• 검색 결과가 없습니다.

전력시스템 해석 및 설계

N/A
N/A
Protected

Academic year: 2022

Share "전력시스템 해석 및 설계 "

Copied!
31
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

전력시스템 해석 및 설계

제 3 장

– Power Transformer -

성균관대학교 김 철 환

CENTER FOR POWER IT

(2)

Center for Power IT CENTER FOR POWER IT

전력IT인력양성센터

CONTENTS

3.1 이상 변압기 (THE IDEAL TRANSFORMERS)

3.2 실제 변압기의 등가회로(EQUIVALENT CIRCUIT FOR PRACTICAL TRANSFORMERS) 3.3 단위 법(THE PER-UNIT SYSTEM)

3.4 3상 변압기 결선 및 위상 변위(THREE PHASE TRANSFORMER CONNECTION AND PHASE SHIFT)

3.5 평형 3상 2권선 변압기의 단위 법 등가회로(PER-UNIT EQUIVALENT CIRCUITS OF BALANCED THREE-PHASE TWO-WINDING TRANSFORMERS)

3.6 3권선 변압기(THREE-WINDING TRANSFORMERS) 3.7 단권 변압기(AUTOTRANSFORMERS)

3.8 비 공칭 권선비를 갖는 변압기(TRANSFORMERS WITH OFF-NORMINAL TURNS RATIOS)

2/106

(3)

Center for Power IT CENTER FOR POWER IT

전력IT인력양성센터

3.6 3권선 변압기

▣ 그림 3.20(a) : basic 단상 3권선 변압 기

▣ 2권선 변압기의 ideal transformer relations : (3.1.8) , (3.1.14)

 이상적인 3권선 변압기의 관계식

▣ In actual units, ,

▣ In per-units,

3 3 2 2 1

1I N I N I

N = +

3 3 2

2 1

1

N E N

E N

E = =

. . 3 . . 2 .

.

1pu I pu I pu

I = +

. . 3 .

. 2 .

.

1p u E pu E pu

E = =

3/106

(4)

Center for Power IT CENTER FOR POWER IT

전력IT인력양성센터

3.6 THREE-WINDING TRANSFORMERS

누설 임피던스(Per-unit leakage impedances)

= 권선 1에서 측정한 per-unit 누설 임피던스(권선 2 단락, 권선 3 개방)

= 권선 1에서 측정한 per-unit 누설 임피던스(권선 3 단락, 권선 2 개방)

= 권선 2에서 측정한 per-unit 누설 임피던스(권선 3 단락, 권선 1 개방)

* 그림 3-20(c) : 권선 2 단락, 권선 3 개방할 때 권선 1에서 측정한 누설 임피던스(병렬 어드미턴스 분기는 무시)

식 (3.6.5) ~ (3.6.7)을 풀면,

직렬 임피던스(Per-unit series impedance)

) 7 . 6 . 3 ( ) 5 . 6 . 3 ( ,

, 13 1 3 23 2 3

2 1

12 = Z +Z Z = Z +Z Z = Z +Z

Z Z12

Z13

Z23

) 8 . 6 . 3 ( ) 2(

1

23 13

12

1 Z Z Z

Z = + −

) 9 . 6 . 3 ( ) 2(

1

13 23 12

2 Z Z Z

Z = + −

) 10 . 6 . 3 ( ) 2(

1

12 23 13

3 Z Z Z

Z = + −

4/106

(5)

Center for Power IT CENTER FOR POWER IT

전력IT인력양성센터

3.6 THREE-WINDING TRANSFORMERS

▣ EX 3.9)

The ratings of a single-phase three-winding transformer are - winding 1: 300 MVA , 13.8 kV

- winding 2: 300 MVA , 199.2 kV - winding 3: 50 MVA , 199.2 kV

The leakage reactance, from short-circuit tests, are - 0.10 per unit on a 300-MVA , 13.8-kV base - 0.16 per unit on a 50-MVA , 13.8-kV base - 0.14 per unit on a 50-MVA , 199.2-kV base

Winding resistances and exciting current are neglected. Calculate the impedances of the per-unit equivalent circuit using a base of 300MVA and 13.8kV for terminal 1.

12 = X

13 = X

23 = X

5/106

(6)

Center for Power IT CENTER FOR POWER IT

전력IT인력양성센터

3.6 THREE-WINDING TRANSFORMERS

Sol)

Then, From (3.6.8)-(3.6.10),

unit per 96 . 50 0

) 300 16 . 0

13 (  =

 

=  X

unit per 84 . 50 0

) 300 14 . 0

23 ( =

 

=  X

(0.10 0.96 0.84) 0.11 per unit

2 1

1 = + − =

X

(0.10 0.84 0.96) 0.01 per unit

2 1

2 = + − =−

X

(0.84 0.96 0.10) 0.85 per unit

2 1

3 = + − =

X

6/106

(7)

Center for Power IT CENTER FOR POWER IT

전력IT인력양성센터

3.6 THREE-WINDING TRANSFORMERS

- The per-unit equivalent circuit of this three-winding transformer is show in Figure 3.21.

- Note that is negative. This illustrates the fact that , and are not leakage reactance, but instead are equivalent reactances derived from the leakage reactances.

Leakage reactances are always positive

- Note also that the node where the three equivalent circuit reactances are connected does not correspond to any physical location within the transformer

X2 X1 X2 X3

7/106

(8)

Center for Power IT CENTER FOR POWER IT

전력IT인력양성센터

3.6 THREE-WINDING TRANSFORMERS

▣ EX 3.10)

Three transformers, each identical to that described in Example 3.9, are connected as a three-phase bank in order to feed power from a 900-MVA , 13.8-kV generator to a 345-kV transmission line and to a 34.5-kv distribution line. The transformer windings are connected as follows:

- 13.8-kV windings(X) : , go generator

- 199.2-kV windings(H) : solidly grounded Y, to 345-kV line - 19.92-kV windings(M) : grounded Y through , to 34.5-kV line

The positive-sequence voltages and currents of the high and medium-voltage Y windings lead the corresponding quantities of the low-voltage winding by

Draw the per-unit network, using a three-phase base of 900 MVA and 13.8 kV for terminal X . Assumed balanced positive-sequence operation.

= j0.10 Zn

30°.

8/106

(9)

Center for Power IT CENTER FOR POWER IT

전력IT인력양성센터

3.6 THREE-WINDING TRANSFORMERS

Sol)

The per-unit network is shown in Figure 3.22

Since the M and H windings are Y- connected,

- which are the rated line-to-line voltages of the M and H windings.

v k VbaseX =13.8

v k VbaseM = 3(19.92)=34.5

v k VbaseH = 3(199.2)=345

9/106

(10)

Center for Power IT CENTER FOR POWER IT

전력IT인력양성센터

3.7 단권 변압기

▣ 그림. 3.23(b) : 단권 변압기

: the windings are both electrically and magnetically coupled

▣ smaller per-unit leakage impedance

smaller series voltage drops (장점)  higher short-circuit currents (단점)

장점 : lower per-unit losses (고효율), lower exciting current, and lower cost if the turns ratio is not too large.

단점 : 권선이 전기적으로 연결  transient overvoltages

10/106

(11)

Center for Power IT CENTER FOR POWER IT

전력IT인력양성센터

3.7 AUTOTRANSFORMERS

▣ EX 3.11)

The single-phase two-winding 20-kVA , 480/120-volt transformer of Example 3.3 is connected as an autotransformer, as in Figure 3.23(b) , where winding 1 is the 120- volt winding. For this transformer, determine

a. The voltage ratings and of the low and high-voltage terminals

b. The kVA rating

c. The per-unit leakage impedance

EX EH

11/106

(12)

Center for Power IT CENTER FOR POWER IT

전력IT인력양성센터

3.7 AUTOTRANSFORMERS

Sol)

a. The voltage ratings and of the low and high-voltage terminals

b. The kVA rating

also,

c. The per-unit leakage impedance

From example 3.3, the leakage impedance is per unit as a normal, two-winding transformer.

EX EH ,

120 volts

EX = EX =E1 =120volts, E2 =480volts, EH = E1+E2 =120=480 =600volts

°

78.13 0729

. 0

=

= Ω

=

= 11.52

000 , 20

) 480 , (

4 . 000 14

, 25

) 600

( 2 2

baseHold

baseHnew Z

Z

unit per

Zpunew = ∠ °

 

° 

= 0.05832 78.13

4 . 14

52 . ) 11 13 . 78 0729 . 0

. (

.

, 667 . 41 480 / 000 ,

2 I 20 A

I = H = = SH =EHIH =(600)(41.667)=25 kVA. A I

I I A I

A I

IH (41.677) 166.7 , X 208.3

120 , 480

667 .

41 1 1 2

2 = = = = + =

=

. 25

) 3 . 208 ( ) 120

( kVA

I E

SX = X X = =

12/106

(13)

Center for Power IT CENTER FOR POWER IT

전력IT인력양성센터

변압기의 모델링 : 단위값 사용하는 것이 실제값 사용하는 것보다 간단

회로상에서 이상 변압기 권선의 제거 : 선택된 기준전압의 비 = 권선의 정격전압 의 비

일부의 경우, 상기 방법으로 기준전압을 선택하는 것이 불가능  그림 3.24 : 변압기를 병렬로 연결하여 사용할 경우

변압기의 정격전압이 설정된 기준전압에 비례하지 않는 변압기의 단위법 모델  비 공칭 권선비를 갖는 변압기

13/106

3.8 비 공칭 권선비(OFF-NOMINAL TURNS RATIOS)를 갖는 변압기

, /

/

/

2 1 2 1 2

1

V V V N N

V

base base

=

rated rated

=

2 1 2

1

rated rated base

base

V V V

V =

(14)

Center for Power IT CENTER FOR POWER IT

전력IT인력양성센터

3.8 TRANSFORMERS WITH OFF-NOMINAL TURNS RATIOS

▣ 그림 3.25(a) : 정격전압 , 를 갖는 변압기

▣ 설정된 기준전압이 다음을 만족하는

것으로 가정

▣ 로 정의하면, 식 (3.8.1)은 다음 식 (3.8.3) 직렬로 연결된 2개의 변압기 (그림 3.25(b) )

2번째 변압기 : 설정된 기준전압 비 b 와 같은 정격의 변압비를 가짐 이 변압기는 그림 3.9 ,3.17과 같은 표준형 단위 모델

rated

V1 V2rated

rated t

rated

a V

V

1

=

2

2

1 base

base bV

V =

b a c= t /

rated rated

t

rated V bcV

b b a

V1 2 = 2

=

14/106

(15)

Center for Power IT CENTER FOR POWER IT

전력IT인력양성센터

3.8 TRANSFORMERS WITH OFF-NOMINAL TURNS RATIOS

▣ The per-unit model : 그림 3.25(c)

An alternative representation : 그림 3.25(c) 에 마디 방 정식 적용

where both and are referenced into their nodes in accordance with the nodal equation method

=

2

1 22

21

12 11

2 1

V V Y

Y

Y Y

I I

I1 I2

15/106

(16)

Center for Power IT CENTER FOR POWER IT

전력IT인력양성센터

3.8 TRANSFORMERS WITH OFF-NOMINAL TURNS RATIOS

식 (3.8.4)의 어드미턴스 값은,

eq V eq

Z Y V

Y = I = =

=

1

1 0 1 11

2

eq V eq

Y c c

V Z

Y I 2 2

2 0 2

22 /

1

1

=

=

=

=

eq eq

V

V cY Z cV V

Y I =

=

=

= 2

2

2 0 1 12

/

1

eq V

Y V c

I c V

Y I *

1 1

*

1 0 2 21

2

=

=

=

=

16/106

=

2

1 22

21

12 11

2 1

V V Y

Y

Y Y

I I

(17)

Center for Power IT CENTER FOR POWER IT

전력IT인력양성센터

3.8 TRANSFORMERS WITH OFF-NOMINAL TURNS RATIOS

▣ EX 3.12)

A three-phase generator step-up transformer is rated 1000 MVA , 13.8 kV / 345 kV Y with The transformer high-voltage winding has taps. The system base quantities are

Determine the per-unit equivalent circuit for the following tap settings:

a. Rated tap

b. -10% tap (providing a 10% voltage decrease for the high-voltage winding)

Assume balanced positive-sequence operation. Neglect transformer winding resistance, exciting current, and phase shift

∆ .

10 .

0 per unit j

Zeq = ±10%

MVA Sbase3φ =500

kV VbaseXLL =13.8

kV VbaseHLL =345

17/106

(18)

Center for Power IT CENTER FOR POWER IT

전력IT인력양성센터

3.8 TRANSFORMERS WITH OFF-NOMINAL TURNS RATIOS

Sol)

a. Rated tap

Using (3.8.1) and (3.8.2) with the low- voltage winding denoted winding 1,

From (3.3.11)

The per-unit equivalent circuit, not including winding resistance, exciting current, and shift is shown in Figure

345 1 8 . 04 13

. 345 0

8 .

13 = = = = =

= a c

V b V

a t

baseHLL baseXLL t

unit per j

j

Zpunew 0.05

1000 ) 500 10 . 0

. (

.  =

 

= 

18/106

(19)

Center for Power IT CENTER FOR POWER IT

전력IT인력양성센터

3.8 TRANSFORMERS WITH OFF-NOMINAL TURNS RATIOS

b. -10% tap

Using (3.8.1) and (3.8.2)

From Figure 3.23(d)

The per-unit positive-sequence network is shown in Figure

( )0.9 0.04444 13345.8 0.04

345 8 .

13 = = =

= b

at

unit per j j

cYeq 22.22

05 . 0 1111 1 .

1  =−

 

= 

1111 . 04 1

. 0 04444 .

0 =

=

= b c at

( j ) j per unit

Y

c) eq ( 0.11111) 20 2.222 1

( − = − − =

( j ) j per unit Y

c

c ) eq (1.2346 1.1) 20 2.469

( 2 − = − − =−

19/106

(20)

Center for Power IT CENTER FOR POWER IT

전력IT인력양성센터

3.8 TRANSFORMERS WITH OFF-NOMINAL TURNS RATIOS

▣ EX 3.13)

Two buses and are connected by two parallel lines L1 and L2 with positive- sequence series reactance and per unit. A regulating transformer is placed in series with line L1 at bus . Determine the bus admittance matrix when the regulating transformer;

(a) provide a 0.05 per-unit increase in voltage magnitude toward bus (b) advances the phase toward bus .

Assume that the regulating transformer is ideal. Also, the series resistance and shunt admittance of the lines are neglected

c b a ′abc

25 .

1 =0

XL XL2 =0.20 c

b

a ′′ 2×2

c b a ′

° 3

20/106

(21)

Center for Power IT CENTER FOR POWER IT

전력IT인력양성센터

3.8 TRANSFORMERS WITH OFF-NOMINAL TURNS RATIOS

Sol) This circuit is shown in Figure 3.28.

a. For the voltage-magnitude-regulating transformer,

per unit.

From (3.7.5)-(3.7.8) , the admittance parameters of the regulating transformer in series with line L1 are

0 . 25 4

. 0

1

1

11 j

Y L = j = −

628 . 3 )

0 . 4 ( ) 9524 . 0

( 2

1

22 j j

Y L = − =−

810 . 3 ) 0 . 4 ( ) 9524 . 0

2 (

21 1

12 Y j j

Y L = L = − − =

9524 . 0 )

05 . 1 ( ) 1

( +∆ 1 = 1 =

= V

c

21/106

(22)

Center for Power IT CENTER FOR POWER IT

전력IT인력양성센터

3.8 TRANSFORMERS WITH OFF-NOMINAL TURNS RATIOS

For lone L2 alone,

Combining the above admittance in parallel,

per unit

0 . 20 5

. 0

1

2 22 2

11 j

Y j

Y L = L = =−

0 . 5 ) 0 . 5

2 (

21 2

12 Y j j

Y L = L = − − =

0 . 9 0

. 5 0 .

2 4

11 1 11

11 Y Y j j j

Y = L + L = − − = −

628 . 8 0

. 5 628 .

2 3

22 1 22

22 Y Y j j j

Y = L + L = − − =−

2 12 1 12 21

12 Y Y L Y L

Y = = +

810 . 8 0 . 5 810 .

3 j j

j + =

=

22/106

(23)

Center for Power IT CENTER FOR POWER IT

전력IT인력양성센터

3.8 TRANSFORMERS WITH OFF-NOMINAL TURNS RATI

OS

23/106

(24)

Center for Power IT CENTER FOR POWER IT

전력IT인력양성센터

3.8 TRANSFORMERS WITH OFF-NOMINAL TURNS RATIOS

b. For the phase-angle-regulating transformer, Then, for this regulating transformer in series with line L1,

0 . 25 4

. 0

1

1

11 j

Y L = j = −

0 . 4 )

0 . 4 ( 3 0 .

1 2

1

22 j j

Y L = ∠− ° − = − .

3 1

1∠− = ∠− °

= α

c

) 0 . 4 ( ) 3 0 . 1

1 (

12 j

Y L = − ∠− ° −

9945 . 3 2093 . 0 87 0 .

4 ∠ °= + j

=

) 0 . 4 ( ) 3 0 . 1

( *

1

12 j

Y L = − ∠− ° −

9945 . 3 2093 . 0 93

0 .

4 ∠ °= − + j

=

24/106

(25)

Center for Power IT CENTER FOR POWER IT

전력IT인력양성센터

3.8 TRANSFORMERS WITH OFF-NOMINAL TURNS RATIOS

The admittance parameters for line L2 alone are given in part (a) above. Combining the admittance in parallel,

per unit

0 . 9 0

. 5 0 .

22 4

11 Y j j j

Y = = − − =−

0 . 5 9945 . 3 2093 .

12 0 j j

Y = + +

9945 . 3 2093 .

0 + j

=

0 . 5 9945 . 3 2093 .

21 0 j j

Y =− + +

9945 . 3 2093 .

0 + j

=

25/106

(26)

Center for Power IT CENTER FOR POWER IT

전력IT인력양성센터

3.8 TRANSFORMERS WITH OFF-NOMINAL TURNS RATIOS

▣ 3상 전압조정 변압기

A. 3상 전압 크기 조정 변압기

26/106

(27)

Center for Power IT CENTER FOR POWER IT

전력IT인력양성센터

27/106

(28)

Center for Power IT CENTER FOR POWER IT

전력IT인력양성센터

3.8 TRANSFORMERS WITH OFF-NOMINAL TURNS RATIOS

B. 3상 전압 위상각 조정 변압기

28/106

(29)

Center for Power IT CENTER FOR POWER IT

전력IT인력양성센터

29/106

(30)

Center for Power IT CENTER FOR POWER IT

전력IT인력양성센터

30/106

(31)

Center for Power IT CENTER FOR POWER IT

전력IT인력양성센터

Questions

[31/32]

참조

관련 문서

what ultimately matters in this course is not so much where you end up relative to your classmates but where. you end up relative to yourself

• In the traditional layer based data model heights are treated as attributes to the objects, not as a part of the geometry.. But the real world

This same argument can be used to show that the complementary virtual work of redundant member forces is zero not only for truss elements but for members of any other

A Y substation transformer has an 8% leakage reactance. The transformer acts as a connecting link between transmission and distribution.

Figure 3.1 The ideal diode: (a) diode circuit symbol; (b) i–v characteristic; (c) equivalent circuit in the reverse direction; (d) equivalent circuit in the forward direction...

6.9 고속분할 전력조류 계산(FAST DECOUPLED POWER FLOW) (2) 쟈코비안 행렬의 additional simplification è 계산시간 더

• 또한, 임의의 대각 요소가 너무 작은(too small) 크기를 갖는 다면, 이들 방법은 발산(diverge).. • In general, convergence of Jacobi or Gauss-Seidel can be

initial phase angles and 1.0 per unit initial voltage magnitudes (except at bus 3, where )to start the iteration procedures.. Sol) Bus 2 is a load bus.. Center for