• 검색 결과가 없습니다.

Derivation of the Pressure Retarded Osmosis (PRO) Mass Transport

N/A
N/A
Protected

Academic year: 2022

Share "Derivation of the Pressure Retarded Osmosis (PRO) Mass Transport "

Copied!
13
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

Derivation of the Pressure Retarded Osmosis (PRO) Mass Transport

Equations

Korea University, July 2012

Fall Semester 2012 ACE 644

Water Treatment Process

(2)

Ideal Membrane and Hydrodynamics: 

NO Concentration Polarizations

J w

Feed Solution

Pressurized Draw Solution

c

D,b

c

F,b

By definition:

   

w m b

JA      P A     P

A: Membrane Intrinsic 

Water Permeability [L t

‐1 

P

‐1

]

P: Applied Hydraulic Pressure Difference

Again, assume the van’t Hoff relation to be valid:

c c nR Tg

   

 

 

w m

b g

w

g

J

J A c nR T P A c nR T P

   

   

(3)

Ideal Semi‐Permeable Membrane and  Hydrodynamics

By definition:

B: Membrane Intrinsic 

Solute Permeability [L t

‐1

]

J s

   

s m b

J B c B c

      

   

w m b

JA      P A     P

J w

Feed Solution

Pressurized Draw Solution

c

D,b

c

F,b

(4)

Real World

J w

Feed Solution

Pressurized Draw Solution

c

D,b

z

J s

c

F,b

cD,m cF,m

cF,s

x

ts ta δ

Therefore:

   

s m b

J B c B c

      

δ: thickness of dECP[L]

ta: thickness of membrane active layer [L]

ts: thickness of membrane support layer [L]

,

, ,

,

, ,

Concentrative (feed) External Concentration Polariza

Dilutive (draw) ECP Concentrative Internal Conce

tio ( ECP)

n ( P)

n

EC

D

F b F

D

F s m

m F

s

b d

f

c c

c c

c c

 

tration Polarization (ICP)

) (

)

( P A P

A

J

w

  

m

    

b

 

(5)

Internal Concentration Polarization

, , Concentrative Internal

Concentration Polarization (ICP)

F s F m

cc

• As water permeates across the membrane, the  feed solutes are selectively retained by the semi‐

permeable active layer and build up within the  support layer

Diffusion works to restore c to cF,s but 

porous support acts as unstirred boundary layer 

Js across the porous support is the sum of the  diffusive component, driven by Δc, and the  convective component, arising from Jw:

( ) ( )

s

s w

J D dc z J c z

   dz

s

/

DD  

J w

Feed Solution

Pressurized Draw Solution

c

D,b

z

J s

c

F,b

c

D,m cF,m

c

F,s

x

ts ta δ

(6)

ICP: Maths

( ) ( )

s

s w

J D dc z J c z

   dz

, , Concentrative Internal

Concentration Polarization (ICP)

F s F m

c c

D m, F m,

s dc z( ) w ( )

B c c D J c z

dz

Integrate with boundary layers:

, ,

0

F s

s F m

z c c

z t c c

  

    



 

, , exp w s , , exp w s 1

F m F s D m F m

w

J t B J t

c c c c

D J D

 

 

 

   

       

Substitute Jsat steady state:

Plus algebra: 

J w

z

J s

cF,m

c

F,s

ts

(7)

ICP: Final Equation

 

, , exp w s , , exp w s 1

F m F s D m F m

w

J t B J t

c c c c

D J D

 

, , ,

,

exp exp 1

exp exp 1

w w

F s D m F m

w

w s w

F s

w

J S B J S

c c c

D J D

J S J J S

c D J D

 

   

       

 

   

      

F , m F , m

c c

S: structural parameter of the support layer:      [L] 

D/S = 1/K: mass transfer coefficient of the support layer [L t‐1]

s / St 

cF,m is the sum of:

1. The effect of concentrative ICP described by the  first term

2. The gain in feed salt concentration at the 

membrane interface due to the reverse permeation  of draw solution, Js, in the second term

c

D,m

J w

z

J s

cF,m

c

F,s

ts

, , Concentrative Internal

Concentration Polarization (ICP)

F s F m

c c

(8)

Dilutive (Draw) External Concentration  Polarization

, , Dilutive (draw) External

Concentration Polarization ( ECP)

D m D b

f

cc

Jw dilutes cD in the boundary layer 

Diffusion works to restore c to cD,b but is  limited by mass transfer

Similar to ICP, the salt flux within this dECP boundary layer comprises diffusive and  convective components

( ) ( )

s w

J D dc x J c x

   dx

J w

Feed Solution

Pressurized Draw Solution

c

D,b

z

J s

c

F,b

cD,m

c

F,m

c

F,s

x

ts ta δ

(9)

dECP: Maths

( ) ( )

s w

J D dc x J c x

   dx

D m, F m,

dc x( ) w ( )

B c c D J c x

dx

Substitute Jsat steady state:

Integrate with boundary layers:

, ,

0

D m

D b

x c c

xc c

  

    



 

, , exp w , , 1 exp w

D m D b D m F m

D w D

J B J

c c c c

k J k

 

   

       

    

Plus algebra:

, , Dilutive (Draw) External

Concentration Polarization ( ECP)

D m D b

d

c c

J w

c

D,b

J s

cD,m

c

F,m

x

ta δ kDD /

(10)

dECP: Final Equation

 

, , ,

,

exp 1 exp

exp 1 exp

w w

D b D m F m

D w D

w s w

D b

D w D

J B J

c c c

k J k

J J J

c k J k

 

   

       

    

 

   

      

    

D , D , m

c m

c

kD: mass transfer coefficient of the draw boundary layer [L t‐1]

cD,m is the sum of:

1. The effect of dilutive ECP described by the first term 2. The loss in draw salt concentration at the membrane 

interface due to the reverse permeation of draw solution,  Js, in the second term

, , Dilutive (Draw) External

Concentration Polarization ( ECP)

D m D b

d

c c

J w

J s

cD,m

c

F,m

x

ta δ

c

D,b

(11)

Concentrative (Feed) External  Concentration Polarization

, , Concetrative (feed) ECP ( ECP)

F b F s f

cc

• Solute built up in support layer tries to  diffuse out to the bulk feed solution, but is  limited by mass transfer at the boundary  layer. 

However,

Therefore, we assume fECP to be negligible  and 

1 / KD S /  k

F

,

c

F b

F , s

c

kF: mass transfer coefficient of the feed boundary layer [L t‐1]

J w

Feed Solution

Pressurized Draw Solution

c

D,b

z

J s

c

F,b

c

D,m

c

F,m

cF,s

x

ts ta δ

(12)

Combining Everything

,

, ,

,

exp

e ex

1 e p x x p

p

w

D b

D m F m

w

D

w D w

F b

w

c J S

D J

J k

J S

D c

c c

B

J k

 

  

  

 

 

  

 

 

 

 

 

    

 

, ,

, ,

exp

exp exp

exp

w

D m F m D b

D

w D b

w

w F

s w

c c c J S

D J S

J J

J k

J k D

  c

  

 

 

 

   

 

  

 

 

  

  

  

  

Alternatively:

J w

Feed Solution

Pressurized Draw Solution

z

J s

c

F,b

cD,m cF,m

x

ts ta δ

c

D,b

(13)

 

, ,

exp exp

1 exp exp

w w

D b F b

D

s m

w w

w D

J J S

c c

k D

J B c B

J S J

B

J D k

       

       

   

                               

 

, ,

exp exp

1 exp exp

w w

D b F b

D

w m

w w

w D

J J S

k D

J A A P

J S J

B

J D k

 

       

       

   

                                 

Final Equations for Water Flux, J w , and 

Reverse Salt Flux, J s

참조

관련 문서

• 이명의 치료에 대한 매커니즘과 디지털 음향 기술에 대한 상업적으로의 급속한 발전으로 인해 치료 옵션은 증가했 지만, 선택 가이드 라인은 거의 없음.. •

12) Maestu I, Gómez-Aldaraví L, Torregrosa MD, Camps C, Llorca C, Bosch C, Gómez J, Giner V, Oltra A, Albert A. Gemcitabine and low dose carboplatin in the treatment of

It is the responsibility of the pressure equipment manufacturer to ensure that the component parts enable the pressure equipment to meet the essential safety requirements

Levi’s ® jeans were work pants.. Male workers wore them

한국형 Slow City 의 필요성과 시사점.. 10) Mass travel could only develop with improvements in technology allowed the transport of large numbers of people in a short space

Locate your electric utility rate along the horizontal axis; read upward to intersect the line that corresponds to your compressor horsepower; read left to the vertical

Sinterstation Pro SLS system 208 VAC 3-phase WYE, 50/60 Hz, 48 A/ph Integrated Recycling Station 100-240 VAC 1-phase, 50/60 Hz, 3A Break Out Station 200-240 VAC 1-phase, 50/60

+, nominal significant increase; ++, multiple testing corrected significant increase; – –, multiple testing corrected significant decrease; 0, no significant effect; BMD,