• 검색 결과가 없습니다.

TEOS/VTES bW z+ χ~ Jz –ÿ" J ’–

N/A
N/A
Protected

Academic year: 2022

Share "TEOS/VTES bW z+ χ~ Jz –ÿ" J ’–"

Copied!
7
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

TEOS/VTES bW z+ χ~ Jz –ÿ" J ’–

fç'Á‚&"Á·ßò

‚“"VFö z"

(2001j 7ú 9¢ 7>, 2001j 8ú 23¢ j)

Gelation Behavior and Gel Structure of Tetraethyl Orthosilicate/Vinyltriethoxysilane Hybrid Coating Solution

Sang-Young Kim, Dae-Geun Choi and Seung-Man Yang

Department of Chemical Engineering, KAIST, Daejeon 305-701, Korea (Received 9 July 2001; accepted 23 August 2001)

º £

 ’öBº tetraethyl orthosilicate(TEOS)/vinyltriethoxysilane(VTES) bW z+ χöB~ Jz –ÿ" J ’–¢ ³ êjf Nê¢ æz~– &V~&. Jzº ÖWχöB >¯>îb– SEM, UV, NMR, 6êG;, '' &Vö ~šB

– š‚¦V º-J ;öB ê¾Ò ";~ 7ºWj {ž~&.

Abstract−In this article, the gelation behavior and gel structure were analyzed for the coating solutions of TEOS(tetraethyl orthosilicate)/VTES(vinyltriethoxysilane) with various molar ratios at different temperatures. Gelation was accomplished through the sol-gel method in aqueous solution. The gelation time and gel structure proceeded by the SEM, UV, NMR, rheometry, and visual observation. The gelation time was increased, but not linearly, with the content of the silane coupling agent VTES. Meanwhile, the gelation time was reduced with temperature. As the content of VTES was increased, the pore size of the prepared gel was increased. For example, when the VTES content was nine times as high as the TEOS content, the gel possessed large pores with low density structure. Moreover, in the latter case, the volume contraction was negligible with a considerably long aging time, which was different from the cases for other molar ratios. The present results showed that the post-treatment conditions in the sol-gel process affected the gel structure significantly.

Key words: Sol-Gel, TEOS/VTES, Gel Structure, Gel Time, Volume Contraction

1. B †

º-J(sol-gel) ;f ‚"ö î‚Ú ²Ò¢ òV *‚ >b‚B '7 A ®º ª¢‚B ôf Ë6j < ®. º-J ;~ Ë6b

‚º *'ž Ï[» ‚« Öbš <º ®Bb~ ·j ‚²z

† > ®, ¸f z' ¢Wj W† > ®. 6‚, &NöB ê

¯>V r^ö ö.æ ²Î GšöB FÒ~– ¢ç~ Ö;W z

bj W† > ®. ß®, Vš~ ^¢ B– ;f ¢>'b‚ ^

¢j 1,200oCšçöB ²Ö~V r^ö FV-ZV Ú¢ òº

– '~æ pæò, &NöB ê¯>º º-J ;j šÏ~š FV  ª¶f~ Ú¢ òV& Ϛ~V r^ö FVb~ Ë6ž FW

" êWj &† > ®º ²Ò¢ áj > ®² B. ¾, >wb

~ &Ϛ j Ö®~ ·š ·j öò jî¢ Ö;öB – >

» 5 j ¢V~V r^ö ê¾Ò ";š j>'ž 6f º-J 

– j~, î'b‚ ÖëzB ;š ç&'b‚ ôæ pf ©f š

‚ 6j j*® ~æ á~&V r^š[1-3]. 6‚, º-J 

;öB ¾º ^B6~ ~¾º  FÚ(complex fluid)f ç®

(silica) V>~ º-J ;~ ’º ç&'b‚ jv' ôš ê¯>Ú z. š©f ²zbš *V·Wê& ÔjB >z >w" w»>w

š jv' ¶Ò² ê¯>V r^ö >wj –.~V& Ϛ~ V·

(mechanism)j &V~V& ’Ö– 6‚ &Ë ¶öš ³¦~V r^ö

To whom correspondence should be addressed.

E-mail: smyang@kaist.ac.kr

(2)

z B39² B6^ 2001j 12ú

≡Si-OR+HO-Si:≡Si-O-Si+ROH (2)

alcoholysis water condensation

≡Si-OH+HO-Si:≡Si-O-Si+H2O (3)

hydrolysis

>wf bö ~š ¦R(silanol)š ;W>º >z >w(hydrolysis)"

 -OHV& »>Ú bš ¦Öb‚ W>º » >wb‚ &ê†

> ®.

Ö / ~öB H+šNš Ò~ r{Қ(silicon alkoxide)~ ‚

*¶Wj Š -ORV¢ Ï~ B*'b‚ ®n;‚ r{Қ *š

’–¢ ;W~ šr rzRš ÎÚ^ ¾&šB r{Қº >z >

+~ Ïj Aj

 b ª¶ _f rzR ª¶ ~ ·f ª¶¢ W~º j& »

>wj ¢bB šÚ(dimmer)¢ ;W~² B. š‚ ~~ >wöB

Jš¢ † 7º‚ ž¶º Ò~ "æ~ ·ÏV~ ’Vö Vž «Ú ˆ 'Ë" *¶ ªö Vž Fê(inductive) 'Ëj Žþ Jš¢ B -OSi

š r{(alkoxy) V& rÒ(alkyl)V‚ ~~B FV ¦~ ãÖ TEOS ö jš Ò~ 7öB~ *¶ &ê& Ã&~V r^ö ‚›W >w

º ö¾~ r{Қ ’–öB z'b‚ æ;B ;‚ "‚ >z

>w" » >w~ ³ê¢ –.~V *š ÒÏ~–¾ FZV  b

rzR ÏöB >¯>º º-J ;öB ÒÏ>º >wb‚º ®

ƒV(-OH)‚ ~~F > ®º Ò*¢ &æ ®º *‚ .³ F

î¢ &'b‚ ê¯>º >wö >wb‚ ^~² B. TEOS~

bö &‚ >wWf Ò – ޚ jîÚB, >z >wj /ê~ "

>wš ê¯>Ú >w *ö ~šBê ôf 'Ëj AV r^ö Ö"

º » >w ³ê& >z >w Ž¢B ~&‚ ’–~ ‚‚š «

point; pH ~2.5) š~~ pH 'öBº, >z >wš Ö †š ç&

'b‚ » >wš ¶ÒV r^ö F; ’– Wbj áº. ‚Þ

(4)

VB

Ps: vapor pressure over the meniscus of the pore P0: vapor pressure over a flat surface

B: molar volume of the liquid γ: interfacial energy

rm: raidius of curvature of the meniscus

š ËK" ϶~ ;ê Қ~ ;š Žæš š V² B. š

‚ 6j ~V *~ FV ª¶¢ šÏ‚ bj º-J 

æ pf Òjö j^ršÞ[poly(vinyl acetate)]¾ Òjö rzR [poly(vinyl alcohol)]ö TEOS¢ ÒÏ~ ~š2Ò¢ áj r VTES

¢ 2çB‚ ÒÏ~š žË;ê¢ ËçÒ öò jî¢ N ï (carrier film)b‚  röº Ö² R"ê¢ 6²ÊV r^ö ®  ËÒò‚B~ wÏ &ËWj " ®[5].

3. þ

3-1.º(sol) χ~ B–

Jz(gelation)¢ *‚ *’Ú‚º 4&ËV(tetra-fuctional)ž TEOS[tetra- ethyl orthosilicate; Si(OC2H5)4; Aldrich, 98%]f jöV(CH2=CH-)& >

wš ìº 3&ËV(tri-functional)ž VTES(vinyltriethoxysilane; CH2=CHSi (OC2H5)3; Aldrich, 98%)¢ ÒÏ~&b– &>ªš¢ *š 3N Ã~>

"Ö(Junsei, extra pure GR)j ÒÏ~&b– Ûςº öêR(Merck, absolute GR)

0.04& >êƒ "Ö 67.1 mlö 3N Ã~> 337.7 ml¢ b‚ Ê "Ö~

ÃBj ïV *š 15oCöB &~&. Fig. 1ö ‚B –W" ?š

TEOSf VTES~ –Wê b‡ö ?f Ö j~ öêRj ;ï~ b

‚ êö j*® R«~² F rræ £ 1ª ÿn ¶V v>V‚ v>

~ £ 30ª* v>~ j*‚ &>ªš >wj Fê~&.

3-2.¶žF ª7 ªC

&>ªš >w~ ê¯" » >w~ ê¯j G;~V *~ χ

ç~ º χj C' vÙö f Ê ¶žF ª7V(UV-Visible spectro- photometer, Varian, Cary-3)¢ šÏ~ *ö V¢ çNöB R«ê¢

–Ò~&[6]. šr ò~ ÃBj ïV *š 2¢f jªb‚ C' v Ps

P0 ---

ln Bγ

RT---2 rm ---

=

(3)

Ùj &/~&. G; ò~ –Wf TEOSf VTES ò~ ¢ Wªò

ŽF‚ º χ" ?f Ö j~ b º χ ^&æ òö &šB ' ' >¯~&.

3-3.›¶V « ª7 ªC

º χ~ *ö Vž z –W~ æz¢ &V~V *š TEOSf VTES~ Ö j& ÿ¢‚ º χö &š çNöB ›¶V « ª7 ª Cj >¯~&. 29Si NMRf AMX 500 Bruker(11747 T)¢ šÏ~&

b– b& ʺ ³ê& †ž 10 mm Â2‚ >w~ ";j G;~&b

– ªêKš Ú 5 mm Â2¢ šÏ~ Ò*Wj ¦Æ~&. ‡ç

29Si NMRöB ÒÏB ž¶º Iwamoto [7]ö ~š >¯B þ" ? . êÿ(pulse width)f 10µs, jz æ(relaxation delay)f 6.š–, V

& bîf TMS(tetramethylsilane)‚, Æ.(locking) ςº CDCl3(cloroform- d)& ÒÏ>î. šr ÒÏB ò χ~ ·f çã 10 mm Â2öB º 4 cm3~ TEOS/VTES òö 0.1 cm3~ TMSf 0.9 cm3~ b‡j &

‚ Ê Î&B‚ šº Si spin šjBž Cr(acac)3[triacetylacetonatochromium (III)]¢ ö‡ òö 0.01 Mj R«~&.  ê ¢‚ ç& F r

B~ †f 29Si& Z spin šj *j <V r^ö B~º b’ š ÿ(peak shift) *çž negative nuclear overhauser enhancement(NOE)¢

ÛB~º ©š[8].

3-4.7' ªC

–Wš ž χ 15 ml¢ þ&ö '' f ê ÃBj ïV *š

Â÷b‚ ¾ ïf Ê 15oCöB 65oCræ 10oC *Ïb‚ Jzf ç–

ÿj &V~&. šr Jz *f þ&j VÞ j*® všæ p º ç& >îj r‚ ;~ G;~&[9]. çªÒ –ÿ 6‚ ' 'b‚ &V>î. JzB òº þ& îB¢  Ê çN~ ê

(hood)öB ‚ šç ÿn BB® š–Î êö SEMj šÏš ‚š

’–¢ ªC~&b– ;ï ç~ J~ – ’–¢ &V~V *š Ò

¢š &¾Ê *öB ' –W" Nêê‚ JzÎ Ê 7 *ã (Nikon)j šÏ~ " çªÒ –ÿj &V~&. çNöB š–

Î J(xerogel)f *® Z²f ¦b¢ G;~ ²’ &ê(bulk density)¢ ºÖ~&. ' –W~ ««f >w *’Ú TEOSf VTES~

^Ò&¶¢ VB TV¢  Ê  Êö TEOSf VTES Ö j¢  š

10

ãÖ TEOSf VTES~ >w –W Ö j& 3:7š Nê 45oCöB

þ‚ ò¢ ~‚ TEOSf VTES ¢Wª òb‚ B–B ò~

ãÖ ò «j &‚ TEOSf VTES‚ '' ‚~&.

3-5.Fæ' ªC

Fæ' ç–ÿ" Jz *j G;~V *š *ö V¢ 6êf

*wKj * ³ê~ Ž>‚ G;~&. ;ç *Ë(steady shear field)öB 106 cP[mPa.s];ê~ jv' ¸f 6êræ G;š &˂ 6 êê(HAAKE; Rotovisco RV20: HAAKE)¢ ÒÏ~&. Jz *j Fæ'b‚ Ö;~V *š ÿ' êÿ þ(dynamic oscillation test)š

&˂ ARES FæVV(Rheometrics)¢ ÒÏ~&[10-12].

4. Ö" 5 V

4-1.¶žF ª7 ªC

Fig. 2º UV 'ž 2Ë 245 nmöB *ö Vž ‡7ê æz¢ ê

‚ ¾*š. ¾*öB " > ®š *Ú'b‚ VTES Wªš

Ã&†>ƒ š7 ֏j < ®º jöV‚ žš ‡7ê& Ã&Žj r > ®. B>‚ TEOS òb‚ áÚê ò TEOSf TEOSf VTES 1:1‚ bB ò TV55º ßê‚ ‡7ê~ æz& ìæò B>‚

VTES~ ãÖöº 85* ã"ê /ς ‡7ê~ Ã&& ¢ÚÒ. ¯, Fig. 1. Experimental procedures.

Fig. 2. UV absorbance for the reacting sol as a function of the gelation time.

(4)

z B39² B6^ 2001j 12ú

»B ç¢ ¾æÞ. Fig. 4öB r > ®š Q3 peakf Q4 peak

& –~ ?f jN‚ ¾æ¾ ®º >š T3& T2

šº VTES& »>Jº ã˚ z ;Žj ¾æÞ.

4-3.Fæ' G;

Fig. 5öB " > ®š >w .V~ º χ çöBº šâ vª

–ÿj ž. >w.Vöº *š æÎö V¢ polysilicate ³ê&

æ³'b‚ Ã&~šB 6ê& Ã&~² >¾ polysilicate *~ ç^ · Ïf jç £~V r^ö jšâW –ÿf &V>æ p~. ¾, »

 >wš z× ê¯Nö V¢ polysilicate~ ’V& Ã&~² Nb‚Ž

WË~ Ú~ ¦b ªNš ªê6ö ê~š Ôf *³ê(shear rate)öBº ¸f 6ê¢ ¾æÚ ¸f *³êöBº oöê «¶

š ŽÚæV r^ö 6êº 6²~² >º *z(shear thinning)–

ÿj ¾æÞ. ‚Þ, VTES òö &šBº B® *ö V¢ 6ê ò Ã&~º šâ–ÿš Ö^~² ¾æÒ. šf ?f Ö"‚¦V VTES

ò~ ãÖ Ú¶ ;ê «¶& WË>š çªÒ& ¢Ú¾B z šç W

> ®î. š‚ çªÒ~ öžf VTES& z ’–'b‚ " r >

wWš ìb– ²>Wj jº jöV(-CH=CH2)¢ < ®V r^š

[13]. TEOSò ŽFB òö jš  ã˚ £~æò, ò VTESö Bº ÚÒÖ ª¶(silicic acid polymer)~ ’V& .Vö Ϫ® · bš B‚ >² ֏š &Ë~ WVž -OH& ÚÒÖ ª¶ ã b‚ VË~V r^ö ‡çŽ*Ú(liquid precipitate)¢ ;W~² B.

*Ú'b‚ FV š :‹ãb‚ VË~² Nb‚Ž "֚¾ &W

²f ?š "š &šê Wj ¾æÚº bš¾ £‚ Wj ¾æÚ º rzRöB çªÒ¢ ¢bʲ B. «¶ªÖê~ ‚š –ÿb‚

Ú š ‡ç Ž*b~ ‚š š7[~ vþ(debye length)& ;‚

"~ šÒ‚ žš ­jöö V¢ ;*V' >BKº >–šBÊ (van der Waalse)¾ö ~š B‚ o~² B. š &6b‚ š VTES

~ ·š Ã&†>ƒ Jz& ¶Jæ² >– î~ «¶ö ²>W z+j

~º †j ~² B. š‚ *çf Ôf pH 'öBò ¢Ú¾º–

šº pH& ¸² >š Si-OH& Si-O‚ ~~>V r^ö >BKš B

~ >² ֏š ÚJòæV r^š. šf FÒ~² ª¶~ ³ ê& Ã&Žö Vž 6ê Ã&‚ ž~ {֚ &š¢ AV r^ö J z& ¶Jæ 6‚ ‡Ob‚ ž‚ ·ÏV~ VËj ÎÚNÒº *ç

š >î[9].

Fig. 6

þj šÏ~, ' Nê ê‚ Jz*j Fæ'b‚ G;‚ 8b‚

*Ú >w º χ7 r{Қ~ VTES Žïö V¢ ê‚ âš

. ¾*öB r > ®š VTES Žïš ôjî>ƒ *>'b‚ J

r~ v &æ ç>B Î"r^b‚ 'B. TEOS~ ãÖ NMR ªC Ö"[14]öBf ?š » >w~ ³ê& †šV r^ö š šò  Fig. 3. NMR peaks before the catalyst injection(TV55).

Fig. 4. NMR peaks after the catalyst injection(TV55).

ious reaction times.

(5)

¾, ‚Þ Ö –šöB TEOS& ôf ãÖ „B çªÒ –ÿöB~ J

«¾" ‡çŽ*b(liquid precipitate)~ ;Wš Ã&~ Jz& æB Fig. 7f &öB þ&ö ò¢ If ê ''ž O»b‚ Jz

*j G;‚ Ö"¢ –W" Nêö V¢ ê‚ ¾*š. ãËWf

„B Fæ' O»b‚ áf Ö"f FÒ~æò B‚ Jz*f z Bº »~ ²*j *šB £*~ *j jº‚ ~V r^ö ž¦ V

Fig. 8f 7*ãj šÏ~  –Wb‚ B–B J ò~ ‚šj

çNöB &V‚ Òêš. Ö"ö ~~š, ‚š Ö‚æ(morphology)º Nêö ’² ~š~æ p~. *ãÒêöB " > ®š VTES ·

š Ã&†>ƒ š 6²Žj r > ®b– V(pore)š öj r

¾& jöV(-CH=CH2)šV r^š. š‚ jöVº >wWš ì

ªÒ& >Jº ã˚ Ã&‚. 6‚ îæï ÒêöB " > ®š B

>‚ VTES ò~ ãÖ j*® çªÒB 'š ¾æÎj r > ®.

Fig. 9º  NêöB JzÎ ò¢ £ 1Bú* çN~ êöB

š–Î xerogel~ ²’ &ê¢ G;‚ ©š. &NöB JzÎ  ò& ¦z &ê& ¸~æò æ Nšº ì –Wö V¢ ÚÚš

TV19 òöB &ê& /Ï® 6²Žj r > ®. šº š –Wš ç ªÒ>º –Wž VTES ò :‚ „~ *š êž ©b‚ 6B.

Fig. 10

TV73, TV37, TV19 ò¢ ‚‚. SEM ÒêöB " > ®š  Fig. 6. Gelation time as a function of the molar ratio of VTES/TEOS at

various temperatures.

Fig. 7. Gelation time as a function of the composition of TEOS/VTES at various temperatures.

Fig. 8. Surface morphology observed by a microscope.

Fig. 9. Bulk density as a function of the composition of TEOS/VTES for various xerogels.

(6)

z B39² B6^ 2001j 12ú

B «¶~ ηš ¾ êNj r > ®. „B Þ/~&š VTES

ò~ ãÖ ²>Wj jº jöVö ~š ‚šš ’W>Ú ®rj r

> ®. º-J >wf Jz& B šêöê ê³ >wš ê¯>V r^

ö Jz>îj r~ ;¢ &‚ Fæ‚ Vº ÚJÖ¾ šº ç&'b‚ TV19 ò& Jz& > Â Ê  ’–¢ &‚ Fæ~

ÎÚæVº ~æò £ 1Bú~ ?W" š–¢ –~º ÿn š‚ Ï

š >w~ 'Ëj Aæ pj > ì. ~æò ‚šš ²>W jöV‚

z+B ;~ TV19~ ãÖ Ïš >wš jöV‚ žš &šB. Ö öB~ » >w~ V·(mechanism)öB » >w~ >wf H3O+

~ ~~ >wb‚ ê¯>V r^ö ²>W~ jöV‚ z+B TV19~

ãÖ H3O+~ Ϛ £æ pj ©b‚ .çB. ֓ JzB ê~ ’

–¢ &‚ < ®j ©š.

Fig. 11f Jz Î ê š–B ò xerogel~ Òêš. ÒêöB

" > ®š TV19 ò‚ ò xerogelf –~ >»š ìÚB ö¾~

þ&~ ’Vf ?~b¾ ž ò~ ãÖ Jš B šêö  ¦b&

ZJ 70% šç *Ú ©j " > ®. ¯, TV19~ ãÖ –~ >»š

ìV r^ö Jš B ç~ ’–& &‚ FæNj r > ®. TV19

ò¢ Bž‚ &¦ª~ òö &šB r > ®š B Jz æ6~

’–f ‚« n;‚ xerogel ç~ ’–º ç® Nš& ®rj r >

š > jºŽj ~‚.

5. Ö †

TEOS/VTES b z+ χöB VTES ·š Ã&†>ƒ JöB 

ö V¢B Jz*f /Ï® 6²~&b– VTES ³êö V¢ &Ú' b‚ Jz*š Ã&~º ãËj &b¾ ‚² Jz*f '; ³

B šêöê >»š –~ ì – Vj &æ– &ê& &Ë Ô~.

~æò TV19 ò¢ Bž‚ &¦ª~ òº Jš B šêöê >w

š æ³" 70% šç~ ¦b>»š ¢ÚÒ. š‚¦V .V JzB J

~ ’–f ‚« n;‚ xerogel ç~ ’–º ç® Nš& ®rj r

> ®.

6 Ò

 ’º ‚“"Ò(KOSEF 971-1109-058-2)" Brain Korea 21 Òëö ~~ æö>î.

Fig. 10. SEM images of TEOS/VTES gels.

Fig. 11. Xerogel photo of TV19 and TV91.

(7)

^^ò

1. Park, D. G.: Polymer Science And Technology, 8(3), 248(1997).

2. Park, J. O.: Polymer Science And Technology, 8(3), 261(1997).

3. Brinker, C. J. and Scherer, G. W.: “Sol-Gel Science,” Academic Press (1992).

4. Hench, L. L. and West, J. K.: Chem. Rev., 90, 33(1990).

5. Lee, S.-Y., Lee, J.-D. and Yang, S.-M.: J. Mat. Sci, 34, 1233(1999).

6. Kim, K.-S. and Kim, W.-S: HWAHAK KONGHAK, 37, 56(1999).

7. Iwamoto, T. and Mackenzie, J. D.: J. Mat. Sci., 30, 2566(1995).

8. Marsmann, H.: in “NMR-17, Oxygen-17 and Silicon-29,” Springer, Berlin(1981).

9. Agren, P. and Rosenholm, J. B.: J. Colloid. Int. Sci., 204, 45(1998).

10. Khan, S. A., Prud’Homme, R. K., Rabinovich, E. M. and Sammon, M. J.: J. Non-Crystalline Solids, 110, 153(1989).

11. Winter, H. H.: Polymer Sci. Tech., 27(22), 1698(1987).

12. Tung, C. Y. M. and Dynes, P. J.: J. Appl. Polm. Sci., 27, 569(1982).

13. Iler, R. K.: “The Chemisry of Silica,” Wiley & Sons. Inc., 292(1979).

14. Eu, Y.-J., Kim, D.-J. and Bae, B.-S.: J. Sol-Gel Sci. Tech., 13, 409(1998).

참조

관련 문서

Levi’s ® jeans were work pants.. Male workers wore them

In this paper, we investigate a long-time behavior of global solutions to the initial boundary problem of nonlinear dispersive-dissipative wave equation with time-dependent

2 They observed that, for a particular concentration of tetraethylorthosilicate (TEOS) with ethanol as solvent, particle size reaches a maximum and then decreases as both

The surface characteristics after molybdenum flame spray treatment in high tensile brass were quantitatively analyzed for surface composition, coating layer

클라우드 매니지드 DDI는 기업이 클라우드를 통해 모든 위치의 통합 DDI 서비스를 중앙 집중식으로 관리하여 지사에 향상된 성능을 제공하고, 클라우드 기반 애플리케이션에 대 한 보다

A suspension of platinum black and carbon powder in ethanol-water solutions serves to optimize the uniformity of the coating, electrical conductivity, and in the case of

There are four major drivers to the cosmetic appearance of your part: the part’s geometry, the choice of material, the design of the mold (or tool), and processing

1 John Owen, Justification by Faith Alone, in The Works of John Owen, ed. John Bolt, trans. Scott Clark, &#34;Do This and Live: Christ's Active Obedience as the