• 검색 결과가 없습니다.

The Electrochemical Characteristics of Surface-modified Carbonaceous Materials by tin Oxides and Copper for Lithium Secondary Batteries

N/A
N/A
Protected

Academic year: 2022

Share "The Electrochemical Characteristics of Surface-modified Carbonaceous Materials by tin Oxides and Copper for Lithium Secondary Batteries"

Copied!
8
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

The Electrochemical Characteristics of Surface-modified Carbonaceous Materials by tin Oxides and Copper for Lithium Secondary Batteries

Joong Kee Lee

, D. H. Ryu*, Y. G. Shul*, B. W. Cho and D. Park

Clean Technology Research Center/Battery and Fuel Cell Center

Korea Institute of Science and Technology, P.O. Box 131, Cheongryang, Seoul, Korea

*Dept. of Chemical Eng., Yonsei University, Shinchon, Seoul, Korea

e-mail: leejk@kist.re.kr

(Received November 28, 2000; accepted January 19, 2001)

Abstract

Lithium intercalated carbon (LIC) are basically employed as an anode for currently commercialized lithium second- ary batteries. However, there are still strong interests in modifying carbon surface of active materials of the anode because the amount of irreversible capacity, charge-discharge capacity and high rate capability are largely determined by the surface conditions of the carbon. In this study, the carbonaceous materials were coated with tin oxide and copper by fluidized-bed chemical vapor deposition (CVD) method and their coating effects on electrochemical characteristics were investigated. The electrode which coated with tin oxides gave the higher capacity than that of raw material. Their capacity decreased with the progress of cycling possibly due to severe volume changes. However, the cyclability was improved by coating with copper on the surface of the tin oxides coated carbonaceous materials, which plays an impor- tant role as an inactive matrix buffering volume changes. An impedance on passivation film was decreased as tin oxides contents and it resulted in the higher capacity.

Keywords : Lithium Secondary Batteries, Fluidized-Bed CVD, Surface Modification.

1. B †

*Ò Z&Ï ;VV~ ’ÿ *öb‚ 6Ò ÒÏ> ®º ÒÒ šN *æ~ ¦b‚ ÒÒ .³, ê²Òò 5 ÒÒ alloys f high energy densityf lightest weight¢ <º * Òò‚

& **& -3.045 V‚ &Ë Ôf *VrWê¢ <V r^ö ·

šNj ;W~Vö &Ë £² *¶¢ ~º r Òòš.

¾ ÒÒ .³f ÏÁO* >wš ê¯>º ÿn ÒÒ .

³~ ‚šö dendrite~ ;Wb‚ ž‚ Қš >«~ 6² 5 n;W GšöB šN*æ‚ ÒÏ~Vöº ç‚ ^B¢ n

 ®. š‚ ^B¢ šÖ~V *š r >wö inter- calation *çš ‚Ï>º rocking-chair Bvš ê«>î[1- 3]. ¯, ÒÒ .³j Ôf *Vz **öB ÒÒ šNj &

'b‚ ‡> O† > ®º ê² host ’–‚ &Ú~º ©

š. š‚ *æº ÒÒ .³ *æö jš energy densityö

®ÚB Ôf 6²¢ š–, Қš >« 5 n;W GšöB Қšš ê¯>º ÿn j& >wö ~‚ Ïï ¶ ^B

¢ n ®.

V¢B ê² Òò~ &n'ž bîš –Ò>î, ֓ Ò Ò .³j &† > ®º ÒÒ alloys~ ÒÏö &š VÞ

æ² >î. ÒÒ alloys~ š†' specific chargesf charge densitiesº lithiated graphites(LiC6) ¸b–, ­­ ÒÒ

metal alloys~ packing densities, ¯ charge densitiesº .³ Ò Òö &ƒ[4-8]. LiC6ö jš ÒÒ alloys~ 6 ž ßûf host metalš '.® FBš, ·ÿ **& ÒÒ .³~ *

ëÏ ÒÒ šN *æöB ê² Òò& anode‚ 6Ò ÒÏ>º

šFº .³š ÒÒ" alloying >wj ê¯~šB ¦bf ’

–ö ®Ú ç‚ æz¢ >>~V r^š. lithium-freef lithiated host Қ~ ¦b Nº *;'b‚ 100~300% ;êš

. Ö"'b‚ ÒÒ alloys~ ãÖ Ïïf ¸æò alloying/

dealloying >w~ >ö Vž ç‚ ¦b æz‚ žš

morphological æz¢ ¢bB Қš >«~ 6² ^B¢ ¢ bʲ B[9].

ôf ’&f j& Ïï, ÏÁO* Ïï 5 high rate capability& ê²~ ‚š çö ’² ~š~V r^ö ê²

~ ‚š Bîö &j &^J ®.  ’öBº &n'

ž ¦ bî~BBj *š ê²Òò ‚šö Fÿç zVç ÃO»j ê«~ "CÖzb 5 ’Ò¢ z+Žb‚Ž  * Vz' Î"¢ ¦Ã~¶ ~&. ¯, Vš~ ê²Òòf ÒÒ alloys~ Ë6j ֦ΠÒҚN*æÏ *‚bîj B–~ *Vz' ßWj ¦Ã~&.

2. þ

 ò

(2)

‚bî‚B ï «ê& 10µmš 2800oCöB ¾ÒB MCMB1028(Osaka gas)j ÒÏ~&b–, ‚šö šÒ~º Û V 6º J"bj B–~V *š 80oC vacuum ovenöB ~

ÿn š–V.

 ‚š Bî Ë~

Fÿç zÃO Ë~º *’Úž FV.³(metallic organic compounds)Wªj /~V *‚ ʂ, *Òò¢ Fÿz ç‚ òÚB ¢‚ z+Î"¢ &Ë~² ~º &滅 Fÿç zÃO Ë~~ BÛꚖ,  ’Ú'ž ’W º² Fÿz 5 *’Ú ÿ>&Ê /ʂf *Òò~ Fÿ zö jº‚ &Êï" FV.³ *’Ú~ ÃV{ö Vž ;{

‚ /j *š Ú>&Ê¢ MFC(mass flow controller)¢ Ò Ï~ –.~&. FV.³ *’Ú /f ÃObî~ &Ë

" /j *‚ Ë~‚ bubblerö Ú 6º ‡Ú~ ÃObî j I Nê¢ ¸ ÃVzB ÃObj /~º Ë~‚ ’ W>Ú ®. Fÿç >wVº çã 2ž~ quartz&b‚ B·

>Ú ®b–, šf zÃOö ~‚ *’Ú ªš >w" *

Òò~ Fÿz& ÿö ¢Ú¾B *Òò~ ‚š Bîš

ê¯>º ¦ªb‚ *’Ú ªÒ¢ *‚ ž¶&, [Ú bîž

*Òò~ /¦, Fÿzö Vž [Ú bî bj z× Ï

š~² ~V *‚ v>Vf zÃO >wö jº‚ ö.æ

/j *‚ ®V& >wV žãö J~>Ú ®. jÖbî catching ʂf Қš†" 200 mesh stainless steelb‚

B·B jV‚ ’W>Ú ®. š ʂf Fÿç zÃO

>w j;ç 6º ;çç –ëöB jÖ>Ú Æj&º 

^ *bîj ÷~, >w{K–.ö jº‚ {K–. ^ 2~ ^¢ *š J~~&. {KBÚʂf Bî –š J

;j *š _f Òò~ *¾Ò¢ *š >wV {K–.¦ªb

‚ {KbB, {K–.^2, ê²* b‚ ’W>î. 6

‚ >w&Ê ¾Òʂj ê²* êö J~~&º–,

&W >w&Ê 5 >w *’Ú ªšbj ²f scrubbingj Û~ ö&Ê¢ ¾Ò~ OÂʺ VËj æ î ®.

 Fÿç zÃO >w

 þöBº Fÿç zÃO ;j šÏ~ "CÖz b" ’Ò¢ MCMB1028~ ‚šö ÃO~&. .³ *’Ú

‚º ’Òf "CÖzb '' Cu(hfac)2, (CH3)4Snj ÒÏ~&

b–,  ßWj Table 1ö B~&. Nê~ J;f ^òj

^~&b–[10-11], G;B Ú¦ Nêº Fÿz¢ ¢bʺ

&Ê~ Nê‚ ê² Òò ¶Ú~ Nêfº Nš& ®. >w 5 Ú> VÚº î², >²(’Ò~ ãÖ), Ö²("CÖzb~

Cu(hfac)2(l) + H2(g)  Cu(s) + 2H(hfac)(g) (1) (CH3)4Sn( l ) + O2(g)  SnO2(s) + 4CO2(g) + 6H2O(g) (2)

 ò~ ªC

Fÿç z Vç ÃO»ö ~š ê²Òò ‚šö z+B .³ 5 .³Özb~ ªf «¶ ’V 5 Z²j 5 –W  j SEM(Hitachi, S-4200), XRD(Rigaku, RINT/DMAS-2500), ICP(ASH, Thermo Jarrel POLYSCAN 61E), EPMA(Jeol, JXA- 8600) j šÏ~ rj~.

 * B– 5 *æ –ã

r ‚bî(active material)j B–~V *š .³ z+B ê²Òòf ֏Bž PVdF(polyvinylidene fluoride) [13 wt%

in NMP (1-methyl-2-pyrrolidinone)]¢ 94 : 6~ wt% jN‚ D

 'ï~ j^Êj Î&~ ³ v>V(5000 rpm)‚ 

¢~² v>‚ ê, *~ ÷*ڞ Cu meshö :w»j šÏ

Fig. 1. Schematic diagram of fluidized chemical vapor deposi- tion process.

Table 1. Properties of Cu & Sn precursor

Cu(hfac)2 (CH3)4Sn

Solid Liquid

Decomposition at T >400oC Decomposition at T >400oC Vapor pressure ~10 torr at 100oC Vapor pressure 100 torr at 25oC Melting point at 85~89oC Melting point at -54oC Boiling point at 220oC Boiling point at 78oC Specific gravity 1.35 Specific gravity 1.31 Formula weight 447.64 Formula weight 178.83

Fig. 2. Schematic diagram of Li secondary batteries.

(3)

~ z+~&. *j 80oCöB ~ ÿn š–B rolling press¢ ÒÏ~ {O‚ ê *~ ’V¢ 2Ü2 cm2‚ ¶ž

ê 80oC, ê ~öB ~ š–V. jWB *vþº ÷

*Ú vþ¢ Ž~ 100µmš.

*æ –ãf Ûê& 0.3% š~ž dry roomöB ¯~&b–,

*æº >ã *æ(half cell)¢ ’W~ .³ z+B ê² *

~ *Vz' ßWj rj~. ·ë *b‚ ê² *

, ç& *b‚ ÒÒ foil, ªÒïb‚ *šîš ŽŽB PP(poly-propylene)

1 M LiPF6(lithium hexafluorophosphate) "š Ϛ>Ú ®º EC : EMC : DMC (1 : 1 : 1)¢ ÒÏ~&. Fig. 2ö *æ –ã

’Wê¢ ¾æÚî.

3. Ö" 5 V

 ’öBº z+B "CÖzb~ · 5 ’Ò Î&ö V

ž Î"¢ rjV *š 4&æ sampleö &‚ *Vz' ß Wj –Ò~&.

 ò ªC

ICP ªCö ~š ê²Òòö &‚ Z²j 5 >w –šj Table 2ö ¾æÚî. Table 2öB CS0º raw MCMB¢ ~

~–, SN1f 1.37 wt%~ "CÖzbò z+>îj ãÖ, SN2º 0.93 wt%~ "CÖzbò z+>îj ãÖ, CS1f 1.83 wt%~ "CÖzb 5 0.14 wt%~ ’Ò¢ Žþ z+~&

j ãÖ¢ ¾æÞ.

SEMj šÏ~ ’Òf "CÖzb‚ z+B MCMB 1028

«¶~ ‚š ;çj Fig. 3ö ¾æÚî. (a)~ raw MCMB 1028º ‚šš jÚ ;çj ~ ®b–, (b), (c)º "C Özbò z+>îj ãւB z+B "C Özb «¶~ ’ V& ¢;Žj &V† > ®b–, MCMB1028~ ‚š *öB jv' ¢‚ ª¢ ¾æêj r > ®. (c)º (b) âö j~ "CÖzb~ ª &ê& Ôrj &V† > ®b–, (d)º ¸f ª &ê¢ <º "CÖzb *öB size& – ’ Ò~ ª¢ {ž† > ®. 6‚ Fÿç zÃO»ö ~š

raw MCMB1028~ ‚šö ÃOB "CÖzbf £ 50 nm ; ê~ æªj <º ’;j ¾æږ, ’Òº £ 200 nm ;ê~

æªj <º ’;~ ;çj j ®rj &V† > ®. š Table 2. Properties and preparation of metal coated carbons

Element Analysis Sample preparation method (Fluidized CVD reaction conditions) Cu (wt%) Sn (wt%)

CS0* − − −

SN1 − 1.37 tin oxides coating at Ca. 500oC for 30 min

SN2 − 0.93 tin oxides coating at Ca. 500oC for 10 min

CS1 0.14 1.83 tin oxides coating at Ca. 500oC for 40 min and subsequently copper coating at Ca.

450oC for 2hrs CS0*: raw MCMB

Fig. 3. SEM photographs of surface-modified MCMB1028 (×100K): (a) CS0 (b) SN1 (c) SN2 (d) CS1.

(4)

- ê²Òò ‚šö z+B ·ö V¢ .³ 5 .³ Özb

~ «¶ ª& cluster ;‚ jv' ¢~² ªÖ>Ú ® rj {ž† > ®.

Fig. 4º "CÖzbò z+B MCMB1028~ SEM image 5 &w~º "C~ EPMA mappingj ¾æÞ âš.

EPMAº ê² ‚š *öB ª>Ú ®º "C 5 ’Ò ?f

’W ö²~ ;W 5 ;ï ªCj ~º– ÒÏ~º O»b‚

Wª~ ßW X-ray Ê¿Þ"j G;~ ©j mappingö ~

š standard intensityf jv~º Oš. âöB "Cš

ê²Òò «¶ ‚š *öB jv' ž ª¢ ¾æÚ ® rj r > ®. Fig. 5º "CÖzb" ’Ò¢ z+‚ ò

~ SEM image 5 ö &w~º "C" ’Ò ''~ EPMA mappingj ¾æÞ âb‚ "Cš ¸f ª &ê¢ ¾æÚ

– 9² ª>Ú ®rj  {ž† > ®b–, ’Òº Ô f ª &ê¢ ¾æÚ ®º–, š©f 'f z+ ·ö ~

‚ ©b‚ ÒòB.

 *Vz' ßW ªC

3.2.1 "CÖzb~ z+B ·ö Vž Î"

.³ z+B MCMB 1028~ "C Özb~ ·ö Vž *V z' ßWj rjV *š '' 0.93%, 1.37%, 1.83%~ "

C ŽFNj <º ê² *ö &š ;*~(Galvanostatic)»

z+B ê² *~ Ñ ® Қš" v ® ҚšöB~

ÏÁO* curve‚B Ñ ® Қš~ Ï* £ 0.8V **

"¾öB ïê **¢ &V† > ®b–, z+B ·š Ã&†

>ƒ ïê **º Ã&Žj {ž† > ®. ¯, Ï* Ïïš

Ã&Žj {ž† > ®. š©f Ñ ® Қš~ Ï* "

;öBò ¾æ¾º ©b‚B v ® Қš šêöº &V>

æ pº. ¯, >wš j&'b‚ ê¯> ®rj ~~

 ®. š‚ j& ";f "CÖzb 7~ "Cj ~ö

ʺ– Vž ÒÒ~ ²j‚ ž‚ ©b‚, š‚ žš Ï* Ï

©f Fig. 7~ CV curveöBê &V† > ®. z+B "C Özb~ ·ö V¢ Ñ ® Қš~ ~ö peak& 0.7V **

"OöB Ã&Žj &V† > ®º–, š©f ÏÁO* curve Fig. 4. (a) SEM photographs of tin oxides coated MCMB and

(b) corresponding EPMA mapping of Sn.

Fig. 5. (a) SEM photographs of tin oxides and copper coated MCMB and corresponding EPMA mapping of (b) Sn & (c) Cu.

(5)

Fig. 6. 1st, 2nd charge/discharge curves of surface-modified MCMB1028. (a) CS0 (b) SN1 (c) SN2 (d) CS1.

Fig. 7. Cyclic voltammograms of surface-modified MCMB1028 with scan rate of 0.1 mV/s (0.0 V : 3.0 V); (a) CS0 (b) SN1 (c) SN2 (d) CS1.

(6)

~ ïê **öBf îR&æ‚ j& ";ö ~š ÒҚ

Öz>Ú ²j> ®rj ~~–,  v ® Қš š êöº &V>æ prj {ž† > ®.

Courtney and Dahn[12-13]ö ~~š, Li-Sn alloy~ ãÖ, Ñ

® Ï* ";ÿn ÒÒf Ö²(.Vö "C" ֏B)f Ö

~, ‚ žš Özbš »Z>šB "C" amorphous ç

~ Li2O¢ ;W~–, š‚ >wö ~š ~öB "Cf Li4.4Sn

~ š†' –W ‚êræ ÒÒ" ֏~º alloying >wj ê

¯~² >º ©b‚ > ®.

"CÖzbš z+B ê²Òò~ ãÖ, šf ?f mechanism b‚ >wš ê¯Nj {ž† > ®º–, Fig. 8f š‚ "

CÖzbš "Cb‚ ~ö>îrj ¾æÚ ®º XRD data

š. Қš *~ "CÖzbf 30 Қšš ê¯B êöº

 peak¢ &V† > ìb–, æ ~öB "C peakòj {

ž† > ®.

6‚  þöBº *~ >w~ Ö"ö ~š Z "Cš

ÒÒ" ֏~ LixSnš W>º .>w(alloying reaction)

šžöê ê²Òòf ÒÒö ~‚ *;'ž ã«>w (intercalation reaction)š ÷¯~ ÏÁO* >wj ê¯~²

xLi + 6C  LixC6 (3)

xLi + SnO2  Li2O + Li + Sn  Li2O + Li-Sn (4) 3.2.2. ’Ò Î&ö Vž Î"

Fig. 9º C-rate¢ C/5‚ ;*~ þj ê¯~&j ãÖ~

Қš WËj ¾æÞ ¾*š. âöB r > ®š "

C Özbò z+B MCMB1028~ ãÖ .V ҚšöBº raw MCMBö j~ çßB Ïïj "æò Қšš ê

¯Nö V¢ Қš ßW~ &~¢ {ž† > ®. 6‚ z +B "CÖzb~ ·š Ã&†>ƒ O* Ïï  Ã&Žj r > ®. Li-Sn alloy anode~ ãÖ "CÖzbò z+>î j ãÖöº Қšš ê¯Nö V¢ "Cš aggregation ;

‚ šÒ~Jº ãË 5 alloying/dealloying >wš ê¯>šB ç‚ ¦b æzö ~‚ morphological æz¢ ¢bB Ö"

'b‚ Қš >«~ 6²¢ ¢bʺ ©b‚ > ®

[9].  þöBê ê²Òòö "CÖzbj z+~ Қš

ßWš &~>º ©b‚ j Li-Sn alloy anodef  mechanism

š jݎj {ž† > ®. š‚ lithium alloy~ Қš

WËj BF~V *š lithium metal alloy~ ãÖ, B>‚ .

³ &ö intermetallicš¾ composite host¢ ê« 'Ï~&

º–, V Bvf ÏÁO* ß; ê ¯, ß; **öB composite¾ intermetallic~ ‚ Wªf ÒÒj &ˆ > ®º (>», cc~º) reactant‚B~ †j ~² >–, ž Wª f j‚Wb‚B reactant~ ccj jzB"º matrix †

Özb~ ç‚ ¦b æzö ~‚ Қš >«~ 6²¢ š Ö~V *š inactive matrix‚B ’Ò¢ Î&~ Қš >

«j BF~&.  ’öBê š‚ V' BvöB  B~ þ‚ Ö", âöB š "CÖzbš z+B ê

²Òòö ’Ò¢ Î&Žb‚B ž~ Қš >«~ 6² ^ B¢ šÖ† > ®² >î.

3.2.3. SEI(Solid electrolyte interphase)öB~ æz

Fig. 10f 2® ÏÁO* ҚšöB~ AC impedance 5 EVS (Electrochemical voltage spectroscopy) curve¢ ¾æÚ

®. Öz ~ö ";~ Î **ö ®ÚB "CÖzbš z +B *~ semicircle~ æª ¯, impedance& raw material ö jš /Ï® 6²Žj {ž† > ®b–, z+B "CÖz b~ ·š Ã&†>ƒ êšöB~ ªb~ʺ 6²Žj {ž

† > ®. CS1 ò~ z+B "CÖzb ·š SN1 ò~

"CÖzb · ôæò impedance& Ã&~ G;B š Fº ÒÒ" >wj ~º ¯, ‚Wž "CÖzbö jš ÒÒ

" >wj ~æ pº ¯, j‚Wž ’Ò~ Î&‚ žš .¾ B Ö"‚ ÒòB. ¯, ’Ò~ Î&º Қš >«j BF~

æò impedanceº Ã&Új {ž† > ®. 6‚ SN1"

SN2¢ jv~&j ãÖ, z+B "CÖzb~ ·š Ã&†>

ƒ êšöB~ impedanceº 6²Žj {ž† > ®.

3.2.4. C-rateö Vž Î"

"C Özbš z+B ê² Òò~ C-rateö Vž ßWj r jV *š '' C/5, C/3, C/2ö &~ ;*~»b‚ þ j ~ Қš 7 maximum discharge capacity¢ Fig. 11 Fig. 8. X-ray diffraction diagrams of the carbon electrode

before and after cycle.

Fig. 9. Cycle performances of surface-modified MCMB1028.

(7)

~ ¾*öB jv~ ê~&. âöB š z+B "

CÖzb~ ·š Ã&†>ƒ O* Ïïš Ã&~º ãËj 

š ®æò, N O*b‚ .>ƒ O* Ïï~ Nš& *Ú j r > ®. š©f &N O*öº z+B "CÖzb

š ÒÒ" alloying reactionj ¢bÊVö Ϫ‚ *j <²

>Ú ÏïÃ&‚ ¾æ¾æò, N O*öBº "CÖzb"

ÒÒ"~ alloying >w³ê& ÒÒ~ O³ê ç&'b

‚ ¶J^B z+ Î"~ 'Ëj ‚ A² >Ú Ö"'b‚ raw

material" Ïïö ®Ú – Nš& ìº ©b‚ ÒòB.

4. Ö †

 ’º *Ò çÏz>Ú 6Ò š ®º ÒÒ šN * æÏ ê² ¦~ &Ú bî BBj *š ê²Òò ‚šö F ÿç zVçÃO»j ê«~ "CÖzb 5 ’Ò¢ z+

Žb‚Ž  *Vz' Î"¢ ¦Ã~¶ ~&b–,  Ö

− Fÿç zVçÃO»ö ~š ê² Òò ‚šö z+B "

C Özb 5 ’Òº cluster ;‚ ê² Òò ‚šöB j v' ¢‚ ª¢ ¾æÚîb–, "CÖzbf 50 nm, ’ Òº 200 nm ;ê~ ’V¢ <º ’;~ ;çj ¾æÚ

®î.

− z+B "CÖzb~ ·š Ã&†>ƒ Ñ ® Қš~ Ï

* ";öB ÒÒ~ Öz 5 "C~ ~öö ~‚ j& >

wf væ² ¾æÒb–, š‚ žš .VÎNö ®ÚB

~ 6²¢ .¾~&.

− "C Özbò z+>îj ãÖ .V ҚšöBº raw MCMBö j~ çßB Ïïj "æò Қšö ê

¯Nö V¢ ÒÒ" "C~ . >w~ >ö ~‚ ¦b æz 5 morphological æz‚ ž‚ Қš ßW~ &~¢

Fig. 10. Nyquist plots of surface-modified MCMB1028 at 2th cycle.

Fig. 11. C-rate effect of surface-modified MCMB1028.

(8)

{ž† > ®î. ¾ š‚ Қš >«~ 6²¢ š Ö~V *š inactive matrix‚B ’Ò¢ Î&~ Қš

>«j BF~&.

− &N O*öº z+B "CÖzbš ÒÒ" alloying reactionj ¢bÊVö Ϫ‚ *j <² >æò, N O

*öBº ç&'b‚ š‚ >w *š *² >Ú .³ z+ Î"~ 'Ëj ‚ A² >î.

− z+B "CÖzb~ ·š Ã&Žö V¢ êšöB~

impedanceº 6²Žj {ž† > ®îb–, 6‚ "CÖz bš z+F ãÖ *êW~ Ã&‚ žš Ïïš çß>º

©b‚ 6>î. ¾ j‚W matrix †j ~º ’ Ò~ Î&º Қš >«f BFVæò êšöB~

impedanceº Ã&ʺ Ö"¢ .¾~&.

^^ò

[1] Murphy, D. W.; Cardies, J. N. J. Electrochem. Soc. 1979, 126, 349.

[2] Lazzari, M.; Scrosati, B. J. Electrochem. Soc. 1980, 127, 773.

[3] Auborn, J. J.; Barberio, Y. L. J. Electrochem. Soc. 1987, 134, 638.

[4] Yang, J.; Winter, M.; Besenhard, J. O. Solid State Ionics 1996, 90, 281.

[5] Besenhard, J. O.; Yang, J.; Winter, M. J. Power Sources 1997, 68, 87.

[6] Brandt, K. J. Power Sources 1995, 54, 151.

[7] Brnadt, K. Solid State Ionics 1994, 69, 173.

[8] Winter, M.; Besenhard, J. O.; Spahr, M. E.; Novak, P. Adv.

Mater. 1998, 10, 725.

[9] Dey, N. J. Electrochem. Soc. 1971, 118, 1547.

[10] Baliga, B. J.; Ghandhi, S. K. J. Electrochem. Soc. 1976, 123, 941.

[11] Chow, T. P.; Ghezzo, M.; Baliga, B. J. J. Electrochem. Soc.

1982, 129, 1040.

[12] Courtney, I. A.; Dahn, J. R. Progress in Batteries and Bat- tery Materials 1997, 16, 214.

[13] Courtney, I. A.; Dahn, J. R. J. Electrochem. Soc. 1997, 144, 2045.

[14] Huggins, R. A. “Handbook of battery Materials”, Part III, ch. 4. ed. Besenhard, J. O. Wiley-VCH, Weinheim, 1999, 359.

참조

관련 문서

S., “Synthesis and Characterization of LiNiO 2 Cathode Material Prepared by an Adiphic Acid-Assisted Sol/Gel Method for Lithium Secondary Batteries,” Solid State Ion-

Micro- and nano-sized pores were formed on the surface of the alloy using PEO and anodization methods, and the pore shape change according to the Zr

In this study, in order to increase corrosion resistance and biocompatibility of Cp-Ti and Ti-6Al-4V alloy that surface of manufactured alloy was coated with TiN

From the non-halogenated precursor tetrakis (dimethylamino)tin, tin oxide film was deposited at an average growth rate of 1.2 A/cycle at 50 ~ 300 o C by using a seeding

The electrochemical behaviors of the tetradentate Schiff base ligands and their Cu(II) complexes in DMF solution were investigated by cyclic voltammetry,

5A that current of cyclohexanol oxidation on Cu/CuDMG electrode is 2500 nA, more than three times higher than Cu electrode 1000 nA; for both of the two

In this study, the authors have studied the effect of pretreatment methods on the electrochemical properties, surface roughness, contact angle, and surface composition

In this work, activated carbon fibers (ACFs) were plated with copper metal using electroless plating method and the effects of surface properties and pore structures