• 검색 결과가 없습니다.

2-amino-2-methyl-1-propanol

N/A
N/A
Protected

Academic year: 2022

Share "2-amino-2-methyl-1-propanol "

Copied!
7
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

2-amino-2-methyl-1-propanol    

 



   

305-701    373-1 (2003 4 15 , 2003 10 8 )

Study of Foam Stability of an Aqueous 2-amino-2-methyl-1-prpanol and Foamability of Various Aqeuous Amine Mixtures

Ho Byung Yoon and Won Hi Hong

Department of Chemical and Biomolecular Engineering, KAIST, 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701, Korea (Received 15 April 2003; accepted 8 October 2003)

 

oC 80oC

! "#. AMP $% 65oC&'  () *+,- ./ 0"12,  3) 45 6, 78 9 : ;< => ./ ?@ A  B#. DEA, MDEA, AMP< =>     CD EF G

 H0I#. EF <    J  9 : KLM CD -   MD N O PQ R-#- S T O UV12, WX Y , Z [\] ^_7`a => MDb;  CD  NO PQ

 cd#- S HO UV#.

Abstract−Foam decay time of aqueous 2-amino-2-methyl-1-propanol mixture was studied experimentally at various tem- peratures between 20 and 80oC. Foam stability mechanism was changed at 65oC. For the purpose of analyss of these results we assume that the additional barrier of foam decay is proportional to operating temperature. We measure foamability at a var- ious operating temperature and amine concentrations in the aqueous diethanolamine, N-Methyldiethanolamine and 2-amino-2- methyl-1-propanol mixtures. The results showed that density, viscosity and surface tension play an important role in the foamability.

Key words: Foam Stability, Foamability

1.  

  ,    

, Bio        !"# $% 

& '( )*+ ,-. /+0, 12345 67 89

:6 (;<  => ?@ A BCD (0 EF.

 ' G HI JKL MN KO(P >QR ST.

UVWX 6Y Z5 *([ \X ] ^$ 

& W_ `'_ a+ Z b(T. 

'c d eLQ X f _0 gh_# L( UV W

N+ L i# Lj eL7T. I X W 0 k :l   mnI on pq(  2r5 as tD5 ' O([, Ou 'X vw5 xTy z!# {

|T.

:l0 W X }5< ~7 } ^€ 3T ‚X L

Y5< ^€ O( ƒ 8„Q…R  } †5< O(

'O5 %< ‡m uT ƒ ˆC Q…T[1-2]. }5<

OQ 'X ‰ t5 Š‹< 5 tŒ  t S+[, U 6 ' O5 % hF  Q= Ž# t ST[3-5]. , '

 *P O( ‘ 2r5 '+ C%< mnI on

 pq ;* : (P Q-< _vw :   S=’ ' = 0}P d OQ; ^€# “+” & •  –P uT. :la

— D5 ' z!# ˜3m $%<  :l ™š# ›%< '

# Ocœ ™š > Q…+[[6-10] :l_ †& ž*+

%Ÿ%<  ¡¢& (£T[12-15]. ¤ >¥# ›%< ‘

 ¦; “ § ' ¨ © O7T ƒ EFªT[3, 16-17].

a—# • § OQ '5 z!# {} C«¥X ¬P _

 asa­ (R« ( ‘ ¥ ‘*   0®  ST.

asa­+ ?t, mn¯°  ST. ‰R ' ¢5 z!#

{} ‘*   ±t, ²t ‰R ¦;  ST.

nf_5< ' OQ asz³X  ¡(froth)z³[  z³

†5< mn¯° : '¢& : cœP uT. ‰´0 mn ¯

To whom correspondence should be addressed.

E-mail: whhong@kaist.ac.kr

(2)

'«n  Ï m>, Ð* Ñ # ™š# ›%< ˜3ÒT.

2. 

'  Ï m>Ó ˜3m $7 ™š# Fig. 1  ™

š }& >(µ Ô(£T.

™š_ mº_ †2X 5 cmR ¢ 25 cm >Q-S+[,

column# D+ >(µ ?t aÆ# •  SP —Q…T. '

# $%< ™š}°+ ¯ÕQ mn Ö# ¯Y& ›%<

‰ ¯°# aƕ  SP —Q…T.

2-1.  (foam stability) 

iLo ' ×t& ˜m $%< ' Ï°t& Î

2-2.  (foamability) 

' t “7 asa­ (5< ' OQ t& ¡ ([, ' ×t { u ' =°# ò7T;, '

 t Zó Q t& ò7T. ' t Î# $%<

m ¯Õ ¯Y# ' 5  ¯7 asa­C 21.26 cm/s

“(P ¯= c”R “7 mn ¯Y (5< ' æm ' 

 ¢& Î7T.

2-3.

2-3-1. 2-amino-2-methyl-1-propanol Lo ²t

AMP(2-amino-2-methyl-1-propanol) Lo ²t Shou [19]

3R& L(£T. ¥X 20-90oC ?t ^$I ' h^$5 ô

| i õt5 67 ²t& Î(£T. ¥ Î Á Tó Fig.

25 0ö†…T.

2-3-2. 2-amino-2-methyl-1-propanol Lo ±t

i Lo ±t Shou [19] AsitI Syamalendu[20] 3R 7 «÷& eL(µ È ™š ‘} L(£T. Fig. 35 ¥

Á& 0ö†…T.

Fig. 1. Experimental apparatus.

1. Test column 16. Air gas 2. Reference column 17. Pressure gauge

3. Glass frit 18. Pump

4. Amine/water solution 19. Flow meter

5. Circulator 10. Manometer Fig. 2. Densities of aqueous AMP solutions.

(3)

 41 6 2003 12

3.  

3-1.  (foam stability) 

“U*+ ø×7 ' 2r5 æm5 jr ùúP '  Ï QT on¦; p(R S 7, ê û jr ×7 ' û

ÜSP Q 2rI ´7 ' û m= ŽR ê ÏQ 2 r ST. CO2W eLQ AMP(2-amino -2-methyl-1-propano)

Lo 2r5 ?t ñ5 Š‹< ê = < Tü ' Ï ýþ& 0ö†R Só 8„ Q…T. 20oCçè ?t "ÿ•ï '

 ùúP ÏQ ƒ 8„Q…+[, ùúP  ' ÏQ ƒ# ˜  S…T. Fig. 4çè c5 Š‹< ý*+ 7 T ƒ# ˜  ST. ‰R Ï°tC dL/dt 1.8-2.4(cm/s) #

…+[, ?t : •ï ±*+ : (£T. ‰´0 ™š ? t 65oC " Q; Q…  ' ÏQ ƒ ‹

×u 'û ÏQ= ŽR ÜSP QR ¨ " c5 Š‹

< *C Ï ýþ& 3= ŽP uT. Fig. 55 0ö@ ‰ X 

I X ™š Á& 0ö ƒ+ 30oCI 65oC ™š Á& <

ëì7 ƒT. 3› 2r5 ?t "ÿ(P Q; '× mn (P Q-< ' Ï# q¼('0, ‚X ?t5< ý ¦

;û(geletinus surface layer)# ý( on¥ ?t : 5 Š

‹<  ¯n(structureless newtonian fluid) ñ Q-< '

ÏQ Ö"# 3R S+0, AMP Lo 2r5 ÚÌ ?t : (µ “?t(È ™š5< 65oC) "5< u '

 ê ÏQ= ŽR ×u ' û# ý( ƒ 8„ Q…T.

I  ?t "ÿ+ C7 ' × ¾Q ¿"X '

Ï5 ÉA7 5= (energy barrier) 65oC( ? z³ 5< ‰ # ==  (T 65oC"5< ' Ï# M%(

A —L(m §ÀT. as?t : 5 Š‹< 5= 

 ³c : (P QR, ´7 5=  'Ï# M%(P u T. ™š5 eLu AMP Lo 2r5 65oC ÇZ5< ' Ï m> ñ( ƒ 8„Q…T.

' Ï5 67 5=  z!#  (1) (2)Z 0ö  ST.

(1)

(2)

µm< L(t) ' ñ°t& 0ö†R, E ' ×5 67 5=  uT. ‰R τ mºc uT.

 (2)5< 0ö@ ƒZ 65oC ( z³5< 5=  z

! –-< 'Ï°t& + 0ö  S+0, 65oC "

z³5< 5=  z!5 %< ' Ï °t& ¨ " 

+ ¦¿•  –P uT.

,  (2)5< 65oC ( ?t5< a‹ Ï°t + '

 (P Q[, Fig. 4çè 1.8-2.0(cm/s) # …T. 65oC

" ?t5< *C Ïýþ& 3= Ž+[ 5= é5

%< ' »= ƒ M%  T. Fig. 5çè 5= 

mºc ëC E/τ # …+[, ‰ X 0.1207T.

Fig. 6X X ?t # êR ?t "ÿ5 Š‹< “c Ð

× ' Ïu t& 0öT. ?t : •ï ' Ï ° t ‹= ƒ# ˜  ST. ‰´0 65oC " Q; 'Ï

m> ñ(P QR, ' æm Ï°t ?t5 Š‹< z!#  L t( ) at exp –Et

---τ

 

  –

=

L t( ) at+b exp –Et ---τ

 

  –

= Fig. 3. Viscosities of aqueous AMP solutions.

Fig. 4. Foam decay time AMP 10 wt%+pip 1 wt%.

Fig. 5. A campare with two different decay mechanism (AMP 10 wt%+

pip 1 wt%).

(4)

= ŽP uT. , 65oC (5< Fig. 45 0ö@ ƒZ ?t : 5 Š‹<, Ï °t : (P Q0, 65oC "5< +

 ¦¿u æm Ï °t “(P uT. Fig. 6X X ?t 

(∆10oC)# êR ?t : 5 Š‹< “c Ð× ' Ïu

t& 0öT. ?t : •ï ' Ï °t ‹= ƒ

# ˜  ST. ‰´0 65oC " Q;, ' Ï Ñ ñ(P QR, ' æm Ï °t ?t5 Š‹< z!# = ŽP uT.

Fig. 6X Fortes[22] c7 jñ λ& L(µ ?t ñ5 Š ü ' ×t ñ& tc7 ƒT.

jñ λ Tó   uT.

(3)

 ?t >5 Šü ' Ï °t “ ?t5< R #  ,T ?t ¨ "ÿ(P Q; (P uT. 50oCå= ?t z

³5< ' Ï °t (P ‹=P Q=’, 50oC5< '

 Ï m> ñ(P Q 65oCå= ?t : 5 Š‹

< ' ÏQ °t : (m (0 ‰  ±± -¥-<

65oC"5< ñ –P uT. , 20oC5< ±*+ as?

t : 5 Š‹< ' Ï °t : (P Q=’, “?t

" Q; ' Ï °t ?t : (¨‹t ¨ " : (

= ŽP uT. Fig. 65< 0ö ƒ  ∆T& eL(µ 5, 10oC

?t 5 7 ' Ï t& ?t! 0ö"+< '

Ï °t #+ 0ö0 65oC5 tä Q; ?t "ÿ(¨‹

t Fig. 55< + ¦c Q æm Ï°t ñ(= ŽP uT.

3-2.  (foamability)  

' t(foamability) “as a­(5< ' O•  S b# ¡7T. Bikerman[23]5 %< ' t‹ {

“foamability”k “foaminess” $ tÕQ…+[, È ™š5<

' t Î# $%< mZ ¯Õ ¯Y# 21.26 cm/s “(P

¯= c”R “7 mn ¯Y (5< ' æm  ¢& Î

(£T. æm '  ¢ as ?tI ¯ÕQ- ¥-Ú mn

¯°  X “7 asa­(5< i ‘ O  S

6 ¢& ò7T.

Fig. 75 diethanolamine(DEA) Lo5 67 ™š Á& 0ö†

…T.

 DEA 5, 10, 20 wt%5 67 ™š Á& 0ö†R S+[, as

?t : + C%< ' t : ( ƒ# ˜  ST.

Diethanolamine  õt : 5 6%< 10 wt% “ §  ¢X 

# 0ö† ƒ# %  ST. I  as ?tI 6" i ? t ñ5 Šü Á diethanolamine Lo ‘ ñ5 Šü ƒ + %  ST. , diethanolamine Lo ²t, ±t, ¦;

X ‘¥ z!# < ' t& 0ö† æm ' 

¢ ÁuT.

Fig. 8 9  N-Methyldiethanolamine(MDEA), 2-amino-2-methyl- 1-propanol(AMP) Lo ' t& as ?t5 Š‹< 0ö

ƒT. Fig. 7 diethanolamine ÁI  as ?t : •

ï ' t : ( ƒ# %  S+[, ‘5< i õ t : •ï ' t& 0ö† æm '  ¢ : (T “ õt ß5 ( Á& 3µ R ST.

Fig. 10X ™š5 eLu 3&l Tü i ‘C diethanolamine, N-methyldiethanol amine ‰R 2-amino-2-methyl-1-propanol õt : 5 Šü ' t& 0ö†R S+[, as?t 50oC “§

Á& 0ö†R ST.

3-2-1. ' t5 {} ²t z!

‘ ²t : •ï ' ×tI ' t 

λ ∆lnL

∆lnT

---−˜(L1–L0) T1–T0

( )

---

=

Fig. 6. Change of the rate of foam decay time according to the operat-

ing temperature. Fig. 7. An effect of operating temperature on the foamability (DEA/

Water).

Fig. 8. An effect of operating temperature on the foamability (MDEA/

Water).

(5)

 41 6 2003 12

(P uT. ' ×t 2r ‘ ²t : (P Q;, '

# ,R S on¥ '(drainage) D5 %< ¨ ùúP

¼ÔuT. Š‹< u 'X 3T (P »-=R ø×(P uT.

' t 2r5 ¯ÕQ mnI ) on  "ÿ(µ '# ý(P QÅ, ‘ ²t : (P  ï D z

!# ¨ d P Q-< ' Q * -Œ mP uT. ™

š Á ³c I X e™# 0ö†R ST. as ?t : •ï

‘ ²t (P QR, ‘ ' t : (P uT.

‰R i Lo õt : •ï ‘ ²t (P Q Å (Fig. 2) ' t ³c õt : 5 Š‹< : (P uT.

Fig. 105 as?t 50oC “§ ‘ ²t ñ5 Šü '

t& 0ö†…T.  ‰ +çè ' t5 {} ²t

z! ±t0 ¦; v5 ë%< —T ƒ# ˜  ST.

3-2-2. ' t5 {} ±t z!

i ‘ ±t : (P  ï ' t (P uT. ²t ' O#  ( ƒ Tü   ±t :

•ï ' # Â (P Q *, ¯ÕQ mnI ) on 

 "ÿ(µ< '# ý(P Q * S-< i Lo ±t : •ï mn "ÿ5 67 + : (P uT. , “7 ¯

°‹ ™ša­ (5< ‘ ±t : (P Q; ‘†

 ¥-Ú mn =R S ,5 67 on +  x=P QÅ mnI ) "ÿ •  S on Ö (P uT. ´

7 Áçè ±t : 5 Šü ' t  (PuT.

™š Á5 0ö@ ƒZ as ?t : •ï i Lo

±t (P QR, ‘ õt : •ï i Lo ± t : (P uT(Fig. 3). ´7 ±t :  z!+ “7 õt

"5< ' t ( -# 3P Q ƒT.

Fig. 115 ±t ñ5 Šü ' t& 0ö†…T. ‘

±t : + C%< ' t ( ƒ# ˜  ST.

3-2-3. ' t5 {} ¦; z!

' t5 z!#  ‘+  ¬P —L( ƒ+ ¦

;#  •  S+[, ¦;  : •ï ' ×t (P uT.

as ?t : •ï i Lo ¦;X (P QR ' t : (P uT. ‰R i Lo i õt : •ï ¦;X (P QR ' t : (P uT.

Fig. 125 ¦;5 7 ' t ñ& 0ö†…T. DEA

Lo 50, 60oC5< Á& 0ö†…T.

Fig. 13X i õt : 5 Š‹< ²tI ¦; 5 Š

ü z!5 %< ‚X i õt z³5< ' t : ( 2!# 3T i õt : •ï ±t z! ²tI ¦

; v& ".(µ ' t  u ƒT.

nf_ 2r OQ (/ 0È ‘ ' O t&

Fig. 9. An effect of operting temperature on the foamability.

Fig. 10. Density effect on the initial foam height.

Fig. 11. Viscosity effect on the initial foam height.

Fig. 12. Surface tension effect on the initial foam height.

(6)

Reynolds I Weber 1+ 0ö  S+[  (4)Z 0ö 

 ST[24].

(4)

' t ³c  (4)I X MN+ 0ö  S+[, ' 

t& {( æm '  ¢ ²t, ±t, ¦; X

‘ ‘5 Uë2( ƒ+çè  (5)I X 8# #

 ST.

(5)

 (5)5< æm '  ¢5 {} ²t z! ±tI ¦

;5 ë%< —TR 7T; 7 8+ ²t z!# ¶ c •  STR 7T;  (5)5< ²t+# "  •  ST.

4. 

2-amino-2-methyl-1-propanol Lo ' ×t as ?t5

Š‹< ' Ï m> ñ7T ƒ# ™š# ›%< ˜P Q…T. ™

š?t 65oC (“ §5 ' Ï °t Î c5 6%<

ý*+ ([, ™š ?t : •ï ¨ ùúP Ï uT.

‰´0 ™š ?t 65oC "“ §5  ' »== ŽR ×

u ' û Ú3 c# êR 4J (P Q[, ' Ï °t ³ c Î c5 6%< ý*C -# 3= Ž T. 4P ™š ? t : 5 Š‹< ×u ' û Q ¯ ™š ?t : 5 Š‹< ' Ï# M%( 5=   : (m §À

T. ´7 5=  z!# 5I  0ö   ST.

$5< 65oC ( as?t5< 1.8-2.0(cm/s) ' Ï°t&

…R, 65oC " as?t5< 'Ï# M%( 5=

 # …+[ ‰ X (E/τ) 0.1207 uT.

“7 as a­(5< O  S ' Ö# 0ö† '

t as ?tI i Lo" i õt5 Š‹< Tü 

# 0ö† *, ' Ot5 z!# {} ‘+ ²t, ±t ‰

R ¦;  S+[, ²t, ±t, ¦;   : •

HF : foam height Hi : initial foam height vs : superficial velocity Re : reynolds number

We : weber number

 

α : experimental constant µ : viscosity

ρL : liquid density σ : surface tension



1. Lockett, M. J., “Distillation Tray Fundamentals,” 1st ed., Cambridge University press, Cambridge, 44-53(1986).

2. Ross, S., “Mechanism of Foam Stabilization and Antifoam Action,”

Chem. Eng. Prog., 63(9), 41(1967).

3. Zuiderweg, F. J. and Harmens, A., “The Influence of Surface Phe- nomena on the Performance of Distillation Column,” Chem. Eng.

Sci., 9, 89(1958).

4. Ross, S. and Nishioka, G. J., “Foaminess of Binary and Ternary Solutions,” J. Phys. Chem., 79(15), 1561(1975).

5. Bolles, W. L., “The Solution of Foam Problem,” Chem.. Eng. Prog., 63(9), 48(1967).

6. Kister, H. Z., “Distillation Operation,” McGraw-Hill, New York, 393-407(1990).

7. Eckert, J. S., “Extraordinary Distillation Problems: Problems of a Packed Column,” Chem. Eng. Prog., 61(9), 89(1965).

8. Glausser, W. E., “Foaming in a Natural Gasoline Absorber,” Chem.

Eng. Prog., 60(10), 67(1964).

9. Kister, H. Z., Pinczewski, W. V. and Fell, C. J., “Entrainment from Sieve Tray in the Froth Regime,” Ind. Eng. Chem. Res., 27, 2331(1988).

10. Benenett, D. L., Agrawal, R. and Cook, P. J., “New Pressure Drop Correlation for Sieve Tray Distilation Columns,” AIChE J., 29(3), 434(1983).

11. Colwell, C. J., “Clear Liquid Height and Froth Density on Sieve Trays,” Ind. Eng. Chem. Process Des. Dev., 20(2), 298(1981).

12. Fair, J. R., Steinmeyer, D. E., Penney, W. R. and Crocker, B. B., Perry’s Chemical Engineers’ Handbook, 6th ed., Mcgraw-Hill, New HF

---d A v2dρ ---σ

 

 0.55 dvρ ---µ

 

 0.115 We0.55Re0.115

= = =

Hi α ---ρ A

----ρ

  a B ----µ

  b

=

L t( ) at+b exp –Et ---τ

 

  –

=

Re dvsρL ---µ

=

We vs2dρL ---ρ

= Fig. 13. Foamability of amine/water mixtures (50oC).

(7)

 41 6 2003 12

York, 85-88(1984).

13. Biddulph, M. W. and Thomas, C. P., “Effect of Liquid Surface Ten- sion on Small Hole Distillation Sieve Tray Pressure Drop,” AIChE J., 41(4), 819(1995).

14. Bennett, D. L., Kao, A. S. and Wong, L. W., “A Mechanistic Anal- ysis of Sieve Tray Froth Height and Entrainment,” AIChE J., 41(9), 2067(1995).

15. Bainbridge, G. S. and Sawistowski, H., “Surface Tension Effect in Sieve Plate Distillation Column,” Chem. Eng. Sci., 19, 992(1964).

16. Davies, B., Ali, Z. and Porter, K. E., “Distillation of System Con- taining two Liquid Phases,” AIChE J., 33(1), 161(1987).

17. Lowry, R. P. and van Winkle, M., “Foaming and Frothing Related to System Physical Properties in a Small Perforated Plate Distillation Column,” AIChE J., 15(5), 665(1969).

18. De Goederen, C. W. J., “Distillation Tray Efficiency and Interfacial

Area,” Chem. Eng. Sci., 20, 1115(1965).

19. Shou X., Frederick D. O. and Alan E. M., “Physical Properties of Aqueous AMP Solutions,” J. Chem. Eng. Data, 36, 71-75(1991).

20. Asit K. S. and Syamalendu S. B., “Solubility and Duffusivity of N2O and CO2 in Aqueous Solutions of 2-Amino-2-methyl-1-propanol,” J.

Chem. Eng. Data, 38, 78-82(1993).

21. Adamson, A. W., “Physical Chemistry of Surface,” 5th ed., John Wiley & Sons, 544-550(1990).

22. Fortes, M. A., “Thermal Expansion of Liquid Foams,” Langmir., 11, 639-642(1995).

23. Bikerman, J. J., “Foams” Springer, Heidelberg(1973).

24. Yoon, H. B., Hong, W. H., Lee, T. Y., Kim, S. S. and Song, I. S.,

“Analysis of Foaming Phenomena of Binary Mixtures in Sieve Plate Columns,” HWAHAK KONGHAK, 36(3), 380-386(1998).

참조

관련 문서

I think we can use selfies to make a better school life?. We can do good things at school

y= 에서 x가 분모에 있으므로

[r]

따라서

A반을 나타내는 그래프가 B반을 나타내는 그래프보 다 오른쪽으로 치우쳐 있으므로 A반 학생들이 B반 학생들보다 도서관 이용

미지수 x, y가 분모에 있으므로

 잔여접근법 (residual approach) 또는 차감법 : 거래가격에서 판매가격이 알 려진 이행의무의 판매가격을 차감한 나머지 금액을 판매가격이 알려지지 않 은

진행기준에 의한 수익인식은 다음과 같은 이유에서 특정 회계기간 의 의무이행활동과 성과의 정도에 대한 유용한 정보를 제공.. ① 거래가 발생하는 기간에 거래의 영향을 보고함으로써