• 검색 결과가 없습니다.

6-2. Motor Control

N/A
N/A
Protected

Academic year: 2024

Share "6-2. Motor Control"

Copied!
47
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

System Control

6-2. Motor Control

P f K Yi

Professor Kyongsu Yi

©2009 VDCL

Vehicle Dynamics and Control Laboratory Vehicle Dynamics and Control Laboratory

Seoul National University

(2)

Motor Position Control

c( )

G s 1

A

s

1 s e

R

u

1. Proportional

( ) G s  K

 A 1 

D  s  s 

c

( )

p

G s  K 1

1 ( )

e R

G s A

 

1 ( )

( 1) 1

1

c

p

G s s s K A R

 

 

: Type 1

p

1 

DG K A

s  s

 

1  s s (   1) s   s  1 

2

(3)

Motor Position Control

Unit step response : R=1 [rad]

0

1 1 1

lim 1 1 (0)

ss s

e s

DG s DG

 

1 0

 1 

 

: no steady state position error

Ramp input response : R=t [rad]p p p [ ]

0 2 0

1 1 1 1

lim lim

1 1

ss s s p

e s

DG s K A s

 

 

 

0

1 1

1 1

lim

s p p

s s K A K A

s

 

 

: finite error

1

p p

s   s 

3

(4)

Motor Position Control

2 PI control

( )

P

K

I

D G s K

   s

2. PI control

: Type 2

  s

 

2

1

P I

K s K A DG s  s

 

Ramp input response : R=t [rad]

 

2

1 1 1

e 1 R

 DG 

 

 

2

2

1 1

1 1

p I

DG K s K A s

s  s

 

 

2

 

1 1

p I

K s K A

s  s

 

 

   

2

1

p I

s  s K s K A

   

lim ( ) 0

e

ss

 se s 

: no steady state position error

0

( )

ss s

4

(5)

Ch 4. Basic properties of Feedback

Feedback control system

1. Stability

2. Performance

Disturbance Rejection

Steady-state error

transient (dynamic properties)

3. Robustness : sensitivity of the system to change in model parameter

5

(6)

Stability of Feedback Systems

=

) (

) ( )

( ) ( 1

) ( )

( ) (

s Q

s P s

H s G

s G s

R s

C 

 

Poles : s

i

Re( )s  0

; stable

Re( )si  0

; stable Characteristic equation

Q s( )0

1

0

b b

b

b s

n

 b

1

s

n1

     b

1

s  b

0

 0 b

n n n n

6

(7)

Routh’s Stability Criterion

Ch t i ti ti

=

Characteristic equation

0

0

1 1

1

      

 b

s

b s b s

b

n n n n

Number of the characteristic equation with positive real parts

• Rooth’s Criterion

7

=Number of sign changes of the first column have the same sign

(8)

Routh’s Stability Criterion

E l 1)

=

Example 1)

240 152

72 10

) (

2 3

4

5

s s s s s

s P R

C

Two sign change

 Q(s)=0 has two roots with positive real parts

 unstable

 unstable

8

(9)

Routh’s Stability Criterion

E l 2)

=

Example 2)

 prevents completion of the array method 1)

s 11

x

4 2 3

4 2 2 1

) 5

( x x x x

s

Q    

method 2)

set Q s s ( )(   1) 0

x4

set

9

two sign change unstable

(10)

E l 3)

Routh’s Stability Criterion

=

Example 3)

2

K

2

2 4 3 2

2

( ) ( 1)( 2)

( ) ( 1)( 2) 3 3 2

1 ( 1)( 2)

C s s s s s K K

R s K s s s s K s s s s K

s s s s

  

  

       

   

7 0

29K

K 149 K 0

10

0 14

K 9

  

(11)

Analog/Digital Controller

11

(12)

DC motor

J 



 b 

 K i  T

m m m t a l

a

a a a a e m

J b K i T

L di R i v K dt

 

  

  

Negligible armature inductance and load torque disturbance

 L

a

 0  T

l

J 



 b 

 K i  T

m m m t a l

e m a a a

J b K i T

K R i v

 

  

 

12

(13)

DC motor

, ( ) ( )

m m m

s s s

    

Speed control

1 ( ) ( ) ( )

m a t a

m a l

J R K R

s s V s T s

bR K K bR K K bR K K

 

 

      

  

 

 bR

a

K K

t e

 bR

a

K K

t e

bR

a

K K

t e

  

 

 



  s 1 

m

( ) s AV s

a

( ) BT s

l

( )

    

: A

Time constant

Voltage gain rad/(volt sec)

:

: A B

Voltage gain, rad/(volt sec) torque gain, rad/(N m sec)

13

(14)

DC motor

( ) ( ) ( )

( ) ( ) ( )

m m m t a l

e m a a a

J s s b s K I T s K s R I s V s

    

  

Speed control

 

( ) ( ) ( ) /

a m m l t

I s J s b s T s K

R R

        

 

 

( )

a

( )

a

( ) ( )

e m m m l a

t t

R R

K s J s b s T s V s

K K

          

  ( ) ( ) ( )

1 ( ) ( )

e t a a m m t a a l

m a t

m a

a t e a t e

K K bR R J s s K V s R T s

J R K

s s V s

bR K K bR K K

     

 

         

a l

( )

a t e

R T s

bR K K

 

a t e a t e

 

a t e

( ) ( ) ( )

1 1

m a l

A B

s V s T s

s s

 

  

 

Steady –state,

v

a

 a T ,

l

 b w

ss

 Aa  Bb

14

(15)

DC motor

Open loop control

B Tl

ref

Hr Dol

1 A

s

m

A Va

1 sec

r

H volt

rad

 

( open-loop transfer function)

ol ol

K volt D open loop controller

volt

   

m

A

  H K

( open loop transfer function)

D  K 

 

r ol

1

ref

H K  s

  

1

a ol ref ol ref

ss ol ref

v D K

w A K K

 

    

   

 

 

 K

ol

  A



No steady-state error when load torque

T

l

 0

15

(16)

DC motor

Closed-loop(transfer function) control

B A Tl

ref

Hr Dcl

1 A

 s

m

A Va

H

1 volt sec

H 

cl cl

K volt D closed loop controller

volt

   

Hy

y

1

H sensor

   rad

1 sec

r

H Input shaping volt

rad

   

K  A B

( ) ( ) ( )

1 1

cl

m ref l

cl cl

K A B

s s T s

s K A s K A

 

    

     

( ) ( ) 1

m cl r cl

D A

s T s H   s H D A

  ( )     

( ) 1 1

1

cl r

ref cl y

cl y

T s H

s D H A s D H A

s

 

  

      

cl

f

  A K  

, then

,

1

m ss ref

A K

cl

 

 

cl

1

A K 

m ss,

 

ref

16

(17)

DC motor

Disturbance Rejection (non zero )

Open-loop

ss

A K

ol ref

B T

l

      

T

l

ss ol ref l

ref

B T

l

  

Closed-loop

1 1

cl

ss ref l

cl cl

A K B

A K A K T

     

   

17

(18)

DC motor

Numerical Examples

1 sec, 10, 50, 100 / sec, 0.1

60 A B

ref

rad T

l

      

Open-loop

  

100 50 0.1 95 / sec 5%

ss

rad error

   

Closed-loop

A K B

0, 99 100 99 / sec

1 100

cl

l ss ref

cl

T A K rad

 A K  

   

 

0.5

99 0.05 98.95

1 1

cl

ss ref l

cl cl

A K B

A K A K T

        

 



 

로 만들자

Reject disturbances by a factor of at least 100 compared with the open loop system, 1 A Kclcl 100

cl

9.9

K 

0.051% variation from the speed w/o disturbance

18

(19)

DC motor

Sensitivity of System Gain to Parameter Changes

Motor Control

Open-loop

( ) ( ) ( )

1 1

m ol ref l

A B

s K s T s

s s

 

     

 

Closed-loop

( ) ( ) ( )

1 1

cl

m ref l

cl cl

K A B

s s T s

s K A s K A

 

     

     

 

cl( ) T s



19

(20)

DC motor

Sensitivity of System Gain to Parameter Changes

Motor Gain Variations

A   A  A

Open-loop

: the nominal gain ol ol ol

 

ol ol

T T K A A

K A K A

 

  

 

ol ol

T K  A

  ( 0)

ol ol

T  T s 

ol ol

T K A

ol

ol

 

ol ol

T A

T A

 

; 10% error in A would yield a 10% error inTol

ol

1

ol

T A

T A

  

; sensitivity, s, of the gain from to with respect to the parameter A

ref

m

20

(21)

DC motor

Sensitivity of System Gain to Parameter Changes

Motor Gain Variations

A   A  A

AA K

A K

 

 

1

cl

cl cl

cl

A A K

T T

A A K

 

 

 

  

1

cl cl

cl

T A K

A K

 

 

dTcl

T A

  Tcl A dTcl A

Closed-loop

cl

Tcl A

  dA 

cl cl

T T dA A

cl cl

cl cl

dT A

T A

T A T dA

  ; sensitivity

Tcl

A cl

cl cl

S sensitivity of T with respect to A A dT

T dA

 

   

 

2

1 1 1

cl

cl cl cl cl

cl cl

cl

A K K K A K

A

A K A K

A K

    

    

  1

1 A Kcl

   ; less sensitive compared to open loop

STol 1 ;

1 1

1 ;

  

1 10 9.9 100

ol

SA   

21

(22)

Open/Closed loop control systems

controller

=

R Ts 1

k kc

controller open loop y

controller closed loop R

1 Ts

k

kc y

Open loop Transfer function 에서

k k k Ts

R y

c c

1 1

1

이 되어야 error=0 이 된다. Closed loop Transfer function 에서

k k Ts

k k k

Ts k k R

y p p

1 1

k k Ts

Ts k k

R p

p

1

1 1

Steady/ state error for 1

( ) R s

s

Open loop Transfer function 에서 e ss 0

k k k

k k e k

p p

p

ss

1

1 1 1

Closed loop Transfer function 에서

22

p p

(23)

Open/Closed loop control systems

=

예외의 경우에 대한 예>

1 ,

10  

k

k model error 가 있을 경우

Open loop Transfer function 에서

1 , ( ) 1.1

y k k k k

  y t  

 , ( )  

(10% steady state error)

1

c

R k Ts  y k

( y )

Closed loop Transfer function 에서

k e k

p

ss

 

1 1

101 1 1 100

1

100 

k k e

kp ss

let

1 k

k

1 1 1

, 0.009

100 ( )

k   k , e

ss

   

100 1 10(11) 111

1 ( )

ss

k k k

   

23

(24)

The Classical Three-term Controller (PID controller)

Motor Speed Control (unity feedback)

Tl

 

0

( )

( ) ( )

t

a P I t D

a I

v K e K e d K de dt

V s K

U s D s K K s

 

   

    

Dc

e

ref

va

1 A

s /

B A

m

( ) ( ) D sc( ) KP K sD E sE s    s

s1

P- control

( ) ( ) ( )

1 1

cl

m ref l

cl cl

A K B

s s T s

s A K s A K

 

    

     

0 0

Kcl KP, KI 0, KD 0 KK KK

PI- control

 

ref m

a P ref m I

v K K

s

  

    

 

   

2 2

( ) ( ) ( )

1 1

P I

m ref l

A K s K Bs

s s T s

A K A K A K A K

 

    

( ) I

c P

s D s K K

  s

24

   

2 2

( ) ( ) ( )

1 1

m ref l

P I P I

s A K s A K s A K s A K

           

Steady statem ref   0 Tlref

(25)

The Classical Three-term Controller (PID controller)

Motor Speed Control (unity feedback)

PID- control ( )

( ) ( )

I

c P D

K

D s U s K K s

E s s

   

( )

1 1

P D

I

E s s

K T s

T s

 

    

 

0

Non-negligible armature inductance LLa  0

    

0 2 1 2

( )

 

a a m t e m t a a a l

m t a a a l

L s R J s b K K K v L s R T a s a s a s K v L s R T

        

 

 

 

    

PID control, Va KP KI K sD

ref m

s

 

       

K K

0 2 1 2 tP KI D  m( ) tP KI Dref( )

a a

l

a s a s a K K K s s K K K s s L s R T

s s

    

               

   

2

3 2

( ) t D t P t I

m

K K s K K s K K

s K K K K K K

 

  

   

 

   

3 2

0 1 2

2

3 2

0 1 2

m( )

t D t P t I

a a

l

t D t P t I

a s a K K s a K K s K K L s R s

a s a K K s a K K s K K T

    

 

     

25

Ex 4.6) Ch.eq.

3 parameters for 3 ch. Roots ; arbitrary

   

3 2

0 1 t D 2 t P t I 0

a s a K K s a K K sK K

(26)

Ziegler-Nicholas Tuning Rules for PID controllers

+ e

_

r

1

c

c

1

d

i

K T s

T s

 

 

 

 

u

plant

Method 1) Transient response method

R(max slope)

Method 1) Transient response method

PLANT

L

Stepinput

1 0.9, 3.3

c

c i

K for P control RL

K T L for PI control

RL

input

1.2, 2 , 0.5

c i d

K T L T L for PID control

RL



• This method works good if the unit step response is (sigmod)

26

• This method works good if the unit step response is (sigmod)

shaped

(27)

Ziegler-Nicholas Tuning Rules for PID controllers

Method 2) Ultimate sensitivity method Method 2) Ultimate sensitivity method

PLANT

+

_

K

c

1

K

c

 1, 

n

 increase

K increase

decrease

 

• Increase until you hit the stability limit K

c 0.5 U

KK for P control

 0.5

0.45 , 0.83

0.6 , 0.5 0.125

c U

c U i U

c U i U i U

K K for P control

K K T P for PI control

K K T P T P for PID control

   

    

27

(28)

PID controllers – reviews, gain tuning

Gd

d

c( ) e G s

R

u y

GP

1) ( )

P

( )

I t

( )

D

de u t K e t K e t dt K

  

0

 d

( ) ( ) ( )

( )

P I t D

I

c P D

dt

G s K K K s

  s 

 

1 1

P D

i

K T s

T s

 

    

 

2) Ziegler-Nichols Tuning Rules

3) I - control : no steady-state error, disturbance rejection

28

3) I control : no steady state error, disturbance rejection

D - control : additional damping

(29)

Integrator Anti-windup

PI- control

saturation

u I

P

K K

s e

R

uc y

Plant u

uc

u um in

um ax

1. Large R Large saturation integration of error, Large increases until the sign of the error changescvery large overshoot

u u u

c

u

increases until the sign of the error changes very large overshoot (wind up) poor transient response

u

c

2. Solution to this problem : integrator anti-windup

- “ turn off” the integral action when the actuator saturates Digital control :

(i l t ti t max) Fi 4 22

" if u  u , K

I

 0"

(implementation-next page) Fig 4.22

29

(30)

Integrator Anti-windup

PI- controller with anti-windup (Fig 4.22)

i KP

KI

s e

R

uc u

saturation

uc

u um in

um ax

uI

K u

y

m a x

u

Ka uc

KP

(a)

KI

s e

R

uc u

saturation

uc

u um in

um ax

KP

uI

(b) Implementation of anti-windup with a single non-linearity saturation :

u  u

y

Ka

saturation :

u   u

max

30

(31)

Integrator Anti-windup

First order lag equivalent (during saturation)

e K sP KI uc

a I

sK K

(d)

Should be large enough

K

a

The anti-windup : provide local feedback to make the controller stable alone when the main loop is opened by signal saturation (and any circuit which does this will perform as anti-windup)

e

R

w

e

R

r cl

H D G y

Hy

H

v

Hr

31

(32)

Integrator Anti-windup

If , then

y r

H  H

e

R

D G y

w

D G y

1

v

32

(33)

Integrator Anti-windup

Ex) The Effect of anti-windup

Consider a plant with the following transfer function for small signals Consider a plant with the following transfer function for small signals

( ) 1 G s  s

and a PI controller,

( )

I

2 4

c P

D s k k

s s

   

in the unity feedback configuration. The input to the plant is limited to .

 1.0

Study the effect of anti-windup on the response of the system

33

(34)

Integrator Anti-windup

) i h i i d

2 Kp

Control

1) Without anti-windup

Step Saturation

1/s

Plant Output

4 Ki

1/s Integrator

2 K 1

Control1

2) With anti-windup

Step1 Saturation1

1/s

Plant1 Output1

Kp1

4 Ki1

1/s Integrator1

Step1 Ki1 Saturation1 Plant1 Output1

10 Ka

Integrator1

34

(35)

Integrator Anti-windup

0 4 0.6 0.8

1 without anti-windup

with anti-windup

-0.4 -0.2 0 0.2 0.4

Control

0 1 2 3 4 5 6 7 8 9 10

-1 -0.8 -0.6

ti [ ]

time [sec]

1 2 1.4 1.6

without anti-windup with anti-windup

0 6 0.8 1 1.2

Output

0 0.2 0.4 0.6

35

0 1 2 3 4 5 6 7 8 9 10

0

time [sec]

(36)

Steady-state Tracking and System Type

Fig 4 26 w

Fig 4.26

R

w

Hr Dcl G

y

Hy

v

Fig 4.26, Fig 4.27 Feedback control block diagram Fig 4.28 unity feedback systemg y y w

R

D u G y

v

DG G DG

Y R W V

1 1 1

1 1 1

DG DG DG

D DG D

U R W V

DG DG DG

1 G DG

Actual error

(not error signal in feedback loop) 1

1 1 1

G DG

E R Y R W V

DG DG DG

  

36

(37)

Steady-state Tracking and System Type

• Definition

The sensitivity : 1 S 1

DG

The complementary sensitivity : DG

1 1

T S DG

   DG

ESRSGW TV

A major goal of control

to keep the error small for any input and the face of parameter changes both and should be kept small

S T

p

~ frequency band

S T

37

(38)

Steady state Error in Unity Feedback control systems

=

R E(s) G(s) C(s)

) 1 (

) 1 )(

1 (

) 1 (

) 1 )(

1 ) (

(

2

1     

 

s T s

T s

T S

s T s

T s

T s K

G

p N

n b

a

N=0 ; Type 0, N=1 ; Type 1, N=2 ; Type 2 Steady state Error 를 생각해보자

) 1 (

)

(s R s

E  ( )

) ( ) 1

( R s

s s G

E  

1) 일 경우 (unit step input), s s

R 1

) (

1 1 1

s

0 0

1 1 1

lim ( ) lim

1 ( ) 1 (0)

ss s s

e sE s s

G s s G

 

  

 

Static position error constant

; 0

k Type system kp

0

;

lim ( ) (0) ; 1

; 2

p s

yp y

k G s G Type system

Type system

   

 1

38

; 0

1 1

; 1, 2,..

1 0

ss p

p

Type system e k

Type system

k

 

(39)

Steady state Error in Unity Feedback control systems

1

=

2) 12 일 경우 (unit step input), ( )

R s s

0 2 0 0

1 1 1 1

lim lim lim

1 ( ) ( ( ) 1) ( )

ss s s s

e s

G s s s G s sG s

  

  

 

Static velocity error constant kv

0 ; 0

lim ( ) (0) ; 1

v

Type system

k SG s G k Type system

 

   

; 0

1 1

; 1

ss

Type system

e Type system

k k



  

; 2, 3..

s p

Type system



 

v 0 ; 2, 3,..

k k

Type system



3) 1 일 경우 ( i i )

3) 13 일 경우 (unit step input), ( )

R s s

3 2

0 0

1 1 1

lim lim

1 ( ) ( )

ss s s

e s

G s s s G s

 

 

Static acceleration error constant ka

0 ; 0

0 ; 1

Type system Type system



 ; 0,1

1 1 Type system



2 0

0 ; 1

lim ( ) (0)

; 2

; 3

a s

Type system

k S G s G

k Type system Type system



   



1 1

; 2

; 3, 4,..

0

ss a

e Type system

k k

Type system

  



39

(40)

Open/Closed loop control systems

controller

=

R Ts 1

k kc

controller open loop y

controller closed loop R

1 Ts

k

kc y

Open loop Transfer function 에서

k k k Ts

R y

c c

1 1

1

이 되어야 error=0 이 된다. Closed loop Transfer function 에서

k k Ts

k k k

Ts k k R

y p p

1 1

k k Ts

Ts k k

R p

p

1

1 1

Steady/ state error for 1 ( ) R ss

Open loop Transfer function 에서 ess 0

k k k

k k e k

p p

p

ss

1

1 1 1

Closed loop Transfer function 에서

40

p p

(41)

Open/Closed loop control systems

=

예외의 경우에 대한 예>

1 ,

10  

k

k model error 가 있을 경우

Open loop Transfer function 에서

1 , ( ) 1.1

y k k k k

  y t  

 , ( )  

(10% steady state error)

1

c

R k Ts  y k

( y )

Closed loop Transfer function 에서

k e k

p

ss

 

1 1

101 1 1 100

1

100 

k k e

kp ss

let

1 k

k

1 1 1

, 0.009

100 ( )

k   k , e

ss

   

100 1 10(11) 111

1 ( )

ss

k k k

   

41

(42)

System Type for Reference Tracking

• System type : the degree of the polynomial for which the steady-state system error is a nonzero finite constant

• type 0 : finite error to be a step input which is an input polynomial of zero degree

Reference input

 W   V 0 

1

E 1 R SR

 DG 

1

( )

k

1( ) 1

k

r t t t R

s

 

Steady state error

0

lim ( ) lim ( ) 1

t

e t e

ss s

sE s



 

0

0 1

lim 1 ( )

1

1 1

lim 1

s

s k

s R s

DG s DG s

 

 

42

1  DG s

(43)

System Type for Reference Tracking

Step input

if DG has no pole at the origin, i.e.

DG (0)  0

0

1 1 1

lim 0

1 1 (0)

ss s

e s

DG s DG

 

 

Type 0

K

DG (0)

: “position error constant Type 0 , : position error constant Type 1 ,

P

(0) K

DG

0

1 ( ) DG G s

 s

Type 2 ,

2 0

1 ( )

DG G s

 s

43

(44)

System Type for Reference Tracking

System

0

0

( ) 1

n n ( )

DG G s G s

s s

: no pole at the origin

G s

0

( )

0

( )

n

G s  K

0 1

0

1 1

lim 1

1 ( )

ss s k

n

e s

G s s s

0

( )

n

0 0

lim 1

( )

n

n k

s

s

s G s s

If , then

n  k e  0

, then

n  k e  

0 1

n   k

, then

1

n

e Type n

 K 0

n   k

, then

1 1 0

e Type

 K

1  K

0

Type 0 ; 0, 0

1 1

ss

n k

e

K : position error const

K

0 0

1 ( ) 1

ss G s K K0: position error const

Kp

Type 1 ; 1, 1

1 1 1

ss ( )

n k

e G K K

Kv

참조

관련 문서

Keywords: PMSM (Permanent Magnet Synchronous Motor) control, motor brake system, time delay compensation, control period.. Copyright© ICROS

1) Professor, College of Nursing, Seoul National University, 2) Assistant Professor, Department of Clinical Nursing, Ulsan University 3) Professor, Department of

Key Words : Supercavitating Underwater Vehicle(초공동 수중운동체), Underwater Vehicle Dynamics Modeling(수중운동 체 동역학 모델링 ), Combination of Control

Ryu, “A Study on the Teleoperation of the Unmanned Grounded Vehicle for Improving Telepresence” Journal of Institute of Control, Robotics and Systems, vol. “Vehicle Dynamics

In addition, Labview based servo motor control program was studied that can control the servo motor by ensuring the performance and flexibility of the FPGA

Auger, “Speed sensorless control of a DC-motor via adaptive filters”,

Fig. 13 Simulation result of vehicle test.. Control Strategy Development of 4WD Vehicles based on Heuristic Approach and Dynamic Characteristic. 때문에 정규화하여

The roll controller is designed in the framework of H ∞ control scheme based on the 3 DOF vehicle model taking into consideration parameter variations, which affect