• 검색 결과가 없습니다.

짧은 충격!

N/A
N/A
Protected

Academic year: 2022

Share "짧은 충격!"

Copied!
60
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

Engineering Mathematics I

Chapter 6 Laplace Transforms - Chapter 6. Laplace Transforms - 6장. 라플라스 변환

민기복 민기복

Ki-Bok Min PhD Ki Bok Min, PhD

서울대학교 에너지자원공학과 조교수

Assistant Professor, Energy Resources Engineering, gy g g

(2)

schedule

• 2 May, 4 May (Quiz): Laplace Transform

• 9 May 11 May : Laplace Transform

• 9 May, 11 May : Laplace Transform

• 16 May : 2nd Exam

• 18 May ~ : Linear Algebra

(3)

Ch.5 Series Solutions of ODEs. Special Functions

상미분 방정식의 급수해법 특수함수

상미분 방정식의 급수해법. 특수함수

• 5.1 Power Series Method (거듭제곱 급수 해법)

• 5.2 Theory of the Power Series Method (거듭제곱 급수 해법의 이론)

• 5.3 Legendre’s Equation. Legendre Polynomials Pn(x) Legendre 방정식. Legendre 다항식 Pn(x)

5 4 Frobenius Method (Frobenius 해법)

• 5.4 Frobenius Method (Frobenius 해법)

• 5.5 Bessel’s Equation. Bessel functions Jv(x). Bessel의 방정식. Bessel 함수 Jv(x) 5 6 B l’ F ti f th S d Ki d Y ( ) 제2종 B l 함수 Y ( )

• 5.6 Bessel’s Functions of the Second Kind Yv(x). 제2종 Bessel 함수 Yv(x)

• 5.7 Sturm-Liouville Problems. Orthogonal Functions. Sturm-Liouville 문제. 직교함수

O f 직교 고유함수의 전개

• 5.8 Orthogonal Eigenfunction Expansions. 직교 고유함수의 전개

(4)

Chapter 5. Laplace Transforms

• 6.1 Laplace Transforms. Inverse Transform. Linearity. s-Shifting

• 6.2 Transforms of Derivatives and Integrals. ODEsg

• 6.3 Unit Step Function. t-Shifting

6 4 Short Impulses Dirac’s Delta function Partial Fractions

• 6.4 Short Impulses. Dirac’s Delta function. Partial Fractions

• 6.5 Convolution. Integral Equations

• 6.6 Differentiation and Integration of Transforms

• 6.7 Systems of ODEs6.7 Systems of ODEs

• 6.8 Laplace Transforms. General Formulas

• 6.9 Table of Laplace Transforms

(5)

Laplace Transform I t d ti

Introduction

• The Laplace transform method

– a powerful method for solving linear ODEs and corresponding a powerful method for solving linear ODEs and corresponding initial value problems

IVP AP S l i S l ti

IVP Initial Value

Problem

AP Algebraic

Problem

Solving AP by Algebra

Solution of the

IVP

Step 1p The given ODE is transformed into an algebraic equation(“subsidiary equation”).g g q ( y q ) Step 2 The subsidiary equation is solved by purely algebraic manipulations.

Step 3p The solution in Step 2 is transformed back, resulting in the solution of the given problem.p , g g p

(6)

Laplace Transform. Inverse Transform.

Li it Shifti Linearity. s-Shifting

• Laplace Transform:

     

0

F s f e st f t dt

L

– 어떤 함수 f(t) (적분이 존재해야 함)에 e-st를 곱하여 0에서 무한대까지 적분한 것

0

무한대까지 적분한 것

– Integral Transform    

0

( , )

F s k s t f t dt

k l kernel

( ) ( )

f t or y t F s or Y s( ) ( )

Laplace Transform

• Inverse Transform:

1 ( )f f

   

1 F f t

L

1

1

( ) ( )

f f

F F

L L

L L

(7)

Laplace Transform. Inverse Transform.

Li it Shifti Linearity. s-Shifting

• Example 1. Let when . Find .f t 1 t 0 F s 

   

0 0

1 1

1 st st 0

f e dt e s

s s

 

L L

• Example 2. Let when where a is a constant. Find f t  eat t  0 L   f

 eat e e dtst at 1 e s a t 1 s a 0

a s s a

 

 

L

0 a s 0 s a

(8)

Laplace Transform. Inverse Transform.

Li it Shifti Linearity. s-Shifting

• Need to learn by heart.

(9)

Laplace Transform. Inverse Transform.

Li it Shifti Linearity. s-Shifting

Theorem 1Linearity of the Laplace Transform (라플라스 연산은 선형 연산이다)

The Laplace transform is a linear operation ; that is, for any functions f (t) and g(t) whose transforms exist and any constants a and b the transform of af (t)+ bg(t) exists, and

   

af t bg t a f t b g t 

L L L

• Ex.3 Find the transform of coshat and sinhat

   

   

   

1 1 1 1

cosh , inh

2 2

at at at at at at

at e e at e e e , e

s a s a

L L

    2 2

1 1 1 1

cosh

2 2

1

at at s

at e e

s a s a s a

L L L

1 1 1

1  

sinh

2

at eat

L L L  2 2

1 1 1

2

at a

e s a s a s a

 

(10)

Laplace Transform. Inverse Transform.

Li it Shifti Linearity. s-Shifting

• Ex.4

cos t 2 s 2

s

Lsin t 2 2

s

L

(11)

Laplace Transform. Inverse Transform.

Li it Shifti Linearity. s-Shifting

Theorem 2First Shifting Theorem, s-shifting (제 1 이동정리)

If f (t) has the transform F(s) ( where s > k for some k ), then has the transform F(s - a) e f tat  

(where s – a > k). In formulas,

e f tat   F s a

L

  1

at -

e f t L F sa

or, if we take the inverse on both sides,

• Example 5. s-Shifting: Damped vibrations.

cost 2 s 2 Leatcost s2a 2

L Lsint 2 2 Leatsint 2 2

Use these formulas to find the inverse of the transform

2 2 2 2

s a

s 2 2 2 2

s a

s

  23s137 L f

401

2  s2 f s

e t t

s s

s s

f s t 3cos20 7sin20

400 1

7 20 400

1 3 1

400 1

140 1

3

2 1

2 1

2

1 











L L L

(12)

Laplace Transform. Inverse Transform.

Li it Shifti Linearity. s-Shifting

Theorem 3Existence Theorem for Laplace Transform

If f (t) is defined and piecewise continuous on every finite interval on the semi-axis and t 0 satisfies for all and some constants M and k, then the Laplace transform

exists for all s > k.

  kt

f t Me

 f

L

0 t

Existence Theorem for Laplace Transforms (라플라스 변환의 존재정리) 함수 f  t 가 영역 t 0상의 모든 유한구간에서 구분적 연속(piecewise 함수 가 영역 상의 든 유한구간에서 구분적 연속(p

continuous)인 함수. 어떤 상수 에 대해 (너무 빠른 속도로 값이

커지지 않음) 모든 에 대해 의 라플라스 변환 가 존재

 t Mekt

f

 

f

k M

k

s f  t L f

Uniqueness (라플라스 변환의 유일성) – 주어진 변환의 역변환은 유일하다.

연속인 두 함수가 같은 변환값을 가지면 두 함수는 동일.

구간연속인 두 함수가 같은 변환값을 가지면 일부 고립된 점에서 다른 값을 가질 지언정 구간내에서는 다를 수 없다

(13)

Transform of Derivatives and Integrals.

ODE ODEs

• Laplace Transform of derivatives

     

  2      

0

0 0

f s f f

f s f sf f

 



L L

L L

 f  n snL f sn1f  0 sn2 f ' 0 f n1 0

L

– Ex.1 Let Find f  t tsint L f

  f  t t t t f   f  t t t t

f 0 0, ' sin cos , 0 0,  2cos 2 sin 2s

  2 2 s 2 2   2     sin 22 22



s t s t

f f

s s f

f s L L L L

L

(14)

Transform of Derivatives and Integrals.

ODE ODEs

• Ex2. Derive the following formulas

cos 2 s 2 L t 2 2

s

sin 2 2

t s

L s

(15)

Transform of Derivatives and Integrals.

ODE ODEs

• Laplace Transform of Integral (적분의 라플라스 변환):

 

         





F s f d F s f d F s

t

f -

t

t 1 1 1

L L

L            





F s f d s F s , f d s F s

t

f

0 0

L L

L

 

f t g  t s  g t g s  g t

t f t

g( ) ( ), L L L (0) L

Ex 3 Find the inverse of and 1 1

 

f g    g  g  g 

f

g ( ) ( ), ( )

If f(t) satisfy the growth restriction, so does the g(t)

– Ex.3. Find the inverse of and ss2 2

s d t

t s s

t



1 cos

1 sin

1

1 sin 1

2 2

2 1 2

2

1 



L

L

2 2

2 s s

s

s

s 0

2 2 2 2 3

2

1 sin

cos 1 1

1



t d t

s s

t





L s s 0

(16)

Transform of Derivatives and Integrals.

ODE ODEs

• Differential Equations. Initial Value Problems

 ,  0 0, ' 0 1

'

'' ay by r t y K y K

y     

– Step 1. Setting up the subsidiary equation (보조방정식의 도출):

 y R  r

Y L L s2Y sy 0 y' 0 asY y 0 bY R s

St 2 S l ti f th b idi ti b l b

 y R  r Y L , L

s2 as bY s a  y 0 y'   0 R s – Step 2. Solution of the subsidiary equation by algebra:

Transfer Function (전달함수):  

2 2 2

4 1 2

1 1 1

a b

a b s

as s s

Q

 

solution of the subsidiary equation: 2 4

  s s a  y y  Q     s R s Q s

Y 0 ' 0

– Step 3. Inversion of Y to obtain y L-1 Y

(17)

Transform of Derivatives and Integrals.

ODE ODEs

• Ex.4 Solve the initial value problem (IVP)

 0 1, ' 0 1

,

''y t y y y

– Step 1 subsidiary equation

  ,  

, y y

y y

    2  2 2

2 1

1 1

1

0 '

0 y Y s Y s

sy Y

s     2   2 s s

– Step 2 transfer function 1

1 1

2

s Q

 

1 1 1 1 1 1

1 s

Q Q

s Y

– Step 3 inversion

 

2 2 2 2 2 2

1 1 1

1 1

s s s

s s Q s

Q s s

Y

    e t t

s s s

Y t

y t

1 sinh

1 1 1

1

2 1 2

1 1

1 L L L

L

(18)

Transform of Derivatives and Integrals.

ODE ODEs

• Laplace Transform Method

(19)

Transform of Derivatives and Integrals.

ODE ODEs

• Ex.5 Comparison with the usual method

   

'' 9 , 0 0.16, ' 0 0 y  y y t, y  , y  

y y y y y

• Ex.6 Shifted Data Problems

'' 2 , , 2 2

4 2 4

y  y t y    4 2 y    4  

(20)

Transform of Derivatives and Integrals.

ODE ODEs

• Advantages of the Laplace Method

– Solving a nonhomogeneous ODE does not requireSolving a nonhomogeneous ODE does not require first solving the homogeneous ODE.

– Initial values are automatically taken care of.Initial values are automatically taken care of.

– Complicated inputs r(t) (right sides of linear ODEs) can be handled very efficiently as we show in the can be handled very efficiently, as we show in the next sections.

(21)

Unit Step Function. t-shifting

• e.g., nonhomogeneous ODE with periodic external force

'' ' 0 cos

my cy ky F t

짧은 충격!

• Complicated driving force:

y y y 0

Unit Step Function or Dirac Delta Function

짧은 충격!

– Single wave, discontinuous input, impulsive force (hammerblows)

(22)

Unit Step Function. t-shifting

• Unit Step Function (단위계단함수) or Heaviside function:

   

 

t a

a a t

t

u 1

0

• Laplace Transform of Unit Step Function:

 

• Laplace Transform of Unit Step Function:

u t a eas

L

a s t

L u

(23)

Unit Step Function. t-shifting

• On and off of functions  f t u t( ) ( a)

(24)

Unit Step Function. t-shifting

• Time shifting (t-Shifting) – 제 2 이동정리

f t 

F s 

L

   

f t a u t a

easF s

 

L

f t 

F s 

L

   

f t a u t a

e F s

 

L

   

-1

as

  

f t

a u t

 

a

 L

e F s

  

f t a u t a  L e F s

 s e e f  d e f  d

F

eas   as s   s(a)  

 s e f t adt

F e

d f

e d

f e e

s F e

a

st as

0 0

 

 s e f t au t a dt

F

e as st ( )

0

 

(25)

Unit Step Function. t-shifting

• Ex. 1 Write the following function using unit step function and find its transform.

 

 

2

2 0 1

1

2 2

t

f t t t

 

 

 

 

 

2 2

cos

t t 2

1 1

    1  

 





 

2 cos 1

2 1 1

2 1 1

1

2 u t t2 u t u t t u t

t f

(26)

Unit Step Function. t-shifting

     2   3 2

2

2 1 1 1 1

2 1 1 2 1

1 1 2

1 s

s e s

t s u t

t t

u

t

L

L

2 2

2 3

2 2 2

8 2

1 2

1 8

2 1 2

2 1 2

1 2

1 2

1 s

s e s

t s u t

t t

u

t 







 

 

 

  L

L

2 2

1 1 2

1 2

sin 1 2

cos 1 e s

t s u t

t u

t

 





 

  L

L

 f 2 2e s 1 1 1 e s 1 2 e s2 1 e s2

L

 

 

  

 

 

  

  3 2 3 2 2

1 8

2

2 e

e s s s

e s s s

e s s f s

L  

 

  



  

(27)

Unit Step Function. t-shifting

3

• Ex.2 Find the inverse transform of   2 2 2 22 2 3 2

2

s e s

e s

s e F

s s

s

t s

sin 1

2 2

1

L

s te t

s t

2 2

1 2

1

2 1

1





L

L (제 1이동정리) s-shifting

  1 sin  1   1 1 sin 2  2  3   3

2 3

f t t u t t u t t e t u t

0 0 t 1 (제 2이동정리) t-shifting

 

3

3

3 t 2

0

2 t 1 sin

1 t 0

0

3 2 t

t

(제 2이동정리) t-shifting

 

 t3 e2 t3 t 3

참조

관련 문서

- Spring is any natural occurrence where water flows on to the surface of the earth from below the surface (aquifer surface meets the ground surface)5. - Ground

The index is calculated with the latest 5-year auction data of 400 selected Classic, Modern, and Contemporary Chinese painting artists from major auction houses..

1 John Owen, Justification by Faith Alone, in The Works of John Owen, ed. John Bolt, trans. Scott Clark, "Do This and Live: Christ's Active Obedience as the

In the efficiency review of the Trombe wall system through the experiment, if the Trombe wall was applied in the building structure, the Trombe wall had the

Every seconds complete mixing across the cross section of the river (but not longitudinally) occurs. An instantaneous injection of a conservative tracer results in a

Resonance for multiple degree of freedom systems can occur at each of the systems natural frequencies. • Note that the frequency response of the previous example

Question) Emergency circumstance happens in Ferry with displacement (mass) 102.5 ton. Heeling moment of 8 ton·m occurs due to passengers moving to the right of the ship.

If this spring should happen to be part of a larger elastic system, it will always contribute the energy (2.3) to the total stored energy of the system