• 검색 결과가 없습니다.

Treatment of Wastewater Containing Cyanide by Electro-Oxidation

N/A
N/A
Protected

Academic year: 2022

Share "Treatment of Wastewater Containing Cyanide by Electro-Oxidation"

Copied!
5
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

*š Öz»ö ~‚ n ŽF ö> ¾Ò

¶W^Á;êö*Á"ÒW*Á–ö¢Á;&ö

‚“"VF’ö >î~ã’bV

*s›&v z"

(1999j 1ú 21¢ 7>, 1999j 8ú 23¢ j)

Treatment of Wastewater Containing Cyanide by Electro-Oxidation

Seong-Ho Son, Do-Won Chung*, Jae-Back Ju*, Won-Il Choe and Dae-Won Pak

Water Environment Research Center, Korea Institute of Science and Technology

*Department of Chemical Engineering, Hongik University (Received 21 January 1999; accepted 23 August 1999)

º £

*V z' ¾Ò»ö ~‚ ö> Ú~ n~ Öz 5 ’Ò~ ²>ö &‚ ’¢ >¯~&. *š ¾Ò¢ šÏ~

ö> Ú~ n 5 ’Ò¢ 80%šç B–† > ®îb–, >Ò' Ú~* 5 *–Ò& 6²†>ƒ, *{š Ã&†>

ƒ n~ ÖzN 5 ’Ò~ ºÂ†f Ã&~&b–, 6‚ *{š 6²†>ƒ, * –Ò& 6²†>ƒ · 5 r~ *

~ÎNf Ã&~&b¾, >Ò' Ú~*f *~ÎNö – 'Ëj "æ p~.

Abstract−This research has been performed to study the oxidation of cyanide and recovery of copper in wastewater. The concen- tration of cyanide and copper reduced by 80% through the electrochemical treatment. The oxidation rate of cyanide and the recovery rate of copper increased as the hydraulic retention time and the distance between cathode and anode decreased. And, those rates were proportional to the increment of applied potential. Cathodic and anodic current efficiency however increased as the potential and the distance between cathode and anode decreased. The hydraulic retention time showed no effect on the current efficiency.

Key words: Wastewater Treatment, Cyanide, Copper, Complex, Electrochemical, Current Efficiency, Hydraulic Retention Time, Distance between Cathode and Anode

1. B †

ê.ëÚ, æ.³ ºÂ, z W B– Ò .³ î6¶î" ?

·~. ß® ê.ëڂ¦V B~º ö>º ÿ¢ B®j Ö~º ãÖê ' ëÚ~ ; V&ö V¢ ö> 7ö ŽF>º ~ã J"

b~ ³ê& ’² Nš& ¾² B. š‚ '« ö>¾Ò¢ *‚

nz jê., ÿê., .ê. ";öB 7.³–f n–‚ ¾~

Ú OÂ>º– ' –öº 7.³" nš &¦ªj Næ~ ®.

 <öê r¢Ò ^;‡, F7 ;, Æ; ¾Ò 5 ê&Ê B–

; öBê B> ®. ß® n zbf «~ö V¢ Nš

º ®b¾ –~& ;‚ ëWj æî ®b–, ö> 7ö ï Ž

>Úê ~> ;z, b ö – ˚¢ "–[1], žÚö ~«'ž

*šBº "'b‚ n zbj ÒÏ~æ pº î‚Ú ; 5 zbj BBš¢ ~æò, b& ö>~ Wç, n zb~ ; 5

¾Ò ÎNj J~ &Ë '‚ ;~ BBš jº~.

š‚ n zb~ ¾Ò O»b‚º 7ªš», Jš ¾Ò», z

' ¾Ò», b' ¾Ò», &>ªš» 5 *V z' ¾Ò»

š ®b–, š 7 z' O»ž r¢Ò "² ¾Ò»[2, 3]š &

Ë ¢>'b‚ ÞzB Öz ¾Ò VFš. ¾ š O»f z

£®j& ¸, ¾Ò> 7~ "² šN ³ê& ¸b–, "z n ; Jš" nš >w~ n"j š š "š  šÖzê²

6j &æ ®.

n ¾Òö ®ÚB *V z' ¾Ò O»öº "> *š ¾Ò»

" *š Öz ¾Ò»š ®. "> *š ¾Ò»[6]f "z¾ÞŽj *

šîö Î&~ ·öB~ î² B" êÖ" Bj Fê~² >

Ú nj ªš~º O»šæò š O» 6‚ "²šNö ~‚ "²

&Ê Bš ^B >Úê. V¢B "²¢ Î&~æ pº *š Ö z ¾Ò»[7-10]š ôš ’> ®b¾ jç Ïz> ®æº p . zך š *š Öz ¾Ò»f ¢> ê. ö>ö ôš ŽF>Ú

®º 7.³~ ²>& &Ë~–, B>Úæº Òæ~ ·j *¢

E-mail: hcdw@kist.re.kr

(2)

’öBº ®ÏW ·j šÏ~ *š · Öz ¾Ò»b‚  nj ªš~¶ ~&. W ö> χb‚¦V *{, >Ò' Ú

~*, r" ·*~ * –Ò ~ æ>ö Vž n~ Öz ªš(š~ Öz‚ ‚V) ¾ÒN, ’Ò~ ²>N 5 ''~ ¾Òö V

ž *~ ÎNö &~ –Ò~&.

2. š†' Vã

ê. χ Úö n šNf ëb‚ê šÒ¢ ~¾ 7.³ šN

š šÒ† ãÖ, 7.³" O"j ;W~ šÒ~² B.  ’

öB Òς ö‡~ ãÖ ’Ò šNš šÒ~æ‚  (1)" (2)ö ¾ æÞ ©" ?š n šN" Ob ;W >wj ¢bÎ.

(1) (2)

Ò š  (1)" (2)~ >w ï; ç>º '' 3.8×10285 5.3×

1023

Ò~ z«f 5 ~ ;‚ šÒ~² B. V

¢B röB ¢Ú¾º >wf Table 1ö ¾æÞ  (4)f (5)~ >w

š &¦ª¢ ©b‚ ÒòB. 6‚, ·öBº n šNš  (7)ö

¾æÞ ©" ?š Öz>Ú nÖ šN(CNO)b‚ B ê,  (8)"

?š î²f êÖ&ʂ ªšB. 6‚  W ö‡~ pHº r¢Ò Wšæ‚  (11)ö ¾æÞ ©" ?š nÖ šNš &> ªš¢ ¢b B zΪ šN" êÖ šNb‚ >º z>wê ¢Ú¾² B.

(11) V¢B n ªš >wf  (7), (8) 5 (9)~ >wš ÷~

¢ÚÆ ©b‚ ÒòB.

Ò *š ¾Ò ÒÏB *Vï 7 âî& B >wö ç7 š

>w šžö Ö² B >wš ¢Ú¾, röB~ ãÖ ’Ò *O

>w šžö >² &Ê~ B >wš ¢ÚÂ. æ‚ · 5 röB~ B Ï'‚ n Öz >w 5 ’Ò *O >wö šÏ B *Vï" *Ú Û"‚ *Vï"~ jN ¯, 5 · *~ ÎN (anodic current efficiency, A.C.E.) 5 r *~ ÎN(cathodic current efficiency, C.C.E.)

(12)

VöB niº z« i~ *~>, Wiº r 5 · >wb‚ žš

¾ÒB z« i~ >wï(g), MWiº z« i~ ö¶ïš Qº * Ú Û"‚ *Vï(AÁsec)j ¾æÞ

3. þË~ 5 O»

 ’öB šÏ‚ *š Ë~º Fig. 1ö ¾æÞ ©" ?. *š

¾Òö ÒÏ>º rb‚º W î. *j Z*š ê.b‚

B–~ ÒÏ~&, ·b‚º ®ÏWž æª(titanium) ææÚö RuO2-IrO2¢ bÎ öÛ; / *(RuO2-IrO2/Ti)j B–~ Ò Ï~&. 6‚, W ö‡f ²*¢ šÏ~ ¢; ³ê‚ B~V b–, šr W ö‡~ Nêº “N–(EYELA, SB-9)¢ ÒÏ~ 25 Û0.5oC¢ Fæ~&. Ò >wV Ú~ Fïf 725 ml¢ Fæ~

&, &˖¢ šÏ~ ö‡ 2,000 ml¢ ê³'b‚ B~V. 

n 5 ’Ò~ *š ¾Ò þ~ BBº, b& î. r 5 RuO2- IrO2/Ti ·j r¢Ò îæ[NaOH(25 g/l)], >^ 5 Ö^(5%HNO3)

tential), >Ò' Ú~ *(hydraulic retention time, HRT) 5 ·"

rҚ~ * –Ò(DC/A)¢ æzB &–, W ö‡ ³~ ’Ò~

ºÂï 5 n Özïj –Ò~&b–, ' –šö Vž *~ ÎNj êÖ~&. šr ’Ò ºÂï 5 n Özï ªCj *‚ χ~ j

(sampling)º 30ªj *‚ ~ 10 ml¢ ~&. Ò *š ¾ Òö ~š ºÂ>Úê ’Òïj G;~V *‚ ªCf A.A.(Atomic Absorption spectrophotometer; PERKIN ELMER, 2280)¢ ÒÏ~&

, n Özï G;f b& W ö‡ Úö º~~º FÒ n š N(free cyanide ion; CN)~ ³êº šN FW *[ion selective electrode, ISE(CN)]j šÏ~ G;~&, 6‚ Ion Chromatograph (Dionex Model 4500I, column No. AS5 & AG5)¢ šÏ~ W ö‡ Úö º~~º nz ’Ò O"(cyanocuprate ion)~ ³ê¢ G

;~&. V¢B šf ?f v &æ ªC Ö"‚¦V *ö Vž  Cu++3CN =Cu CN( )32

Cu++2CN =Cu CN( )2

Cu CN( )32 Cu CN( )2

CNO+2H2O→NH4++CO32

C.C.E or A.C.E.

ni

FMWWi

i

--- --- 100Q ×

=

Table 1. Electrochemical reactions for copper cyanide synthetic waste solution

No. Electrochemical reactions E0

- cathodic reaction

03 Cu++e → Cu E0 = 0.52 V

04 Cu(CN)32+ e → Cu+3CN E0 = −1.09 V 05 Cu(CN)2+e → Cu+2CN E0 = −0.43 V 06 2H2O+2e → H2+2OH E0 = −0.83 V

- anodic reaction

07 CN +2OH→ CNO +H2O+2e E0 = −0.97 V 08 CNO +2OH→ CO2+1/2N2+H2O+3e E0 = −0.76 V 09 Cu(CN)32+6OH→ Cu++3CNO+3H2O+6e E0 = −0.69 V 10 4OH → O2+2H2O+4e E0 = 0.40 V

Fig. 1. Schematic diagram of system for oxidation of cyanide and re- covery of copper.

1. Power supply 5. Water bath

2. Reactor 6. Anode(DSA)

3. Pump 7. Cathode(Ni-foam)

4. Reservoir

Table 2. Synthetic waste solution concentration

Component Concentration(M)

CuCN 0.008

NaCN 0.024

NaOH 0.2

pH 11

Copper ion 508 mg/l

Cyanide ion 832 mg/l

(3)

z B38² B1^ 2000j 2ú

W ö‡ 7ö ªš>æ p º~~º n šN~ *Úïj êÖ~

 *š ¾Òö ~‚ n ÖzNj ’~&.

4. Ö" 5 V

4-1.**{(applied potential)ö Vž æz

.V n šN ³ê 0.032 M 5 ’Ò šN ³ê 0.008 MöB,

W ö‡ Nê 25oC, >Ò' Ú~ *(HRT)j 2.42ª, r"

·~ * –Ò(DC/A)¢ 2.0 cm‚ ~&j ãÖ, ®*{(š~ *{b

‚ ‚V) æzö Vž n~ Öz ³ê 5 ’Ò ºÂ ³ê¢ '' Fig. 2(a) 5 Fig. 3(a)ö ¾æÚî. Fig. 2(a)º n Özö &‚  âb‚Ž *{š 2 V, 3 V 5 5 V‚ Ã&Žö Vž CCNt /CCNo 8 &

*~ ¾*¢ ¾æÞ ©b‚ *{š Ã&Žö V¢ n~ Öz

³ê& Ã&~º ©j r > ®, *š æÎö V¢ CCNt /CCNo 8 f 6²~ £ 150ªš æ ê >wš –~ jò>îrj r >

®. Ò r~ CCNt /CCNo 8f 2 V, 3 V 5 5 VöB '' 0.69, 0.22 5 0.18‚ n ªšNf '' 31.3%, 77.7% 5 82.3%

šî.

6‚  ’ö Òς W ö‡ 7 n šNf Table 1öB r >

®š ’Ò šN" O"j š ®æ pf FÒ n šN(free cyanide ion)" ’Ò šN O"j š ®º n šN(cyanocuprate ion)~ v &æ ;‚ šÒ‚. V¢B n~ ÖzNj rjV

*šB š v &æ šNö &‚ ³ê æz ªCj ~&. 6‚ Fig.

2(b)º „~ –šöB *{ æzö &š *ö Vž · *~ ÎN (anodic current efficiency) æz¢ ¾æÞ ©š. âöB r >

®š *{~ ’V& 2 V, 3 V 5 5 V‚ Ã&Žö V¢ · *~

ÎNš /Ï® 6²Žj r > ®. šº ‚ê *~ &ê8 šç~

*~ &êöB *V z >w~ ³ê& Ö ŽÒ ¢ÚÎö Vž · ‚šöB~ n šN~ .‚ žš ç&'b‚ ·öB~ Ö

² &Ê Bš Ã&~V r^š. 6‚ *{ 2 VöB~ ãÖ >w .V 30ªöB~ · *~ ÎNš 100% šçb‚ ¾æ¾º ©j r > ®. šº ·öB~ n Öz >wš  (7) 5 (8)~ *V z >w šžö  (11)ö ¾æÞ ©" ?f z >wb‚ê ê¯

>V r^ž ©b‚ ÒòB.

Fig. 3(a)º ’Ò ºÂö &‚ âb‚, *{š 2 V, 3 V 5 5 V‚

Ã&Žö Vž CCN

t /CCNo 8 & *~ ¾*¢ ¾æÞ ©š. ’ Ò ºÂö ®ÚBê n~ ãÖf îR&æ‚ *{š Ã&Žö V

¢ *~ &ê~ Ã&‚ žš ’Ò~ ºÂ ³ê& Ã&~º ©j r

> ®, 2 Vö jš 3 VšçöB  ³ê& /Ï® Ã&~º ©b

‚ j 2 V~ ãÖ ‚ê *~ &ê š~~ *~ &ê –šž ©b

‚ ÒòB. >w * 180ª ê~ CCut /CCuo 8f 2 V, 3 V 5 5 VöB '' 0.65, 0.22 5 0.17‚ r~ ’Ò ºÂ†f '' 35.3%, 77.7% 5 82.6%šî. ‚Þ, Fig. 3(b)º *{ æzö Vž

’Ò ºÂö ®ÚB r *~ ÎN(C.C.E.)j ¾æÞ ©b‚ ·

*~ ÎN" îR&æ‚ *{š Ã&Žö Vž r ‚šöB~ ’ Ò šN~ . 5 >² &Ê~ Bb‚ žš r *~ ÎNš / Ï® 6²Žj r > ®.

4-2.* –Ò(DC/A)ö Vž æz

Fig. 4(a)f Fig. 5(a)º Nê 25oC, .V n šN ³ê 0.032 M,

’Ò šN ³ê 0.008 MöB, >Ò' Ú~* 2.42ª, *{j 3 V‚ ~&j ãÖ, ·" r*~ * –Ò(DC/A)¢ 1.5 cm, 2.0 cm 5 2.5 cm‚ æzVj r~ '' n Öz 5 ’Ò ºÂ ³êö

&‚ CCNt /CCNo 8 5 CCut /CCuo 8" *ö &‚ âš. v &æ ãÖ Îv, * –Ò& 6²†>ƒ CCNt /CCNo 8 5 CCut /CCuo

6²~º ©j r > ®.

Fig. 2. Variations of (a) CCNt /CCNo ratios and (b) anodic current efficiency as a function of applied potential at DC/A=2.0 cm and HRT=2.42 min.

Fig. 3. Variations of (a) CCut /CCuo ratios and (b) cathodic current effici- ency as a function of applied potential at DC/A=2.0 cm and HRT=

2.42 min.

(4)

Ò >w * 180ª ê, n~ ãÖ, CCNt /CCNo 8f * –Ò 1.5 cm, 2.0 cm 5 2.5 cmöB '' 0.16, 0.22 5 0.27‚ n ª

š ÎNf '' 84.3%, 77.7% 5 73.5%šî. ‚Þ, ’Ò~ ãÖ CCut /CCuo 8f '' 0.2, 0.22 5 0.31‚ r~ ’Ò ºÂ†f '' 80.4%, 77.7% 5 68.6%šî. šf ?f n ÖzN 5 ’Ò º †~ 6²º * –Ò Ã&‚ žš r" · Қ~ IR drop

~ ’V& Ã&Žö Vž *çb‚ * –Ò Ã&Žö V¢ **~

Fig. 4(b)f Fig. 5(b)º '' * –Ò æzö Vž n Özö &

‚ · *~ ÎN(A.C.E.) 5 r *~ ÎN(C.C.E.)j ¾æÞ  âb‚ v ãÖ Îv, * –Ò& 6²Žö V¢ · *~ ÎNf

4-3.>Ò' Ú~*(HRT)ö Vž æz

Fig. 6(a)f Fig. 7(a)º Nê 25oC, .V n šN ³ê 0.032 M 5 ’Ò šN ³ê 0.008 MöB, *{ 3 V 5 * –Ò¢ 2.0 cm

‚ ~&j r~ >Ò' Ú~* æzö Vž n Öz 5 ’Ò ºÂ ³ê¢ CCNt /CCNo 8 5 CCut /CCuo 8" *ö &š ¾æÞ  âš. Fig. 6(a)º n Özö &‚ ©b‚ âöB r > ®š

>Ò' Ú~*j 7.25ª, 2.42ª 5 1.45ªb‚ æzŽö V¢

CCNt /CCNo 8š – Nšº šæ pb¾, 6²~º ©j r > ®b–,

>w * 180ª ê~ CCNt /CCNo 8f '' 0.26, 0.23 5 0.18‚  n ªš ÎNf 74.4%, 77.5% 5 82.3%šî. Ò Fig. 7(a)ö

¾æÞ ’Ò ºÂ~ ãÖö ®ÚBê n~ ãÖf îR&æ‚ >

Ò' Ú~*š 6²Žö V¢ CCut /CCuo 8š 0.26, 0.22 5 0.21

‚ 6²~&b–, r~ ºÂ†f '' 74.3%, 77.7% 5 79%šî . šº >Ò' Ú~*š 6²Žö V¢ ¯, F³š Ž¢öö V Fig. 4. Variations of (a) CCNt /CCNo ratios and (b) anodic current efficiency

as a function of distance between cathode and anode(DC/A) at 3 V and HRT=2.42 min.

Fig. 5. Variations of (a) CCut /CCuo ratios and (b) cathodic current effici- ency as a function of distance between cathode and anode(DC/A) at 3 V and HRT=2.42 min.

Fig. 6. Variations of (a) CCNt /CCNo ratios and (b) anodic current effici- ency as a function of hydraulic retention time at DC/A=2.0 cm and 3 V.

(5)

z B38² B1^ 2000j 2ú

¢ * ‚šb‚~ n šN 5 ’Ò šN~ bî*³ê& Ã&

~V r^š. 6‚ Fig. 6(b)º >Ò' Ú~* æzö Vž  n Özö ®ÚB~ · *~ ÎN(A.C.E.) æz¢ ¾æÞ ©b‚

„~ šFf îR&æ‚ ¯ F³š Ž¢öö V¢ · ‚šb‚~

n šN~ bî * ³ê& Ã&Žö Vž Ö"‚ ÒòB.

Fig. 7(b)º ’Ò ºÂö &‚ r *~ ÎN(C.C.E.)j ¾æÞ â b‚ · *~ ÎN" ?f ãËj š ®.

5. Ö †

*V z' ¾Ò»ö ~‚ ö>‚¦V n Öz 5 ’Ò ²>

(1) >Ò' Ú~*, * –Ò 5 *{j æzÚö V¢ ö‡

7~ n 5 ’Òö &~ '' 82.3%~ ÖzN" 82.6%~ ²>

Nj áj > ®îb–, >Ò' Ú~*" r" ·*~ *

–Ò& 6²†>ƒ n ÖzN 5 ’Ò ²>Nš Ã&~&b–, * {š Ã&Žö V¢ Ã&~&.

(2) · *~ ÎN 5 r *~ ÎN Îv *{~ ’V& 6²†

>ƒ ’² Ã&~&b–, r" ·*~ * –Ò 6²†>ƒ £

* 6²~&b–, >Ò' Ú~*ö V¢Bº – æz¢ šæ p~.

^^ò

1. Zabban, W. and Helwick, R.: Plat. and Surf. Fin., 68(56), August (1980).

2. Watson, M. R.: “Pollution Control in Metal Finishing,” Noyes Data Corp., Park Ridge, NJ, 147(1973).

3. Palmer, S. A. K., Breton, M. A., Nunno, T. J. and Sullivan, D. M.:

“Metal Cyanide Containing Wastes Treatment Technologies,” Noyes Data Corp., Park Ridge, N.J., 602(1988).

4. Mirat D. G.: Ind. Eng. Chem. Res., 27, 1157(1988).

5. Gurol, M. D. and Singer. P. C.: Environ. Sci. Technol., 16(7), 337 (1982).

6. Zhou, C. D. and Chin, D. T.: Plat. and Surf. Fin., 78, June, 69(1993).

7. Arikado, T. and Iwakura, C.: Electrochimica Acta., 21, 1021(1976).

8. Tamura, H. and Yoneyama, H.: Electrochimica Acta., 19, 273(1974).

9. Hine, F. and Yasuda, M.: Electrochimica Acta., 31, 1389(1986).

10. Sattar, M. A. and Conway, B. E.: Electrochimica Acta., 14, 695(1969).

Fig. 7. Variations of (a) CCut /CCuo ratios and (b) cathodic current effici- ency as a function of hydraulic retention time at DC/A=2.0 cm and 3 V.

참조

관련 문서

Characteristics of Electricity Generation and Wastewater Treatment Using Mi crobial

A submerged biofilm sequencing batch reactor (SBSBR) process, which liquor was internally circulated through sandfilter, was designed, and performances in swine

From these results, a chloride to organics ratio of 1 was used to evaluate the effect of electrolyte addition for the removal of organics and nutrients by

페놀에 오염된 수돗물 을 마신 수돗물을 마신 시민들은 구토・설사・복통으로 고통을 겪었으며 수 돗물로 만든 두부・김치・콩나물 등은 악취 때문에 폐기

The effect of adsorbent dose, contact time, pH, agitation speed and adsorbent particle size was studied for adsorption of copper from wastewater under batch conditions..

pH, current density and effi- ciency, electrode connection type, electrode material, inner-electrode distance, temperature, and electrolysis time become important fac- tors

Responsible for the management and supervision of yearly maintenance shutdown of wastewater treatment plant and facilities project execution to ensure that safety precautions

5A that current of cyclohexanol oxidation on Cu/CuDMG electrode is 2500 nA, more than three times higher than Cu electrode 1000 nA; for both of the two