• 검색 결과가 없습니다.

 1.  Carbon Dioxide Ocean Sequestration Using Gas Hydrate   

N/A
N/A
Protected

Academic year: 2022

Share " 1.  Carbon Dioxide Ocean Sequestration Using Gas Hydrate    "

Copied!
12
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

 *,†**

  

136-701   5 1

*

305-701    373-1

**    

151-742 !" #$9 % 56-1 (2002& 12' 16( )*, 2003& 1' 10( +,)

Carbon Dioxide Ocean Sequestration Using Gas Hydrate

Huen Lee*,†, Chul Soo Lee and Joo M. Kang**

Department of Chemical and Biological Engineering, Korea University, 1, Anam-dong 5(o)-ga, Seongbuk-gu, Seoul 136-701, Korea

*Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701, Korea

**School of Civil, Urban and Geo-System Engineering, Seoul National University, San 56-1, Sillim 9(gu)-dong, Gwanak-gu, Seoul 151-742, Korea (Received 16 December 2002; accepted 10 January 2003)

 

           ! "#$%

 $ &'( )* +, -./ 01 23.   4( 56 789 :; <=> ?@ $A B, C   $ 93 D EF GH I$ J3. "#$  KL MN 3O( P )

*/   EF QR STC P U-  4( GH I%  4( VT/ W X  RP 9Y$ J +Z3. MN [    VT \ ] EF ^ _`a J

 \, b 4c> P U- d e-fg H ^C Ghi e-fg  G( jk>d RP lm/ gnop (3.

Abstract−Gas hydrate is a special kind of inclusion compound that can be formed by capturing gas molecules to water lat- tice in high pressure and low temperature conditions. The hydrate crystal structures were different depending on a kind of guest molecules. Recently, gas hydrates have attracted the attention of many investigators from all areas of natural gas production and environmental science from a fact that this compound could be formed from only host water and guest gas molecules. The most attrative application of hydrates is to dispose of carbon dioxide in the form of solid hydrates in the ocean to reduce atmo- spheric carbon dioxide concentration and mitigate global warming. Therefore, this paper summarized present research works concerning the carbon dioxide hydrate and suggested the connection between these results and the strategies for carbon diox- ide sequestration. In addition, general topics and research trends related to carbon dioxide hydrate are presented with focusing on carbon dioxide ocean sequestration to resolve the global warming problems.

Key words: Carbon Dioxide, Gas Hydrate, Ocean Sequestration, Global Warming

1.  

21      

      !".  # 

, $%    &% ' ("), 1997

* +, 7.4 GtC(million tons of carbon) -./  0 1 2100* 26 GtC/year 2 34  !"[1]. 

 5 67 89: ;< => ?@A B !

 (C, D1 EFG1 HI4 JK LMN OP QR S T UVW 3XY  2 - ( !".

2 Z[\ ] ^_4 `a b c+d2 ef gh

4 "ij, klm, bFn o   i p

q r b: st\ F \ un v6 !". $wj,

To whom correspondence should be addressed.

E-mail: hlee@mail.kaist.ac.kr

(2)

\    x >y z{|1 }~ 

 €  2 ‚%\ ƒ}A „%…† ‡x\

3(CO2 sequestration)X N O !". c +d ˆ‰ t# 

 Š‹ ‡xŒ : Ž` s2 Fig. 1

 ‘4 j’“”". •– ‡x —%\  „%

a˜1 "™ š›Ž"  | œ,  (carbon cycle) žŸ:  ¡6 ¢ O ! £^ ¤ ¥S". F+ 

1 x4  žŸk !C, œ4  JK £¦

". §¨© }Œ 2 \ F+ ª(natural

process) 6) $ «X 2 ‚%, ‡x…¬ O !

 ª ­  ®¯°± ²4 ³  € ž

Ÿ v6´ µ". $wj ¶·   ] Fb st c +d 0  z ¸¹ 3º , F+ ª

    žŸ1 \ »¼ k". «X€, q r

„% ‡x ½: st\ , ¾ ‚% }_½: ¨¿4 t}

…À 3   2 Á…À)€  žŸ: ¢ O ! Âà ÄÅX N O !"[3].

ÂÆ G6 ;Ç, ^È, Éj" o ÄÊÇ: L4 ËA w 

 „% |G  +Ì Ç `~T JK ÍtA O Î !". T… |G  zl „%(ocean sequestration) x ¶@˜ !" Ϝ \ ÐA D1 +ÌÑF ‹ ! @

". IEA(international energy agency) Q@ Ò R&D Ó $Ô (Greenhouse Gas R&D Programme)€ 2 ¤4 ‡ xN O ! Õ· J~ € Ö"× OØ(aquifers), Ù Ò}

(depleted gas well), Ù£}(depleted oil well): T…\Ú" [4]. G M J~ Û  ‡x Ün: Table 1 j’“” zl

x Ý" 3: ? N O !". zl1 Þ€  

2 ßO\ Ü OÎ\ !à: "…á `âN ãa !". 

2 ßO\ ä  ®¯°±1  z   z åÓ(solubility pump)× Ö" #æ  ßO  #æ E åÓ(biological pump)ç, w  \ 

zl4 ßO  è 2.0±0.8 GtC/* ¹".   X) 1,000* 5¸ ¶·  0 90% 0 zl4 }

W 34 B¹".  ˆ‰ zl4  ßO 

× éê  Lz ßO¹  "…  4 

  ­ JK ë%". "… ìz, ) ßO¹  è 8*  R 5 "…  Y íz, Lz ßO¹ 

 "…  4 Œ 1,000*X î ,

a̹" 3". ïð zl 2 ßO\ 1,000*X

 î …,¦¤ ‡xz` F+ ª4 ˆ‰ zl „% s  t\Ú". ñ, 2 Lz >y `ò(direct injection) zó4 ³,    Lz ßO6 F+ ª 2 …† ` 3 zl „% s 3".  >y ` ò|1 ô¹  õö(stream): ÷QØ ø ñ, OL 1,000 m

 Lz `ò\ 3: È |4 \ !C, =>Œ 

¹ ½1 st6 ! (1 k"[5]. $ £ 

z‡ `ò € zO× íùz \úûüX ~

k ý£þæ(inclusion compound)2 #˜" F+t# íù

¶ j’ÿ ¥S". w \úûü #˜1 

Lz‡€ ¾·\ð W K ¤˜: ݏ¢  =°X zlj z‡ `÷ #k 89:  …¬ O ! Oœ4 € Í

 W O !4º ¶· $ a˜ ð ˆM !". «X€ È

€  æ íù\ #˜ \úûü И:

"l B)€ Ž F ".  \úûü #˜  z

% : T…\ `  Ÿ × & ¹ $ ¦¤ +Ì2 ‚ c\ 4 z{\¸ N STG: Ž F ".  ­

  Ÿ #˜   89: ; \úûü Ì 2 

| ‚|: z •©\ | T˜ ù ¤ =

w T…\ F ". é4 ጠ+̹ {2 Ö4 

2 t}  Ò ˆ‰ ‚%z Ö" `ò\  }

~  ½ STG: T…\ , 2 Z[\ ] 4 +́9: T¤\ F".

2.    

2-1.  

\úûü, wÒûü \úûü(clathrate hydrate)  à Q  n Ý1 k€ ‡‚F0 Òj ~

æ E {þ =°X, Ì   £ æ% {þ z ~ k {4 ¾·\ þæ: ì". Ò \úûü

O{þ4 ~ „F(hydrogen-bonded solid lattice)2 v ` Fig. 1. Schematic diagram of carbon sequestration[2].

Fig. 2. The cavities in gas clathrate hydrate[6, 8] (a) Pentagonal Dodecahe- dron(512), (b) Tetrakaidecahedron(51262), (c) Hexakaidecahedron (51264), (d) Irregular Dodecahedron(445663), (e) Icosahedron(51268).

Table 1. Storage capacity for storage options [4]

Storage options Storage capacity (GtC)

Ocean 1,400-2×107

Aquifers 87-2,700

Depleted gas reservoir 140-310

Depleted oil reservoir 40-190

(3)

~‚F(host molecule) æ  ¤ Š‹6 G6  ~‚F (guest molecule) ä ˜‚4 ̘¹"[6]. w Ò \úûü

Ÿ !à "#\ð Žj, {Ì 4 !à1 ށ~

Ò \úûü ò~". ÐA Ò \úûü {Ì (crystal structure) O {þŸk æ‚F(hydrogen-bonded water molecule) \ Ÿ˜¹ ")~(polyhedra) ¦H(cavity)4 ̘

6 !". ¦H1 Jeffrey[7] z T¤¹ ©©| z nimi $

ç, ¶·Œ %'Ê ¦H £Ÿ 512, 51262, 51264, 51268, 435663

 !"(Fig. 2). 2 GF) 51262 12s 5M)(pentagonal face)

2s 6M)(hexagonal face)4 ̘¹ 14)~ ¦H: ;". \

úûü {Ì  ð Ì -I, Ì -II  Ì -H ‚Y 

 Š& Ò ñ, ~‚F  z {¹". ‚F >:

H¦ >4 j' ((R=molecular diameter/cavity diameter) 1Ž

"  K ~‚F )*(distortion) (  ¦H G6  +\ç,  ( 0.76 Ž" ª1 K ‚F ß n(attractive force)

 ¦H ¤˜(stability): TH\ +".

\úûü Ì -I1 1965* McMullen Jeffrey[8]  X-Ä

‚c(X-ray diffraction: XRD) +Ì \ ,-.4ç,  +Ì

€  /0(ethylene oxide) ”". Ì -I1 46s æ

‚F 2s 512¦H 6s 51262¦H: Û ò~(cubic) {

Ÿk2 ̘\ç, „F(lattice) >1 12Å"(Fig. 3). ®, ,

(carbon dioxide)  1O(hydrogen sulfide) œ2 \

úûü(simple hydrate) Ì -I: Ÿ˜". \úûü Ì -II

1965* Mark× McMullen[9]  XRD +Ì \ ,-.4ç,

 +Ì2 ]z 3üX\ú 4(tetrahydrofuran)/1O 

”". Ì -II 136s æ‚F 16s 512¦H 8s 51264¦H : Û {Ÿk2 ̘"(Table 2). „F "=5ú(diamond) Ÿ k2 Žç,  17.3 Å"(Fig. 4). 0.76€ 1Œ R (: Û

=67(argon), 89(krypton), :(hydrogen), (oxygen), :

(nitrogen), Ó Ï  -ˆ(iso-butane) o ~‚FG œ2 \

úûü Ì -II2 Ÿ˜". ü%®/0 ;ú(trimethylene oxide),  Ó Ï(cyclopropane)  1 /0(ethylene sulfide)

1 \úûü Ÿ˜ Q× n  «X Ì -I 51262

¦H Ì -II 51264¦H  \j2 <Kð ¹"[6, 10]. f=,  G Ì ÷ \úûü Ÿ˜W ¥ Q× n z >

K²: £\¸". ^í4 u6ì-ˆ(n-butane)Ž"  ‚F G1 Ò \úûü2 #˜\ +" %'´ µ". $wj 1987

* Ripmeester o[11]1 ?F H© ‚|(NMR spectroscopy)j X-Ä  ‚ì‚c(X-ray powder diffraction) o +Ì \ Ì -H ¾·2 ,A” , 1996* Udachin Lipkowski[12] \

 œ{(single crystal) ‚c Fd &@”". 34s æ‚

F 3s 512¦H, 2s 435663 ¦H 1s 51268 ¦H: Û {

Ÿk2 ̘\ Ì -H ޖA(hexagonal) {Ÿk2 

!4ç, È ¦H 5121 {þØ(connecting layer): Ÿ˜\ ]

\ ): H£"(Fig. 5). Ì -H ¤ ]\€ 

"™ ä Ã ~‚F a̹"[6]. ñ, ®  1O× B1 ª1 ‚FG1 ª1 ¦H(512, 435663) G6 ç, 7.4 Ž"  CDE

(neohexane) B1 ‚FG1  ¦H(51268) Š‹6 }~ {

Ì ¤¹".

Fig. 3. Crystalline lattice of gas hydrate, Structure-I[6].

Fig. 4. Crystalline lattice of gas hydrate, Structure-II[6].

Fig. 5. Crystalline lattice of gas hydrate, Structure-H[6, 13].

Table 2. Hydrate crystal structures[6, 8, 10, 11, 13].

Hydrate crystal structure I II H

Cavity small large small large small small large

Description 512 51262 512 51264 512 435663 51268

No. of cavities/unit cell 2 6 16 8 3 2 1

Average cavity radius(Å) 3.95 4.33 3.91 4.73 3.91c 4.06c 5.71c

Variation in radiusa(%) 3.4 14.4 5.5 1.73 not available

Coordination numberb 20 24 20 28 20 20 36

aVariation in distance of oxygen atoms from center of cage

bNumber of oxygens at the periphery of each cavity

cEstimates of structure H cavities from geometric models

(4)

2-2.    

Lz `ò¹  zO× {þ\ Ÿ˜¹  \

úûü ¤ð ¾·N 8F1 È4  Ÿ: zý4 ³ GHW O !". $ ¦¤ \úûü  Ÿ1 ` (\

úûü)-()-(æ) 3 H¾\  z ‹

4 D1 & +Ì v6´µ4ç   B –I D1 +ÌFG z OÎ6µ"[6, 14]. $wj Lz€ ^6j 

Ÿ1 Ž" JK [L\ç ­ 89: ; `a F zl  z6 ! MjüN: "O w à }z:, z‡ "H˜

P,  ¾·  zl pH ÷o !4ç ^Q4

G MM FG: ' JK LØ +ÌFd a̹". ÐA, Lz “€ Ò ¾·\ (à4 ~ \úûü

ÖRæ v6Ê C @T Ÿ: >K\ð¹". LzX 6' r € j’j  Ÿ Fd2 &@\ ]\ £ _: C G6 >y @S4 B\ij mFE –I: \ |G

ox\ ! @".

2-2-1. mFE –I

\úûü: Šý\ "l  Ÿ  M € ˜‚

4s…Tj EUVW B=¸ " ^í mFE b% 

¹". \úûü € ¤\º  4s…T2 

\ ]z€ ͦO –I þ\ ( k‘: z

¸ \ç ­ \úûü 4s…T2 \ þ | ! 6¸ ". $ ¦¤ \úûü: Šý\   Ÿ: \

 ] mFE –I D1 +ÌFG z £ sÄ”4 ç & ¹ D1 { SX t$”". G € \úû

ü 4s…T ßYZ Æiz€ ImFE4 £¹ van der Waals× Platteeuw[15] –I  ! ,  –I1 @S Y

‰ Ž ¹ ˜‚  [˜‚ \úûü  Ÿ € 6 ë  C\NC |4 ? ”". 5 Mackoy× Sinanolglu [16]1 Kihara potential Lennard-Jones Potential Ž" Ÿn B

 f ]1 {2 ŽP" Ž \Ú". Parrish× Prausnitz[17] "

˜‚ \úûü …Ò^  Ÿ: B\ ^í¹ |: t

$\Ú4ç _ \úûü mFE æ˜ q r (G: \

Ú". Holder o[18]1 ¾ |G `è: sÄ –I: T…\ Ú". TŒ st¹ –IG £€ HI4  5

 1 =V× B".

(1)  s ¦H1  ‚F: Š‹N O p".

(2) ~ ‚F× æ‚F aª(interaction)1 pair potential function4 j’b O ! M ¦H1 ƒ} ̟4 ".

(3) ~ ‚F ¦H “€ F£cð }N O !".

(4) "™ ¦H Š‹¹ ~ ‚FG € aª ¾·

\ (".

(5) ~ ‚F \úûü „F2 )*…À (".

\úûü2 Šý\  Ÿ€  ­  4s…T (fugacity) k‘: \ ¹".

€ yi, xi, φi MM  ˜,  ˜,  4s…T O".

Sloan[6]1 4s…T O : ]z€ Soave-Redlich-Kowng (SRK)[19] k‘: œ2 dþ•e ýf \Ú". SRK‘

1 Huron-Vidal dþ•e[20] ­ Dahl Michelsen[21] z sÄ

¹ Huron-Vidal T2 dþ•e(MHV2) o ýf ”"[22]. 

g, æ‚F þИ: ' | ”". Yang o[23]

1 þ\ £~  „Fk‘: z€ \úûü

: Šý\ "l  Ÿ: \Ú".

G |€ \úûü “ ! æ 4s…T "à ` 6Ê van der Waals-Platteeuw –I z ¹"[15].

] ‘€ fwMT  _ \úûü „F“ ¾·\ æ

  4s…T2 ;\ç, Cmj Langmuir O, νm1 \úû

ü „F“ ¾·\ \j æ‚Fh ¦H O, Nc ~ O, k

\úûü „F“ „FÃ O, fj   ¾·\ ~˜

‚ 4s…T2 MM ;".  Ÿk _ \úûü“

æ 4s…T æ i € "à B `6Ê".

€  × 1 MM _ \úûü

 € æ E ŠVW(chemical potential)".

Langmuir O \úûü ¦H“€ `~‚F æ ~‚

F  aª: ' 3ç, ̟–I:  Kihara potential: ýO ³ ".  ýO \úûü z% n:

\Y !6€ Lennard-Jones potential Ž" f ]1 {2 Ž

" Ž ”". Langmuir O "à ‘4 `6Ê".

€ T Q, k jkCO, ω(r)1 ̟ lŠVW, $%

r1 ¦H L4 ˆ‰ í: ;".

Mckoy× Sinanoglu[16] m“€ ~‚F× `~‚F 

Kihara spherical core pair interaction: %\Ú". € ω(r)1 "à

 B $¶¹".

] ‘€ N1 4, 5, 10, 11 (: ç, z coordination number, R1 ¦H í".

Kihara hard core parameter a SX(4 `6ç, í) Kihara energy parameter ε× Kihara size parameter σ van der Waals×

Platteeuw ‘ ýf  Ÿ @S {2 Â\ n6Ê".

2-2-2. 3 Ÿ @S

 \úûü  Ÿ1 2O +æ C

=°X Lz : '\ w à }z: o ¹ …Ò^

z€ D1 +Ì v6.". Englezos[24] NaCl O“€

 \úûü Ÿ n: B\Ú , $ { @S

× DQ 7.2% X t$\Ú". Englezos× Hall[25]1 2O

 æ ‚F $% }z: “€  \úû

(inhibitor) ª" Ž \Ú". Dholabhai o[26, 27]1 NaCl, KCl, CaCl2× $ dþæ O€  \úûü [ Ÿ : 259-281 K, 0.9-4.1 MPa€ B\Ú }z: ®p O

€  \úûü [ Ÿ & +Ì{2 t$\

Ú". Kang o[28]1 MgCl2 Šý¹ O€  \ú fiV=yiφiVP

fiL xiφi LP

=

fwH fwMT vm

m=1

k 1 Cmjfj j=1

Nc

 + 

 

 

ln – exp

=

fwMT fwL µw MT L

∆ ---RT

 

 

exp

=

µwMT L

∆ =µwMT–µwL µwMT µwL

Cmj

kT--- ω( )r ---kT exp–

0 R a

r2dr

=

ω( )r 2zε σ12 R11r --- δ10 a

R----δ11

 + 

  σ6

R5r --- δ4 a

R----δ5

 + 

 

=

δN 1 N---- 1 r

R----

– a

R----

 – 

 N 1 r

R---- a R---- –

 + 

 N

=

(5)

ûü Ÿ : @S4 {\Ú"(Fig. 6). MgCl2 

r ^ý: Ž`”".  {€ Lz z¹ }z:  Q \úûü „F Ì 2 Ÿ˜\Y h ‡z g !à : ? N O !”". ÂÆ Lz‡ sØ 89: '\ "H

˜ J:“€  \úûü ¤8F: GH\ ]

 +Ì v6 !". Fig. 7€ j O !t H(pore) ª

=:Ou Ÿ n1 Ý= ‡z ¶: ŽÚ".  }z: O

€× £ {". "H˜ J: }z: O ¾· æ ͦ2 ¡ð \ {4 ä K –ä Ѝ Q€ Ÿ

n: Ýð \ ‡z ¶: Žð  3".

g, \úûü #˜: z\ ‡zT× íð DA' #

˜: ×` vÊT(promoter) !". vÊT  propylene oxide,

ethtylene oxide, THF o cyclic ethersG  ". G: o ý \ ŸQ2 w…À Ÿn1 hA ‡\…¬ O !

 g2 nð 6 H B) T˜€  2 N O !".

2-3.    

@T Lz `ò¹  zO× íù\  \

úûü2 #˜\ ®É°± GH !6 \úûü #˜

š›Ž" a ŽX N O !". \úûü #˜2 {

\Y KÄ4 'z¸ N ä  a a !". 

Ѝ Q× n € \úûü { ? #˜Œ

…,, ñ induction period ,  \úûü { F~ ˜ x ". \úûü #˜ 1 Q2 ^\ð £…x

k€ …, «X – ~ l: Iz€ j’“ð Y,

 ¥ ? Ÿ˜(nucleation), ˜x  o1 Fig. 8 …\Ú".

2-3-1. \úûü ? Ÿ˜(hydrate nucleation)

\úûü ? Ÿ˜ 1 \úûü ; { y‚A

˜xN O !:  …,: ì\Y, Oz€ O { s ‚F

|\ ;… ¶º @S4 &B 6}". «X€ 

¶: ~©\ ]\   ~ T¤”". \úûü Ÿ

˜€ ¶· €=G ! ~1 ð ä ". \j !6

! æ‚F ñ !à4 ˆ‰ \úûü2 Ÿ˜\ | , "™

\j æ z¹ Ò ˆ‰ Ÿ˜ |". !6 ! æ‚F ˆ‰ \úûü2 Ÿ˜\ | ä  –I ¾·\Y,

\j ‘iceberg’ –I , "™ \j ‘hydrogen-bonded network’ – I ¶· x % €=G ! –I".  –I \) \

úûü æ‚F ‚ k€ O{þ: Iz ƒ(gel) B1

˜:: Ê". $% € á t}¹ –I \) æ‚F O

{þ: Iz Cü„: Ÿ˜\ 5MŸ ­ 6MŸ Ÿk ¾·"

[6]. ­ Vysniauskas× Bishnoi[32] \úûü #˜  

‚(supercooling) × a &  !à: %=…". $% ‚

 \úûü ?: Ÿ˜…À £n(driving force) ª

".  ‚  ∆T=Teq−Texp  Y, Teq `6Ê n

€ \úûü #˜N ¥ ŸQ , Texp @SQ".

2-3-2. \úûü ˜x(hydrate growth)

Glew× Hagget[33] Ethylene oxide(EO) \úûü Ÿ˜ 

 +Ì2 \Ú". EO \úûü ˜x1 \úûü †w%

(slurry) m}- ¶ &  !". )‡\) \úûü Ÿ˜ 

 \úûü $) yv ˆ‚ íù  z ` 

 ¥S". ñ, \úûü Ÿ˜ æ: æ ) æ: }-

 2 {\ a a ¹" 3".

Scanlon Fennema[34] EO \úûü(Ì -I)× THF \úû Fig. 7. Hydrate phase equilibria of CO2+water mixtures in silica gel

pores[31].

Fig. 8. Gas hydrate formation process.

Fig. 6. Hydrate phase equilibria of CO2+H2O+MgCl2 systems[28].

(6)

ü(Ì -II) z€ +Ì2 .". ‚ k€  \úû

ü { Ÿ˜1 2O 怎" ë%𠟘 , THF \úûü

 EO \úûüŽ" f ë%ð { Ÿ˜¹". \úûü Ÿ

˜ ˆ6 \úûü2 Ÿ˜\Y ãa æ‚F D: Ou Á

". $wj  { æ z \úûü Ÿ˜ æ:

 C, "™ Ÿk \úûü …Ò^   (: O !".

Englezos o[35]1 ®,  $ dþæ \úûü  –I (Englezos-Bishnoi model): ^í\Ú". $ –I€ òF 

‚Š «™ ýO 6 –IqN ¥ òF   Ò €

? ýf '\Ú". { Z U\ CG6Ê  

–I1  \úûü Ÿ˜ 2 B\Y N O !

". œ^ æ: BC =°X ä  dþæ N O ! ,

"™ GX;‰2 \ (  dþæ:  }z: ‰ð 

N O ! x !". Skovborg× Rasmussen[36]1 Englezos- Bishnoi –I: +Ì\ ef œ2 …Š". $G1 æ: }- 

€ Ò-~ ): I ÒC '\Ú". $ïð z€  s ;‚ ‘ \j ‘4 ¢6Gð ”". $%  –I

€ –¼ æ: ‹B1 æ: }- O2 Ê" \Ú".

5 Shindo o[37]1  × æ )€ \ú ûü Ÿ˜: ] ^Qb  –I: st\Ú , Teng o[38]1 Ý 1 n 1 Q æ€  ~  $)€ \

úûü  –I: +Ì\Ú". $  –I \) Ý1  n 1 Q€  ~  k ¾·\) Œ1 … , JK 1 \úûü Ø #˜¹" ". Chun Lee[39]

  k€ ~ –0: \  \úûü #

˜  & @S +Ì {2 Ž \Ú". Fig. 9 j’R {

 \) Ý1 n€  \úûü #˜   Âà ~ –0 Ýð j’Ž: % O !".

2-4.   (microscopic) 

 \úûü mFE  Ÿ, #˜  o i… (macroscopic) & f6 ~ \úûü: >y ‚c\ ; …(microscopic) |G ÂÆ D … !". ~ \ú ûü : ‚c\ |4  | ‚| !". |4

 XÄ| $ç ‚|4  NMR XC(Raman) `

¹". w ‚c 2 Iz€ \úûü Ì •©1 æZ M Ì ‘ M ¦H £h $% , \úûü Ÿ˜  z

% : BN O !".

2-4-1. XÄ |

2Q  }5 von Stackelberg z€ —à4 ‚ì XÄ 

|(XRD):  \úûü { ‚c …”". Jeffrey o [7] z $ { ?  ?x¹ 5 \úûü Ì (Ì -I

 Ì -II) —à4 ,-ð ”". $% , | ’ Ripmeester o[11] z€ } ,”/ T3 Ì (Ì -H) NMR:

Iz€ t“ | z ””".

XÄ |1 { „FO o "l Ž2 n: O ! ¥ S ? { Ì  M ¦H 2 % O !". Fig. 101 

 \úûü powder X-ray diffraction pattern: Ž`

!". MM peak z Miller index2 ˆ\ , M peak 2 theta (4 ˆ‰ Ì -I diffraction pattern•: ? N O !". ­ XÄ

| z€ n6Ê Miller index× 2θ: \  \

úûü „F O(lattice parameter) a=11.89 Å: n: O !"

[40].  „FO Q ýO =V× B j’b O !".

a(T)/Å=11.81945-9.08711×105T+4.59676×106T2-8.35548×109T3

 Y‰ ˆ‰ ¦H £h: N O ! , ¦H £h1 "

… hydration number ¹". Udachin o[40]1  \

úûü œ{ XÄ |: Iz€  ‚F  ¦H

 100%, ª1 ¦H 71% £h: Ê" 3: ,-…  {

   \úûü hydration number 6.20".

Takeya o[41]1 bIŸ  X-Ä m: Tª\ , ‡Q  k€ !à ‚ì  \úûü Ÿ˜6  

 Y‰2 …, «X +4 n”". !à  – —

 …, «X Q Á\ð   \úûü –

— Q \ 3: j O !”". $G1  Y‰2 Iz

€ !à ‚ì  \úûü }_ íù: 2œ

 –I T¤\Ú".  œ !à òF×  ~ 

)€  \úûü ? Ÿ˜ …ª !à òF $ ) O…,“  \úûü z }~4 ˜-  ð  , ä ™ œ€  ‚F ? z 

 \úûüØ äf €€A " 3".

2-4-2. NMR

Ò \úûü NMR:  ‚c1 Canada, NRC(National Fig. 10. X-ray powder diffraction pattern of pure CO2 hydrate(struc-

ture I).

Fig. 9. Hydrate formation kinetics of carbon dioxide and water mix- ture at 274.15 K and 30 bar, 20 bar[39].

(7)

wj, MM Ì € $ × symmetry "6 ¥S  ¦H

 <œÊ ‚FG ¦H“ ‚F r¦ 89: €ð , «X€ €

"™ chemical shift j’jð ¹". Ò \úûü NMR ‚c : ]z€ Xe \úûü ‡ ”". Xe1 ‚F ×

–l ® £z€ Ì I  ¦H ª1 ¦H: –ä < O

!:  C =°X \úûü Ÿ˜  JK £%\ ¥S

". ð" , Xe1 Ž" }F Ìö Z˜(polarizability) Ý=€

 chemical shift ž]2 Ž "[42, 43]. Ripmeester o1 129Xe chemical shift Xe Š‹¹ ¦H ¾\ @: z€ 129Xe NMR:

z€ Xe Šý¹ Ì -I, Ì -II, Ì -H \úûü2 ̂\

Ú"[44].

® \úûü K M ¦H Š‹¹ ® ‚F 13C NMR

¦H ¾ chemical shift2 z€ M Ì 2 ̂N O !"[45].

MAS(Magic Angle Spinning) |: ý4 ³ M NMR –  0 zc Üz . M – ‚¹ ): =V I mF E‘ +8ý4 ³ M ¦H‘ £h: N O ! $ {

hydration number2 N O !".

Ì I:

Ì II:

€ θs θl1 MM ª1 ¦H  ¦H £h: j’“ ,

 "6! \úûü „F× !à E ŠVW Q2 j’

Ÿ". (1 Ì -I, II K MM w +ÌFG z Ž  ? ”4ç, ^í4 Ì -I z€ 1,297 J/mol, Ì -II

z€ 883.8 J/mol (: "[6, 46, 47].

 \úûü 13C NMR spectrum ‚c1 ® \ú ûü $3Ž" JK [L l: ŽP".  ‚F chemical shift tensor axially symmetry\ ¥S Ò \úû

ü ¦H“ ‚F r¦1 $ ¦H symmetry  89: €". «X

€, ‚F r¦ F£ r Ì -I ª1 ¦H Ì -II  ¦H <

œÊ  ‚F NMR spectrum€ isotropic line4 j’j

C, ¦H F~ –l axially symmetry Ì -I  ¦H Ì -II ª1 ¦H€  ‚F broad powder pattern4 j

’jð ¹". ­ 12CO2 K NMR sepctrum€ JK 1 z

2 Žº , 13CO2 : Iz€ Ò ü¡ z2 Ý^ O ! , ® \úûü× B1 MAS 1  ‚F r¦

И: ¢…Àº CP(Cross Polarization): \ spectrum: ‚ czP".

 ‚F  z Ì I ª1 ¦H: <K + \

 34 %'´ µ4j ÂÆ Ripmeester× Ratcliffe[48] 129Xe

13C NMR: Iz€  ‚F Ì -I Ì -II ª1 ¦H:

< O !à: ,£ Ì -H Ž ~ W O !" \Ú

". G1 =1,297 J/mol (: \ ] I mFE‘ Ò  ü¡ )4 ˆ‰ ¦H £h", θsl=0.32, hydration number

=7.0 X (: T…\Ú".

È +̤1 13CO22 z #˜…x Ò \úûü NMR spectrum(Fig. 11): n6ó4 ³  ‚F Ì -I ª1 ¦ H   ¦H –ä <œ 3: ? \Ú".  spectrum€ ª 1 ¦H <œÊ  ‚F 123.1 ppm chemical shift€

isotropic line4 j’ÿ4ç,  ¦H <œÊ  ‚F

δxx=100.2× δzz=182.7 chemical shfit tensor2  powder pattern : Ž !".  chemical shift tensor ˆ‰  ¦H <œÊ 

 ‚F isotropic chemical shift2 "à B N O !".

δ

­ chemical shift anisotropy "à B".

∆=δiso−δzz=−55.3

] ä (: z Ò \úûü ¦H: <K ! 

 ‚F r¦ И: % O !4ç, "™ Ì ¦H: <K  K× Q2 \ Ì ‚c: ] £ Ž Í\ 3

 Ü\".

2-4-3. Raman ‚|

Raman ‚|1 "™ ‚c| "z x a ª ,g\ç z c  x !6€ 1990* G6׀ \úûü +Ì "

l\ð  !". Sum o[49]1 , ‡Q k \úûü

Ÿ˜ : C\…¬ O ! ¥¦ m: qcð ¤\ "l \

úûü  XC Ò ü¡: n” ¾ NMR€ n: O !

”/ 0 ‚c Üý: ŽÚ". ® K ~ k(33.6 bar)€ 2917.6 cm−1 \j –C: Ž í) Ì -I \

úûü2 Ÿ˜ K 2,905 cm−1€  –× 2,915 cm−1

€ ª1 – o –ä 2s –2 Žð ¹".  ® ‚F Ì -I \úûü  ¦H(2,905 cm−1) ª1 ¦H(2,915 cm−1):

–ä <K ¥S". $% , Ò ü¡€  ä ¦H zh\

)" Ì I-\úûü œ] Ì €  ¦H  ª1 ¦ H §O"(3:1) Æy".

 ® -% ~ k€ ä s  –(1285.8 cm1, 1388.8 cm−1)× $ ¨ ª1 ä s –(1265.7 cm−1, 1409.9 cm−1)) v6´ !"(Fig. 12).  \úûü „F4 Š

‹ð )  ª1 ä s –  ä s –(1275.7 cm−1, 1381.1 cm−1) þ©ð ¹". × M dþ Ò \

úûü K Ì -II2 Ÿ˜\ 34 %'´ !Y XC Ò  ü¡€ Ì -II ª1 –(1273.9 cm−1) Ì -I $3(1275.7 cm1)Ž" 1 wavenumber ¦ 3: j O !". XC Ò ü¡

€ – ]2 Iz€ \úûü Ì 2 ? N O !".

 \úûü ® \úûü× -% XC Ò ü

¡€ MM  ¦H ª1 ¦H zh\ –2 ̂N O p".

«X€, XC Ò ü¡: Iz€  ‚F M ¦H‘ £h

 Ž2 n: O p". $wj, Uchida o[51]1 × æ XC —×  z2 \ Ÿ˜  «X 7.24-7.68 µW0

∆ RT

--- 3ln 123[ ( –θl CH, 4)+ln 1( –θs CH, 4)] –

=

µW0

∆ RT

--- ln 117[ ( –θl CH, 4)+2ln 1( –θs CH, 4)] –

=

µw0

∆ µw

0

µw0

1

3--- 2δ( xxzz)=127.7 ppm

=

Fig. 11.13C NMR CP spectrum of pure CO2 hydrate at 243 K.

(8)

  \úûü hydration number2 n”".

® \úûü hydration number 5.8-6.3  B |

&p i ^ (: Ž í)  \úûü  K B | «X h gQ2  3: j O !”". Table 3 "l | z B¹  \úûü hydration number2 %\Ú".

ÂÆ XC –2 @…,4 n 3 Üz´€ € \

úûü ­ !à ‚ì€ \úûü Ÿ˜ : @… , XC –2 Iz€ &\ 3 Üz.". Kawamura o[52]1

−8.7oC, 16 bar€ !à ‚ì:  ~× yv…†€ 

 \úûü }_ : XC Ò ü¡: Iz &\Ú

". …, ý «X íù ÊÎ4 z  \úû

ü – — Q4 \ 3: j O !”".  {

 B1 € Ò –0: z€ n1 {× ¦^ 9:

ŽÚ".

3.   

3-1.  ! "#

Ò \úûü 2O æ v „F Ì “ "l ‚F G Š&6 И4 z Ѝ ‚F2 ÄÅ4 ‚%\ J s~ € ù ܘ D1 +ÌFG z T¤ !". `

’ª  ! 31 j ® o Ì QR Ò× «

¬, MO o O: DM: ¸\ æ:G"[55-57].

Kang Lee[57] t} ­1 T®€ jD  Ò€ 

2 ÄÅ4 ‚%\ H: T¤\Ú".  Ò ^í

4 15-20 mol% × 5-9 mol% , j¯ ˆ‚

: Q\ : o4 v6Ê". «X€, ,œ }—% : i

ð )   Ò × : ˜‚ dþ Ò # M6 : O !4º , \úûü Ÿ˜: Iz dþ Ò€ 

æ: 2  ôN O !". Fig. 13 { 

× : dþ Ò€ \úûü #˜: \ 

2  ‚%N O ! q r H: T…zP".  H1 THF O: \  ™ œ× 2O æ: \ ä ™

Fig. 12. Raman spectra of CO2 in gas(25.5 bar and 293.15 K), pure CO2 hydrate(sI, 27.3 bar and 273.45 K) and CO2+CCl4 hydrate(sII, 26.0 bar and 280.25 K)[50].

Fig. 13. Pressure-composition diagram for hydrate-based gas separation from flue gas(two stages with promoter)[57].

Table 3. Hydration number of CO2 hydrate obtained from several methods

Method N Reference

Theoretical(L-J 6-12) 6.82 53

Theoretical(Kihara) 7.26 53

Pressure drop 6-7.8 54

XRD 6.2 40

NMR 7.0 48

Raman spectroscopy 7.24-7.68 51

(9)

œ v6Ê". 17 mol%  2  dþ Ò2 2 O æ: \ \úûü2 #˜…À K 100 bar Œr Ý 1 n aÌ6 ¥S,  ™ œ€ THF O: 

\ 1 n€ \úûü2 #˜…x".  œ€ \ú ûü Š&¹ dþ Ò 280 K, 16.5 bar€ 34.71 mol% 

2 ð ¹".  dþ Ò2 "… 274 K€ 2O æ

íù…À) $ { 89.34 mol%  2  dþ Ò2 n: O !4ç, "… ™ f \úûü #˜/z%2 i

 K 99.67% ô 2 n: O !". Fig. 14 °

s:   ‚%/O H s".

\úûü2   ‚% H1 ’ H "z   x:  !". ‡ ª¦ Q 273-283 K ž] hA

4ç, +4 r}: N O !4º 0  Ò2 ™

—%\ 3 Ü\". ä ™ D> 0 THFC: ãa \

¥S LM ˆ‘ ST2 –N O ! ,  THFO1 "à íù : ]z ·W O !". ­ íù `  Js~ 2O æ € 67 _ DM ^4À (: 3". \úûü2 

 Ò ‚%/O H(hydrate-based gas separation process)1 w

 "l x:  !4º , @T H4 t}…À ] key design data2 n ] +Ì 4 v6 !".

3-2.  $ "#

b4 ˆ‰ O‹±O¹ 2 Lz „% ‡x\

$ |4  Lz >y `ò\ H Lz‡ sØ ¾

·\ ® \úûü Ø `ò\ H4 ̂N O !". 

‡ Lz‡ >y `ò\ H1 ¶· ð    T¤6

!". Þ€ OL 1,500 m Œ >y GÓX : +{z `ò : \ |, ­1 IJ: z  2 þ ] 

³ 5 `ò\ |, $%  ¦´µ€ O> GÓ2 I\

OL 3,000 m  Lz `ò\ | $3". Fig. 15(a)

]   |  s T…6 !"[3, 4].

w HG ’h˜ T˜: ”Pz Ž ]z€ KÄ MM T¤¹ H Lz‡ _€  i¦  +Ì ãa\".  40 bar n, ñ OL 400 m €

~ k2 £\ð ¹". $wj    ŽI zOŽ

" ¶  ¥S ˆn z 7pX  4 "… W O !4ç, OL 3,000 m  Lz€ zOŽ" ¶ Ý=ð

¹". `â\¸ N 1, “€ È Ö× B OL 350 m

€ˆ‰  \úûü #˜ Ü\ç, ïð #˜

¹ \úûü ¶ zOŽ" Ý= f ·1 Lz X¸ð ¹

" ". Q× n ÷ «X \úûü ¤\

ð ¾·N O ! 8F: $¹ Fig. 15(b) OL «™ OQ ÷×

ûü ¤ k ¾·N O !4j, Ý1 Q ­1 1 n € \úûü æ Ò z%¹". w È @:

Ö4 T¤¹  `ò HG: Ž), KÄ OL 1,500 m Lz `ò\ K,   ¶ zOŽ" ª=€

ˆn ª". \C, Lz Q±n  \úûü Ÿ

˜ : y\…À ¥S  $) \úûü #ç Ö

" ø4 X¸: 34  !". w i¦: &\ ]

\ Yamasaki o[58, 59]1 Lz €  \úûü 2 Ÿ˜N ¥ òF  «™ ¶× ˆn &2 +Ì\Ú". ­

 Chun Lee[39] z€ Lz  `ò¹  \úû

ü #˜  & +Ì Oι Ö !". ä ™ , OL 3,000 m

 z‡) `ò\ K,   ¶ zOŽ

"  ¥S O)] 7D6 ( z‡)€  aO 2 Ÿ˜N 34 #M¹". ­ ïð #˜¹  \úû

ü  2 ˜ és(sealing-cap) FN: \ #k

89: ÂN O !"[60, 61]. $wj,  ¥ F… zO× 

  )€ #˜ \úûü { zO×  aª  z ãa\".

"à4 ® \úûü Ø 2 „% ‡x\ H

 +Ì !"[62, 63].  H1 Lz‡) \ˆ ® \úû

üØ 2 `ò\ º b ®: #\ Q@

Ò 2 \úûü Ÿk „%…À |4 $¹ Fig. 15(c) j’j !".  H1 ® \úûü Ø »2 I

 ˆ¾ ˆ ?  ãa\" € >yLz `òH "z  F T˜: °C, ® st: I T ¼ Oí

¾ ® \úûüØ:  \úûü _\º

#k 89: ÂN O !"  o€ >yLz `òH

Fig. 14. Schematic diagram of the hydrate-based CO2 recovery process[57].

(10)

"z £%\".  H ?8: ]z€ Lz‡ sØ: ̘\

! "H˜ J: И  -® _ , `ò: I z sØ “ £ò¹  £¦ «™ ¦ …Ò^€

\úûü Ÿ˜ o  +Ì o ãa\".  sØ “

ˆ `ò¹  £¦ «™ ¦ …Ò^€ 

 \úûü Ÿ˜   +Ì ÂÆ ÊÎ"[64].  +Ì { ^ˆ Fig. 161 ^ n€ "H: J: `ò

 £ «™ \úûü Ÿ˜Q2 Ž` !". ^ í4 OÎ …Ò^, ñ £ 0 K Ÿ˜Q "z

£ NOu Ÿ˜Q Á\ 3: % O !". w ¶

1 `ò: Iz  `òW K, £¦1 (radial) Ÿk 2 ½ð 6 `ò Ɨ€ £ ˆ6 `ò€ i%

¾6:Ou £ Á\º £ ˆ™ `ò Ɨ€ \ú ûü Ÿ˜ 7\" 3: ;". $wº 2 @T

`òN K `ò0: \ `ò Ɨ€ \úûü #˜

:  ­1 ¿TN O !: 34 #M¹".

€ È Ö× B ¶·Œ  \úûü  i¦, $% Lz‡  "H˜ J:j M: Šý …Ò^€

Ÿ +Ì JK ÀÁð ÊÎ6 µ". ¶· Ì~ H   2 ۈ N O ! È +Ì y‚ kç, 4  L z‡x: ] ½: ¶@\ ]z 2 @T Lz  Lz‡ sØ `òN K "z€ "l ¦ i¦: Ž

zO  Lz‡ sØ€ `ò  \úûü Ÿ˜ ®É

°± ?8 $% , w `ò #k ; _ 89 o

 +Ì ÊÎW 34 Ž ".

4.  

21 y6G)€ ÌQR   5 LM _ S T ä !". w ÌQR2 ¸\ $ Ò Fig. 15. (a) Schematic diagram of carbon dioxide ocean storage, (b) Comparison of hydrate formation condition according to the temperature-pres-

sure, (c) Schematic diagram of carbon dioxide injection into methane hydrate formation[3, 4].

Fig. 16. The effect of injection flowrate on the formation temperature of CO2 hydrate at constant pressure(25 bar)[64].

(11)

Œ x ’h˜ ! |1 2 O±O‹\ 8¹ x ‡x\ 3ç, $ € x ‡x 0  Lz‡ ` ò\ 3".

w Lz €  æ ªz  \ú ûü2 #˜…Àº , \úûü #˜ z% : •©\

mFE  Ÿ +Ì× #˜/z% 2 •©\ +Ì, ;… Ì 2 •©\ +Ì o "l \úûü +Ì ÊÎ6 µ".

È €  \úûü2  Lz ‡x ½: GH

\ ]\, ጠ \úûü  +Ì 6Č

 ÊÎ6 µ ]   ‚¸€ ŽÅ". $% ¶·Œ

 n6Ê +Ì {2 Ö4 , t}  Ò× B1 b4 ˆ‰ 2 ‚%\ H Lz‡ 2 `ò\

 w | z€ ŽÅ".  |G: @\ ]z€

 @T € F+¶  •© =°X,  `ò … #Æ O ! _ 89  Œ v6´¸ \ç,  2 ]z 4  ~ +Ì× ÑF ãaN 34 Ž ".

 

 ÇS1 E½ˆ b4 OÎ\ 21 ÓZT6 §(

 ‡Á  —% ½st) Èވ b4 OÎ\ äÉÇ 21 § ^_4 OΔʰ".



1. Houghton, J. T., Meira Fildo, L. G., Collander, B. A., Harris, N., Kattenberg, A. and Maskell, K., Climate Change 1995: The Science of Climate Change, Cambridge University Press, Cambridge, UK (1996).

2. Kane, R. L. and Klein, D. L., Chem. Eng. Prog., 97, 44(2001).

3. U.S. Department of Energy, Office of Science, Office of Fossil Energy, Carbon Sequestration: State of the Science, A working paper for roadmapping future carbon sequestration R&D(1999).

4. IEA GHG, Ocean Storage of CO2, IEA Greenhouse Gas R&D Pro- gramme(1999)

5. Herzog, H., “Ocean Sequestration of CO2: An Overview,” 4th Inter- national Conference on Greenhouse Gas Control Technologies, August 30-September 2, Interlaken, Switzerland (1998).

6. Sloan, E. D., Clathrate hydrate of natural gases, 2nd ed., Marcel Dekker, New York(1998).

7. Jeffrey, G. A. and McMullan, R. K., Progress Inorganic Chemistry, 8, 43(1967).

8. McMullan, R. K. and Jeffery, G. A., “Polyhedral Clathrate Hydrates.

IX. Structure of Ethylene Oxide Hydrate,” J. Chem. Phys., 42(8), 2725-2732(1965).

9. Mak, T. C. W. and McMullan, R. K., “Polyhedral Clathrate Hydrates. X. Structure of the Double Hydrate of Tetrahydrofuran and Hydrogen Sulfide,” J. Chem. Phys., 42(8), 2732-2737(1965).

10. Davison, D. W., El-Defrawy, M. K., Fuglem, M. O. and Judge, A. S., Proceedings of 3rd International Conference on Permafrost 1, 938- 943(1983).

11. Ripmeester, J. A., Tse, J. S., Ratcliffe, C. I. and Powell, B. M., “A New Clathrate Hydrate Structure,” Nature, 325, 135-136(1987).

the-art,” Proceedings of 2nd International Conference on Natural Gas Hydrates, 1-8(1996).

14. Holder, G. D., Zetts, S. P. and Pradham, N., “Phase Behavior in Sys- tems Containing Clathrate Hydrates,” Rev. Chem. Eng., 5, 1-12 (1988).

15. van der Waals, J. H. and Platteeuw, J. C., “Clathrate Solutions,” Adv.

Chem. Phys., 2, 1-22(1959).

16. McKoy, V. and Sinanoglu, O., “Theory of Dissociation Pressures of Some Gas Hydarates,” J. Chem. Phys., 38, 2946-2952(1963).

17. Parrish, W. R. and Prausnitz, J. M., “Dissociation Pressures of Gas Hydrates Formed by Gas Mixtures,” Ind. Eng. Chem. Process. Des.

Dev., 11, 26-35(1972).

18. Holder, G. D., Corbin, G. and Papadopoulos, K. D., “Thermody- namic and Molecular Properties of Gas Hydrates from Mixtures Containing Methane, Argon and Krypton,” Ind. Eng. Chem. Run- dam., 19, 282-294(1980).

19. Soave, G., “Equilibrium Constants from a Modified Redlich-Kwong Equation of State,” Chem. Eng. Science, 27, 1197-1203(1972).

20. Huron, M. J. and Vidal, J., “New Mixing Rules in Simple Equations of State for Representing Vapor-Liquid Equilibria of Strongly Non- Ideal Mixtures,” Fluid Phase Equilibria, 3, 255-271(1979).

21. Dahl, S. and Michelsen, M. L., “High-Pressure Vapor-Liquid Equi- librium with a UNIFAC-Based Equation of State,” AIChE J., 36, 1829-1839(1990).

22. Yoon, J. H., Chun, M. K. and Lee, H., “Generalized Model for Pre- dicting Phase Behavior of Clathrate Hydrate,” AIChE J., 48(6), 1317- 1330(2002).

23. Yang, S. O., Yang, I. M., Kim, Y. S. and Lee, C. S., “Measurement and Prediction of Phase Equilibria for Water+CO2 in Hydrate Form- ing Conditions,” Fluid Phase Equilibria, 175, 75-89(2000).

24. Englezos, P., “Clathrate Hydrates,” Ind. Eng. Chem. Res., 32(7), 1251-1274(1993).

25. Englezos, P. and Hall, S., “Phase Eequilibrium Data on Carbon Dioxide Hydrate in the Presence of Electrolytes, Water Soluble Poly- mers and Montmorillonite,” Can. J. Chem. Eng., 72, 887-893(1994).

26. Dholabhai, P. D., Kalogerakis, N. and Bishnoi, P R., “Equilibrium Conditions for Carbon Dioxide Hydrate Formation in Aqueous Elec- trolyte Solutions,” J. Chem. Eng. Data, 38(4), 650-654(1993).

27. Dholabhai, P. D., Parent, J. S. and Bishnoi, P. R., “Carbon Dioxide Hydrate Equilibrium Conditions in Aqueous Solutions Containing Electrolyte and Methanol Using a New Apparatus,” Ind. Eng. Chem.

Res., 35(3), 819-823(1996).

28. Kang, S. P., Chun, M. K. and Lee, H., “Phase Equilibria of Methane and Carbon Dioxide Hydrates in the Aqueous MgCl2 Solu- tions,” Fluid Phase Equilibr., 147, 229-238(1998).

29. Larson, S. D., Ph. D. Dissertation, Univ. of Michigan(1955).

30. Uchida, T., Ebinuma, T., Takeya, S., Nagao, J. and Narita, H.,

“Effects of Pore Sizes on Dissociation Temperatures and Pressures of Methane, Carbon Dioxide, and Propane Hydrates in Porous Media,” J. Phys. Chem. B., 106, 820-826(2002).

31. Seo, Y., Lee, H., and Uchida, T., “Methane and Carbon Dioxide Hydrate Phase Behavior in Small Porous Silica Gels: Three-Phase

(12)

Equilibrium Determination and Thermodynamic Modeling,” Lang- muir, 18(24), 9164-9170(2002).

32. Vysniauskas, A and Bishinoi, P. R., “A Kinetic Study of Mehthane Hydrate Formation,” Chem. Eng. Sci., 38, 1061-1072(1983).

33. Glew, D. N. and Hagget, M. L., Can. J. Chem., 46, 3857(1968).

34. Scanlon, W. J. and Fennema, O., Cryobiology, 8, 249(1972).

35. Englezos, P., Kalogerakis, N. E., Dholabhai, P. D. and Bishnoi, P. R.,

“Kinetics of Gas Hydrate Formation from Mixtures of Methane and Ethane,” Chem. Eng. Sci., 42, 2659-2666(1987).

36. Skovborg, P. and Rasmussen, P., “A Mass Transport Limited Model for the Growth of Methane and Ethane Gas Hydrates,” Chem. Eng.

Sci., 49, 1131-1143(1994).

37. Shindo, Y., Lund, P. C., Fujioka, Y. and Komiyama, H., “Kinetics of Formation of CO2 Hydrate,” Energy Convers. Mamt., 34, 1073- 1079(1993).

38. Teng, H., Kinoshita, M. and Masutani, S. M., “Hydrate Formation on the Surface of a CO2 Droplet in High-pressure, Low-temperature Water,” Chem. Eng. Sci., 50, 559-564(1995).

39. Chun, M. K. and Lee, H., “Kinetics of Formation of Carbon Diox- ide Clathrate Hydrates,” Korean J. Chem. Eng., 13, 620-626(1996).

40. Udachin, K. A., Ratcliffe, C. I. and Ripmeester, J. A., “Structure, Composition, and Thermal Expansion of CO2 Hydrate from Single Crystal X-ray Diffraction Measurements,” J. Phys. Chem. B., 105, 4200-4204(2001).

41. Takeya, S., Hondoh, T. and Uchida, T., “In Situ Observation of CO2 Hydrate by X-ray Diffraction,” Annals of the New York Academy of Sciences, 912, 973-982 (2000).

42. Davidson, D. W. and Ripmeester, J. A., In Inclusion Compounds, Atwood, J. L., Davies, J. E. D. and MacNichol, D. D., Eds., Aca- demic Press, New York, vol 3(1983).

43. Ripmeester, J. A. and Ratcliffe, C. I., Solid State NMR Studies of Inclusion Compounds, Report C1181-895, National Research Coun- cil of Canada, (1989).

44. Ripmeester, J. A. and Ratcliffe, C. I., “Xenon-129 NMR Studies of Clathrate Hydrates: New Guests for Structure II and Structure H,” J.

Phys. Chem., 94, 8773-8776(1990).

45. Ripmeester, J. A. and Ratcliffe, C. I., “Low Temperature Cross Polarization/Magic Angle Spinning 13C NMR of Solid Methane Hydrates: Structure, Cage Occupancy, and Hydration Number,” J.

Phys. Chem., 92, 337-339(1988).

46. Dharmawardhana, P. B., Parrish, W. R. and Sloan, E. D., “Experi- mental Thermodynamics Parameters for the Prediction of Natural Gas Hydrate Dissociation Conditions,” Ind. Eng. Chem. Fundam., 19, 410-414(1980).

47. Davidson, D. W., Handa, Y. P. and Ripmeester, J. A., “Xenon-129 NMR and the Thermodynamic Parameters of Xenon Hydrate,” J.

Phys. Chem., 90, 6549-6552(1986).

48. Ripmeester, J. A. and Ratcliffe, C. I., “The Diverse Nature of Dodecahedral Cages in Clathrate Hydrates As Revealed by 129Xe

and 13C NMR Spectroscopy: CO2 as a Small-Cage Guest,” Energy &

Fuels, 12, 197-200(1998).

49. Sum, A. K., Buruss, R. C. and Sloan, E. D., “Measurement of Clath- rate Hydrates via Raman Spectroscopy,” J. Phys. Chem. B., 101, 7371-7377(1997).

50. Seo, Y. and Lee, H., “Phase Behavior and Structure Identification of the Mixed Chlorinated Hydrocarbon Clathrate Hydrates,” J. Phys.

Chem. B., 106, 9668-9673(2002).

51. Uchida, T., Takagi, A., Kawabata, J., Mae, S. and Hondoh, T.,

“Raman Spectroscopic Analysis on the Growth Process of CO2 Hydrates,” Energy Convers. Mgmt., 36, 547-550(1995).

52. Kawamura, T., Komai, T., Yamamoto, Y., Nagashima, K., Ohga, K.

and Higuchi, K., “Growth Kinetics of CO2 Hydrate just below Melt- ing Point of Ice,” J. Cryst. Growth, 234, 220-226(2002).

53. Parrish, W. R. and Prausnitz, J. M., “Dissociation Pressure of Gas Hydrates Formed by Gas Mixtures,” Ind. Eng. Chem. Process Des.

Develop., 11, 26-35(1972).

54. Aya, I., Yamane, K. and Nariai, H., “Solubility of CO2 and Density of CO2 Hydrate at 30 Mpa,” Energy the International Journal, 22, 263-271(1997).

55. Yoon, J.-H. and Lee, H., “Clathrate Phase Equilibria for the Water- Phenol-Carbon Dioxide System,” AIChE J., 43, 1884-1893(1997).

56. Seo, Y. and Lee, H., “A New Hydrate-Based Recovery Process for Removing Chlorinated Hydrocarbons from Aqueous Solutions ,”

Environ. Sci. Technol., 35, 3386-3390(2001).

57. Kang, S. P. and Lee, H., “Recovery of CO2 from Flue Gas Using Gas Hydrates: Thermodynamic Verification through Phase Equlibrium Measurements,” Environ. Sci. Technol., 34, 4397-4400(2000).

58. Yamasaki, A., Teng, H., Wakatsuki, M., Yanagisawa, Y. and Yamada, K., “CO2 Hydrate Formation in Various Hydrodynamic Conditions,” Ann. NY Acad. Sci., 912, 235-245(2000).

59. Teng, H., Yamasaki, A. and Shindo, Y., “The Fate of CO2 Hydrate Released in the Ocean,” Int. J. Energy Res., 23, 295-302(1999) 60. Koide, H., Takahashi, M. and Tsukamoto, H., “Self-trapping Mech-

anisms of Carbon Dioxide in the Aquifer Disposal,” Energy Con- vers. Mgmt., 36, 505-508(1995).

61. Koide, H., Takahashi, M., Shindo, Y., Tazaki, Y., Iijima, M., Ito, K., Kimura, N. and Omata, K., “Hydrate Formation in Sediments in the Sub-seabed Disposal of CO2,” Energy, 22, 279-283(1997).

62. Ohgaki, K., Nakano, S., Matsubara, T. and Yamanaka, S., “Decom- position of CO2, CH4 and CO2-CH4 Mixed Gas Hydrates,” J. Chem.

Eng. JPN, 30, 310-314(1997).

63. Komai, T., Yamamoto, Y. and Ohga, K., “Dynamics of Reformation and Replacement of CO2 and CH4 Gas Hydrates,” Ann. NY Acad.

Sci., 912, 272-280(2000).

64. Lee, H., and Kang, J. M., “Development of the Fundamental Key Technologies for Large Scale Ocean Sequestration of Carbon Diox- ide,” the Greenhouse Gas Research Center, Korea(2002).

참조

관련 문서

The production of portland cement not only depletes significant amount of natural resources but also emits a huge quantity of carbon dioxide (CO 2 ) and CO 2

In this paper, we report new methods for formation of carbon-carbon, carbon-phosphorus, carbon-sulfur, carbon-oxygen, and carbon-nitrogen bonds at the C-4

저자들은 소세포폐암 진단 시에는 혈액학적 이상소견이 없어 골수검사를 하지 않은 환자에서 항암화학요법 후 폐의 원 발병변은 부분반응을 보였으나 회복되지 않는 심한

약제 저장용기와 선택밸브 사이 배관 도중에 설치하여 저장용기의 용기밸브는 개방되 었으나 선택밸브가 개방되지 아니하였을 때 설비의 안전을 위하여 개방되는 안전장치

It considers the energy use of the different components that are involved in the distribution and viewing of video content: data centres and content delivery networks

The Effi cacy of Carbon Dioxide Insuffl ation in Upper Gastrointestinal Tract Endoscopic Submucosal Dissection: A Randomized, Double-Blind, Controlled Prospective Study.. Su

In order to avoid removing carbon dioxide from syngas for desired stoichiometric factor (H 2 , CO, CO 2 ), an acceptable way is reforming the excess carbon dioxide by adding

We have demonstrated the photocatalytic reduction of carbon dioxide into formic acid and formaldehyde using bare Co 3 O 4 nano- particles in water under illumination at 510-620