• 검색 결과가 없습니다.

COMPUTATIONAL NUCLEAR THERMAL HYDRAULICS

N/A
N/A
Protected

Academic year: 2022

Share "COMPUTATIONAL NUCLEAR THERMAL HYDRAULICS"

Copied!
32
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

COMPUTATIONAL NUCLEAR THERMAL HYDRAULICS

Cho, Hyoung Kyu

Department of Nuclear Engineering

Seoul National University

(2)

TWO-FLUID MODEL SOLVER-2: SEMI-IMPLICIT SCHEME

2

(3)

Contents

 Introduction

 Governing equations

 Semi-implicit scheme (ICE) for two-phase flow

 Conclusion

(4)

Introduction

 Semi-implicit scheme or ICE (Implicit Continuous Eulerian)

 Numerical algorithm for many nuclear thermal-hydraulic analysis codes

RELAP, MARS, SPACE, COBRA, CUPID

 For the coupled scalar equations

Mass and energy equations cannot be decoupled even for an incompressible flow

Due to the phage change terms

Decoupling between the mass and energy equations Instability may occur

Phage terms are very sensitive at the temperature variation

(5)

Governing equations

 Two-fluid model

 Total 8 equations for 2D flow

2 continuity equations

4 momentum equations

2 energy equations

g g

g g g

g u

t +∇⋅ =Γ

∂ (

α ρ

) (

α ρ

 ) l l l lul l

t +∇⋅ = Γ

∂ (

α ρ

) (

α ρ

 )

( )

( )

( ) ( ) (17)

g g g t

g g g g g g g g g g g g

u u u P g M

t

α ρ α ρ α α τ α τ α ρ

∂ + ∇ ⋅ = − ∇ + ∇ ⋅ + ∇ ⋅ + +

    

( )

( )

( ) ( t) (18)

l l l

l l l l l l l l l l l l

u u u P g M

t

α ρ α ρ α α τ α τ α ρ

∂ + ∇ ⋅ = − ∇ + ∇ ⋅ + ∇ ⋅ + +

    

P t S

u P

E u

e t e

g g

E g

g D

g g

g g g g

g

g

− ∂ +

=

∂ +

α

α ρ

α ρ

α

) ( ) ( ) ,

(  

P t S

u P

E u

e t e

l l

E l

l D

l l

l l l l

l

l

− ∂ +

=

∂ +

∂ (

α ρ

) (

α ρ

 ) (

α

 ) ,

α

(6)

Governing equations

 Two-fluid model

 Phage changer terms

g g

g g g

g u

t +∇⋅ =Γ

∂ (

α ρ

) (

α ρ

 ) l l l lul l

t +∇⋅ = Γ

∂ (

α ρ

) (

α ρ

 )

l li

gi

sat l

il sat

g ig

g h h

T T H T

T

H = −Γ

− +

= −

Γ ( ) ( )

) (

)

, ( l

sat il li gi

gi g

sat ig li

gi li g

E H T T

h h

T h T

h H h

S h  −



− −

 −



− −

=

P t S

u P

E u

e t e

g g

E g

g D

g g

g g g g

g

g

− ∂ +

=

∂ +

α

α ρ

α ρ

α

) ( ) ( ) ,

(  

P t S

u P

E u

e t e

l l

E l

l D

l l

l l l l

l

l

− ∂ +

=

∂ +

∂ (

α ρ

) (

α ρ

 ) (

α

 ) ,

α

(7)

Semi-implicit scheme for two-phase flow

 Numerical Procedure of ICE Scheme

 Same with the two-phase SMAC

Solve momentum eqs. with Pn for Intermediate Velocity u*

Solve pressure correction eqs.

for new time step pressure Pn+1

Update new time step velocity un+1

Update new time step scalar variables

Time

Advancing

(8)

Semi-implicit scheme for two-phase flow

 Solution procedure for the momentum equations

 Simplified virtual mass term

 Implicit velocity for the interfacial drag

g M T

g g g g

g g g g g

g

g u u u P S

t (  )+∇⋅(   ) = − ∇ +∇⋅[ ( + )]+  ,

α ρ α ρ α α τ τ

g wl g

td g

lift g

vm g

drag gi

g

ig u M M M M M

M   ,,,,, +

+ +

+ +

Γ

ig =

g g g

M g M

S  

+

=

α ρ

,

g M g

vm g

drag gi

g g

g g g g g

g

g u u u P u M M S

t (  )+∇⋅(   ) = − ∇ +Γ  +  , +  , + ' ,

α ρ α ρ α

[

( )

]

( )

) (

) (

) (

) (

g g g g g

g g g g

g g g

g g g g g

g g

g g g g

g g g g

g g

u u u

t u u

u t u

t u u u

u t u

 

 

ρ α ρ

α ρ

α

ρ α ρ

α ρ

α ρ

α ρ

α

∇ + Γ +

∂ +

= ∂

∂ + + ∂

= ∂

∂ +

g g

g g g

g u

t +∇⋅ = Γ

∂ (

α ρ

) (

α ρ

 )

(9)

Semi-implicit scheme for two-phase flow

 Solution procedure for the momentum equations

[ ]

g M g

vm g

drag g

g g gi g g

g g g

g g g g g

g g

g M g

vm g

drag gi

g g

g g g g g

g g g g

g g g

g M g

vm g

drag gi

g g

g g g g g

g g

S M

M P u

u u

u u

t u u

S M

M u

P u

u u

t u u

S M

M u

P u

u t u

, ,

,

, ,

, ,

, ,

' )

( )

(

' )

( )

(

' )

( )

(

 

 

 

 

 

 

+ +

+

− Γ

− Γ

=

∂ +

+ +

+ Γ

+

=

∇ + Γ +

∂ +

+ +

+ Γ

+

=

∂ +

α ρ

α ρ

α ρ

α

α ρ

α ρ

α ρ

α

α ρ

α ρ

α

(

EV CD

)

g EV l EV g

g CD l

EV g

g gi g CD

EV

g = Γ −Γ Γ u −Γ u = Γ u −Γ u − Γ −Γ u =Γ u −Γ u

Γ

(

l g

)

g drag g vm g M g

EV g

g g g

g g g g g

g

g u u u u u u P M M S

t u

, ,

, '

) (

)

(         

+ +

+

− Γ

=

∂ +

α ρ α ρ α

ρ

α

(10)

Semi-implicit scheme for two-phase flow

 Solution procedure for the momentum equations

( )

( )

g M

g l gl m l g VM gl l

g gl

g g

l EV g

g g g

g g g g g

g g

S

t u C u

u u F

P u

u u

u u

t u u

,

,

'

) (

) (

) (

 

 

+

− + ∂

− Γ

=

∂ +

ρ α α α

ρ α ρ

α ρ

α

(

l g

)

g drag g vm g M g

EV g

g g g

g g g g g

g

g u u u u u u P M M S

t u

, ,

, '

) (

)

(         

+ +

+

− Γ

=

∂ +

α ρ α ρ α

ρ α

) (

) (

| 8 |

1

,g i c D g l g l gl g l

drag A C u u u u F u u

M = −

ρ

 −  − = −  − 

( ) ( )

 





 + ⋅∇

− ∂





 + ⋅∇

= vm g l ml l l g g g

g

vm u u

t u u

t u C u

M   

 

,

α α ρ

(11)

Semi-implicit scheme for two-phase flow

 Solution procedure for the momentum equations

( )

t V u dV u

t

u g g

g g g

g

g

ρ α ρ δ

α

=

*

( )

∑ ( )

∫ ∑

=

=

=

=

f g g g f

g S

g g g g g

g g g

f g g g g f

S

g g g g g

g g g

S u u

S d u u

dV u

u

S u u S

d u u dV

u u

 

 

 

 

ρ α ρ

α ρ

α

ρ α ρ

α ρ

α

) (

) (

Finite Volume Discretization for intermediate velocity

( )

( )

g M

g l gl m l g VM gl l

g gl

g g

l EV g

g g g

g g g g g

g g

S

t u C u

u u F

P u

u u

u u

t u u

,

,

'

) (

) (

) (

 

 

+

− + ∂

− Γ

=

∂ +

ρ α α α

ρ α ρ

α ρ

α

( )

t V u C u

t V u C u

t dV u C u

V u u F dV u u F

V u dV

u V

u dV

u PV

PdV

g l

gl m l g VM gl g

l gl m l g VM gl g

l gl m l g VM gl

l g gl l

g gl

g Ev g

Ev l

Ev l

Ev g

g

ρ δ α δ α

ρ α α ρ

α α

α α

) (

) (

) (

) (

,

*

* ,

,

*

*

*

*

− −

= −

=

Γ

= Γ

Γ

= Γ

=

Implicit treatment of phase change and friction terms !

(12)

Semi-implicit scheme for two-phase flow

 Solution procedure for the momentum equations

( ) ( ) ( )

V S

t V u C u

t V u C u

V u u F V u V

u PV

S u u

S u u t V

u u

g M g

l gl m l g VM gl g

l gl m l g VM gl

l g gl g

Ev l

Ev g

f g g g f

g

f g g g g f

g g g g

, ,

*

* ,

*

*

*

*

*

) ' (

) (

) (

 

 

 

 

− +

− − +

− Γ

− Γ

+

=

− +

ρ δ α δ α

ρ α α α

ρ α ρ

δ α ρ

α

Finite Volume Discretization for intermediate velocity

( )

( )

g M

g l gl m l g VM gl l

g gl

g g

l EV g

g g g

g g g g g

g g

S

t u C u

u u F

P u

u u

u u

t u u

,

,

'

) (

) (

) (

 

 

+

− + ∂

− Γ

=

∂ +

ρ α α α

ρ α ρ

α ρ

α

(13)

Semi-implicit scheme for two-phase flow

 Solution procedure for the momentum equations

( ) ( ) ( )

V S

t V u C u

t V u C u

V u u F V u V

u PV

S u u

S u u t V

u u

g M g

l gl m l g VM gl g

l gl m l g VM gl

l g gl g

Ev l

Ev g

f g g g f

g

f g g g g f

g g g g

, ,

*

* ,

*

*

*

*

*

) ' (

) (

) (

 

 

 

 

− +

− − +

− Γ

− Γ

+

=

− +

ρ δ α δ α

ρ α α α

ρ α ρ

δ α ρ

α

( ) ( ) ( )

V S

t V u C u

t V u C u

V u u F V u V

u PV

S u u

S u u t V

u u

l M g

l gl m l g VM gl g

l gl m l g VM gl

l g gl g

Cond l

Cond l

f

l f l l l

f

l f l l l l

l l l

, ,

*

* ,

*

*

*

*

*

) ' (

) (

) (

 

 

 

 

− +

− +

− +

Γ + Γ

=

− +

∑ ∑

ρ δ α δ α

ρ α α α

ρ α ρ

δ α ρ

α Two linear equations

with two unknowns

(14)

Semi-implicit scheme for two-phase flow

 Solution procedure for the momentum equations

( )

[ ]

[

, 1

]

* 2

* 1

, b

u V V

F t V C

u V V

F t V C

l Cond gl

gd m l g VM gl l l

g Cond gl

gl m l g VM

gl

Γ = + +

+ +

Γ

δ ρ

α α ρ

α

δ ρ

α α

( )

[ ]

[

, 1

]

* 1

* 1

, b

u V V

F t V C

u V V

F t V C

l Ev gl

gd m l g VM gl

g Ev gl

gl m l g VM gl g

g

Γ =

+

Γ + +

+

δ ρ

α α

δ ρ

α α ρ

α

( ) ( ) ( )

V S t V

u C u

t V u C u

V u u F V u V

u PV

S u u

S u u t V

u u

g M g

l gl m l g VM gl g

l gl m l g VM gl

l g gl g

Ev l

Ev g

f g g g f

g

f g g g g f

g g g g

, ,

*

* ,

*

*

*

*

*

) ' (

) (

) (

+

+

Γ

Γ

+

=

+

ρ δ α δ α

ρ α α α

ρ α ρ

δ α ρ

α

( ) ( ) ( )

V S t V

u C u

t V u C u

V u u F V u V

u PV

S u u

S u u t V

u u

l M g

l gl m l g VM gl g

l gl m l g VM gl

l g gl g

Cond l

Cond l

f

l f l l l f

l f l l l l

l l l

, ,

*

* ,

*

*

*

*

*

) ' (

) (

) (

+

+

+

+

Γ + Γ

=

+

ρ δ α δ α

ρ α α α

ρ α ρ

δ α ρ

α

Two linear equations

with two unknowns

(15)

Semi-implicit scheme for two-phase flow

 Solution procedure for the momentum equations

( )

[ ]

[

, 1

]

* 2

1 *

, b

u V V

F t V C

u V V

F t V C

l Ev gl

gd m l g VM gl l l

g Cond gl

gl m l g VM

gl =

Γ + +

+ +

Γ

δ ρ

α α ρ

α

δ ρ

α α

( )

[ ]

[

, 1

]

* 1

1 *

, b

u V V

F t V C

u V V

F t V C

l Ev gl

gd m l g VM gl

g Cond

gl gl

m l g VM gl g

g =

Γ

+

Γ + +

+

δ ρ

α α

δ ρ

α α ρ

α

 

 

= 

 

 

 

 

x x l

g

b b u

u a

a

a a

, 2

, 1

*

*

22 21

12 11

 

 

= 

 

 

 

 

y y l

g

b b v

v a

a

a a

, 2

, 1

*

*

22 21

12 11

 

 

 

 

= 

 

 

x x l

g

b b a

a

a a

u u

, 2

, 1 1

22 21

12 11

*

*

 

 

 

 

= 

 

 

y y l

g

b b a

a

a a

v v

, 2

, 1 1

22 21

12 11

*

*

Repeat the same procedure for every cell

for intermediate velocity !

(16)

Semi-implicit scheme for two-phase flow

 Solution procedure for the momentum equations Relation between u* and u

n+1

V a P

a

a a

c c a

a

a a

b b a

a

a a

u

u

n

l g l

g

 ∇

 

 

 

− 

 

 

 

 

= 

 

 

 

 

= 

 

 

α α

1

22 21

12 11

2 1 1

22 21

12 11

2 1 1

22 21

12 11

*

*

( ) P

A P A

A P A u

u

u u

l n g

n l

g l

n l

g n

g

 ∇ δ

 

= 

 ∇

 

− 

 =

 

+

+ +

1

* 1

* 1

P A

u u

P A

u u

l l

n l

g g

n g

δ δ

=

=

+ +

* 1

* 1

V a P

a

a a

c c a

a

a a

b b a

a

a a

u

u

n

l g n

l n

g 1

1

22 21

12 11

2 1 1

22 21

12 11

2 1 1

22 21

12 11

1

1 +

+

+

 ∇

 

 

 

− 

 

 

 

 

= 

 

 

 

 

= 

 

 

α

 α

(17)

Semi-implicit scheme for two-phase flow

Solve momentum eqs. with Pn for Intermediate Velocity u*

Solve pressure correction eqs.

for new time step pressure Pn+1

Update new time step velocity un+1

Update new time step scalar variables

Time Advancing

(18)

Semi-implicit scheme for two-phase flow

 Solution procedure for the pressure correction equations

 SMAC: derived from the continuity equations

 ICE: derived from four scalar equations (2 continuity and 2 energy)

 Discretized gas continuity equation

g g

g g g

g u

t +∇⋅ =Γ

∂ (

α ρ

) (

α ρ

 ) l l l lul l

t +∇⋅ = Γ

∂ (

α ρ

) (

α ρ

 )

l li

gi

sat l

il sat

g ig

g h h

T T H T

T

H = −Γ

− +

= −

Γ ( ) ( )

cell g g g

g g

g g

g g

g V

dV t dV t

dV t

t

= +

∂ + ∂

= ∂

∫ ∫

(

α ρ

)

α ρ ρ α α δρ ρ δα

( ) ( )

∫ ∑

+ = + = +

f f

n f g g g S

n g g g n

g g

g u1 dV u1 dSu1 S

) (

)

(

α ρ α ρ α ρ

cell g

gdV = Γ V

Γ

cell li

gi

n sat n

l il n

sat n

g ig

g V

h h

T T

H T

T dV H

− +

= − Γ

+ +

+

( +1 1) ( 1 1)

(19)

Semi-implicit scheme for two-phase flow

 Solution procedure for the pressure correction equations

 Primary variables

 Unknowns

g g

g g g

g u

t +∇⋅ =Γ

∂ (

α ρ

) (

α ρ

 ) l l l lul l

t +∇⋅ = Γ

∂ (

α ρ

) (

α ρ

 )

l li

gi

sat l

il sat

g ig

g h h

T T H T

T

H = −Γ

− +

= −

Γ ( ) ( )

cell g g g

g g

g g

g g

g V

dV t dV t

dV t

t

= +

∂ + ∂

= ∂

∫ ∫

(

α ρ

)

α ρ ρ α α δρ ρ δα

( ) ( )

∫ ∑

+ = + = +

f f

n f g g g S

n g g g n

g g

g u1 dV u1 dSu1 S

) (

)

(

α ρ α ρ α ρ

cell g

gdV = Γ V

Γ

cell li

gi

n sat n

l il n

sat n

g ig

g V

h h

T T

H T

T dV H

− +

= − Γ

+ +

+

( +1 1) ( 1 1)

P e eg l

l

g

α

α

1 1

1

1, + , + , +

+ n

sat n

l n g n

g T T T

ρ

(20)

Semi-implicit scheme for two-phase flow

 Solution procedure for the pressure correction equations

 Primary variables

 Unknowns

P e eg l

l

g

α

α

1 1

1

1, + , + , +

+ n

sat n

l n g n

g T T T

ρ

( ) (

gn

)

n g n

g n g

n n n g

g n

g e e

P e

P P  −



∂ + ∂

 −

 

∂ + ∂

= + +

+1

ρ

1

ρ

1

ρ ρ

( ) (

ln

)

n l n

l n l

n n n l

l n

l e e

P e

P P  −

 

∂ + ∂

 −

 

∂ + ∂

= + +

+1

ρ ρ

1

ρ

1

ρ

( ) (

gn

)

n g n

g n g

n n n g

g n

g e e

e P T

P P T T

T  −



∂ + ∂

 −

 

∂ + ∂

= + +

+1 1 1

( ) (

ln

)

n l n

l n l

n n n l

l n

l e e

e P T

P P T T

T  −

 

∂ + ∂

 −

 

∂ + ∂

= + +

+1 1 1

(

n n

)

n n sat

sat n

sat P P

P T T

T  −

 

∂ + ∂

= +

+1 1

Linearization

Replace the secondary

variables in the scalar eqs.

참조

관련 문서

→ Bernoulli equation can be applied to any streamline.. The concepts of the stream function and the velocity potential can be used for developing of differential

The liquid has a specific gravity of 1.60 and negligible vapor pressure. Calculate the flowrate for incipient cavitation in the 75 mm section, assuming that the tube flows

For irrotational flow of ideal incompressible fluid, the Bernoulli’s equation applies over the whole flow field with a single energy line. Exact velocity field

7.15 Derivation of Navier-Stokes Equations Euler equation + viscosity 2-D, unsteady, incompressible flow.

 The rate of change of energy is equal to the sum of the rate of heat addition to and the rate of work done on a fluid particle..  First

COMPUTATIONAL NUCLEAR 

 Because at high Reynolds numbers the rate at which large eddies extract energy from the mean flow is broadly matched to the rate of transfer of energy across the energy

8.3 Velocities, Energies, and Continuity in Turbulence 8.4 Turbulent Shear Stress and Eddy Viscosities.. 8.5 Reynolds Equations