20(8), 435–440. https://doi.org/10.1016/j.tree.2005.05.017

[122] Barton, N. H. (2009). Why sex and recombination? Cold Spring Harbor Symposia on Quantitative Biology, 74(September), 187–195. https://doi.org/10.1101/sqb.2009.74.030

[123] Tomkins, J. L., Radwan, J., Kotiaho, J. S., & Tregenza, T. (2004). Genic capture and resolving the lek para-dox. Trends in Ecology & Evolution, 19(6), 323–328. https://doi.org/10.1016/j.tree.2004.03.029

[124] Neff, B. D., & Pitcher, T. E. (2008). Mate choice for non-additive genetic benefits: a resolution to the lek paradox. Journal of Theoretical Biology, 254(1), 147–155. https://doi.org/10.1016/j.jtbi.2008.05.019 [125] Pannell, J. R., & Charlesworth, B. (2000). Effects of metapopulation processes on measures of genetic

di-versity. Philosophical Transactions of the Royal Society B: Biological Sciences, 355(1404), 1851–1864.

https://doi.org/10.1098/rstb.2000.0740

[126] Dowling, T. E., & Secor, C. L. (1997). The role of hybridization and introgression in the diversification of animals. Annual Review of Ecology and Systematics, 28(33), 593–619.

https://doi.org/10.1146/an-nurev.ecolsys.28.1.593

생명 다양성 보전에 활용되는 보전유전학 연구동향 전형배 Page 36 / 38 [127] Gratacap, R. L., Wargelius, A., Edvardsen, R. B., & Houston, R. D. (2019). Potential of Genome Editing to

Improve Aquaculture Breeding and Production. Trends in Genetics, 35(9), 672–684.

https://doi.org/10.1016/j.tig.2019.06.006

[128] Rhymer, J. M., & Simberloff, D. (1996). Extinction by hybridization and introgression. Annual Review of Ecology and Systematics, 27, 83–109. https://doi.org/10.1146/annurev.ecolsys.27.1.83

[129] Keller, M., Kollmann, J., & Edwards, P. J. (2000). Genetic introgression from distant provenances reduces fitness in local weed populations. Journal of Applied Ecology, 37(4), 647–659.

https://doi.org/10.1046/j.1365-2664.2000.00517.x

[130] Wendel, J. F. (2000). Genome evolution in polyploids. Plant Molecular Biology, 42(1), 225–249.

https://doi.org/10.1023/A:1006392424384

[131] Robertson, F. M., Gundappa, M. K., Grammes, F., Hvidsten, T. R., Redmond, A. K., Lien, S., Martin, S. A. M., Holland, P. W. H., Sandve, S. R., & Macqueen, D. J. (2017). Lineage-specific rediploidization is a mechanism to explain time-lags between genome duplication and evolutionary diversification. Genome Biology, 18(1), 1–14. https://doi.org/10.1186/s13059-017-1241-z

[132] Macqueen, D. J., & Johnston, I. A. (2014). A well-constrained estimate for the timing of the salmonid whole genome duplication reveals major decoupling from species diversification. Proceedings of the Royal Society B: Biological Sciences, 281(1778). https://doi.org/10.1098/rspb.2013.2881

[133] Soltis, D. E., & Soltis, P. S. (1999). Polyploidy: Recurrent formation and genome evolution. Trends in Ecol-ogy and Evolution, 14(9), 348–352. https://doi.org/10.1016/S0169-5347(99)01638-9

[134] Marty, L., Dieckmann, U., & Ernande, B. (2015). Fisheries-induced neutral and adaptive evolution in ex-ploited fish populations and consequences for their adaptive potential. Evolutionary Applications, 8(1), 47–

63. https://doi.org/10.1111/eva.12220

[135] Rodrigues, A. D. S., Brandão, J. H. S. G., Bitencourt, J. D. A., Jucá-Chagas, R., Sampaio, I., Schneider, H., &

Affonso, P. R. A. D. M. (2016). Molecular identification and traceability of illegal trading in lignobrycon my-ersi (Teleostei: Characiformes), a threatened Brazilian fish species, using DNA barcode. Scientific World Journal, 2016. https://doi.org/10.1155/2016/9382613

[136] Wilson, J. J., Sing, K. W., Lee, P. S., & Wee, A. K. S. (2016). Application of DNA barcodes in wildlife conser-vation in Tropical East Asia. Conserconser-vation Biology : The Journal of the Society for Conserconser-vation Biology, 30(5), 982–989. https://doi.org/10.1111/cobi.12787

[137] Kuparinen, A., & Festa-Bianchet, M. (2017). Harvest-induced evolution: Insights from aquatic and terres-trial systems. Philosophical Transactions of the Royal Society B: Biological Sciences, 372(1712).

https://doi.org/10.1098/rstb.2016.0036

[138] Ernande, B., Dieckmann, U., & Heino, M. (2004). Adaptive changes in harvested populations: Plasticity and evolution of age and size at maturation. Proceedings of the Royal Society B: Biological Sciences, 271(1537), 415–423. https://doi.org/10.1098/rspb.2003.2519

[139] Arraut, E. M., Arraut, J. L., Marmontel, M., Mantovani, J. E., & de Moraes Novo, E. M. L. (2017). Bottlenecks in the migration routes of Amazonian manatees and the threat of hydroelectric dams. Acta Amazonica, 47(1), 7–18. https://doi.org/10.1590/1809-4392201600862

[140] Park, Y. S., Chang, J., Lek, S., Cao, W., & Brosse, S. (2003). Conservation Strategies for Endemic Fish Spe-cies Threatened by the Three Gorges Dam. Conservation Biology, 17(6), 1748–1758.

https://doi.org/10.1111/j.1523-1739.2003.00430.x

[141] Grabenstein, K. C., & Taylor, S. A. (2018). Breaking Barriers: Causes, Consequences, and Experimental Util-ity of Human-Mediated Hybridization. Trends in Ecology and Evolution, 33(3), 198–212.

https://doi.org/10.1016/j.tree.2017.12.008

생명 다양성 보전에 활용되는 보전유전학 연구동향 전형배 Page 37 / 38 [142] Omote, K., Nishida, C., Takenaka, T., Saito, K., Shimura, R., Fujimoto, S., Sato, T., & Masuda, R. (2015).

Re-cent fragmentation of the endangered Blakiston’s fish owl (Bubo blakistoni) population on Hokkaido Is-land, Northern Japan, Revealed by Mitochondrial DNA and Microsatellite Analyses. Zoological Letters, 1(1), 1–9. https://doi.org/10.1186/s40851-015-0014-3

[143] Thompson, K. A., Renaudin, M., & Johnson, M. T. J. (2016). Urbanization drives the evolution of parallel clines in plant populations. Proceedings of the Royal Society B: Biological Sciences, 283(1845).

https://doi.org/10.1098/rspb.2016.2180

[144] Harris, S. E., Xue, A. T., Alvarado-Serrano, D., Boehm, J. T., Joseph, T., Hickerson, M. J., & Munshi-South, J.

(2016). Urbanization shapes the demographic history of a native rodent (the white-footed mouse, Peromyscus leucopus) in New York City. Biology Letters, 12(4).

https://doi.org/10.1098/rsbl.2015.0983

[145] Rubin, C. J., Zody, M. C., Eriksson, J., Meadows, J. R. S., Sherwood, E., Webster, M. T., Jiang, L., Ingman, M., Sharpe, T., Ka, S., Hallböök, F., Besnier, F., Carlborg, R., Bedhom, B., Tixier-Boichard, M., Jensen, P., Siegel, P., Lindblad-Toh, K., & Andersson, L. (2010). Whole-genome resequencing reveals loci under selection during chicken domestication. Nature, 464(7288), 587–591. https://doi.org/10.1038/nature08832

[146] Allendorf, F. W., Leary, R. F., Spruell, P., & Wenburg, J. K. (2001). The problems with hybrids: Setting con-servation guidelines. Trends in Ecology and Evolution, 16(11), 613–622. https://doi.org/10.1016/S0169-5347(01)02290-X

[147] Clavero, M., & Garcia-Berthou., E. (2005). Invasive species are a leading cause of animal extinctions.

Trends in Ecology and Evolution 20(3):110. TRENDS in Ecology and Evolution, 19(January), 17071.

https://www.cell.com/trends/ecology-evolution/abstract/S0169-5347(05)00004-2

[148] Schneider, J., Valentini, A., Dejean, T., Montarsi, F., Taberlet, P., Glaizot, O., & Fumagalli, L. (2016). Detec-tion of invasive mosquito vectors using environmental DNA (eDNA) from water samples. PLoS ONE, 11(9), 1–18. https://doi.org/10.1371/journal.pone.0162493

[149] Dougherty, M. M., Larson, E. R., Renshaw, M. A., Gantz, C. A., Egan, S. P., Erickson, D. M., & Lodge, D. M.

(2016). Environmental DNA (eDNA) detects the invasive rusty crayfish Orconectes rusticus at low abun-dances. Journal of Applied Ecology, 53(3), 722–732. https://doi.org/10.1111/1365-2664.12621

[150] Takahara, T., Minamoto, T., & Doi, H. (2013). Using Environmental DNA to Estimate the Distribution of an Invasive Fish Species in Ponds. PLoS ONE, 8(2). https://doi.org/10.1371/journal.pone.0056584

[151] Le Roux, J., & Wieczorek, A. M. (2009). Molecular systematics and population genetics of biological inva-sions: Towards a better understanding of invasive species management. Annals of Applied Biology, 154(1), 1–17. https://doi.org/10.1111/j.1744-7348.2008.00280.x

[152] Jeon, H. B., Kim, D. Y., Lee, Y. J., Bae, H. G., & Suk, H. Y. (2018). The genetic structure of Squalidus multi-maculatus revealing the historical pattern of serial colonization on the tip of East Asian continent. Scientific Reports, 8(1), 1–12. https://doi.org/10.1038/s41598-018-28340-x

[153] Holopainen, I. J., Aho, J., Vornanen, M., & Huuskonen, H. (1997). Phenotypic plasticity and predator ef-fects on morphology and physiology of crucian carp in nature and in the laboratory. Journal of Fish Biol-ogy, 50(4), 781–798. https://doi.org/10.1006/jfbi.1996.0344

[154] Scoville, A. G., & Pfrender, M. E. (2010). Phenotypic plasticity facilitates recurrent rapid adaptation to in-troduced predators. Proceedings of the National Academy of Sciences of the United States of America, 107(9), 4260–4263. https://doi.org/10.1073/pnas.0912748107

[155] Waller, D. M. (2015). Genetic rescue: a safe or risky bet? Molecular Ecology, 24(11), 2595–2597.

https://doi.org/10.1111/mec.13220

생명 다양성 보전에 활용되는 보전유전학 연구동향 전형배 Page 38 / 38 [156] Whiteley, A. R., Fitzpatrick, S. W., Funk, W. C., & Tallmon, D. A. (2015). Genetic rescue to the rescue.

Trends in Ecology and Evolution, 30(1), 42–49. https://doi.org/10.1016/j.tree.2014.10.009

[157] Fitzpatrick, S. W., Bradburd, G. S., Kremer, C. T., Salerno, P. E., Angeloni, L. M., & Funk, W. C. (2020). Ge-nomic and Fitness Consequences of Genetic Rescue in Wild Populations. Current Biology, 30(3), 517-522.e5.

https://doi.org/10.1016/j.cub.2019.11.062

[158] Hedrick, P. W., & Garcia-Dorado, A. (2016). Understanding Inbreeding Depression, Purging, and Genetic Rescue. Trends in Ecology and Evolution, 31(12), 940–952. https://doi.org/10.1016/j.tree.2016.09.005 [159] Åkesson, M., Liberg, O., Sand, H., Wabakken, P., Bensch, S., & Flagstad, Ø. (2016). Genetic rescue in a

se-verely inbred wolf population. Molecular Ecology, 25(19), 4745–4756. https://doi.org/10.1111/mec.13797 [160] Marciniak, S., & Perry, G. H. (2017). Harnessing ancient genomes to study the history of human

adapta-tion. Nature Reviews Genetics, 18(11), 659–674.

https://doi.org/10.1038/nrg.2017.65

[161] Araki, H., Berejikian, B. A., Ford, M. J., & Blouin, M. S. (2008). Fitness of hatchery-reared salmonids in the wild. Evolutionary Applications, 1(2), 342–355.

https://doi.org/10.1111/j.1752-4571.2008.00026.x

[162] Lynch, M., & O’Hely, M. (2001). Captive breeding and the genetic fitness of natural populations. Conser-vation Genetics, 2(4), 363–378. https://doi.org/10.1023/A:1012550620717

[163] Snyder, N. F. R., Derrickson, S. R., Beissinger, S. R., Wiley, J. W., Smith, T. B., Toone, W. D., & Miller, B.

(1996). Limitations of captive breeding in endangered species recovery. Conservation Biology, 10(2), 338–

348. https://doi.org/10.1046/j.1523-1739.1996.10020338.x

[164] Ballou, J. D. (2013). Assessing the Risks of Infectious Diseases in Captive Breeding and Reintroduction Programs. Journal of Zoo and Wildlife Medicine, 24(3), 327–335.

[165] O’Hanlon, S. J., Rieux, A., Farrer, R. A., Rosa, G. M., Waldman, B., Bataille, A., Kosch, T. A., Murray, K. A., Brankovics, B., Fumagalli, M., Martin, M. D., Wales, N., Alvarado-Rybak, M., Bates, K. A., Berger, L., Böll, S., Brookes, L., Clare, F., Courtois, E. A., … Fisher, M. C. (2018). Recent Asian origin of chytrid fungi causing global amphibian declines. Science, 360(6389), 621–627. https://doi.org/10.1126/science.aar1965

The views and opinions expressed by its writers do not necessarily reflect those of the Biological Research Information Center.

전형배(2020). 생명 다양성 보전에 활용되는 보전유전학 연구동향. BRIC View 2020-T25

전형배(2020). 생명 다양성 보전에 활용되는 보전유전학 연구동향. BRIC View 2020-T25

관련 문서