• 검색 결과가 없습니다.

Mechanical Systems I Mechanical Systems I

N/A
N/A
Protected

Academic year: 2022

Share "Mechanical Systems I Mechanical Systems I"

Copied!
22
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

Mechanical Systems I Mechanical Systems I

System Analysis Spring 2011

1 Seoul National University

Mechanical and Aerospace Engineering

(2)

Vehicle Suspension p

(3)

Vehicle Suspension p

System Analysis Spring 2011

3 Seoul National University

Mechanical and Aerospace Engineering

(4)

Powertrain – Powertrain Model

• Engine Model

• Torque Converter

• Transmission

• Axle Shaft

• Differential Gear

(5)

Powertrain and Brake System

System Analysis Spring 2011

5 Seoul National University

Mechanical and Aerospace Engineering

5 / 46

(6)

Vehicle Suspension p

Y a w

P itc h R o ll

X

Z

Y

4 - Q u a rte r C a r M o d e l

R o ll b a r

(7)

Y a w

P it h

Z P itc h

R o ll X

Z

Y

4 - Q u a rte r C a r M o d e l

R o ll b a r

Ride Quality

Suspension

spring&damper Suspension

System Analysis Spring 2011

7 Seoul National University

Mechanical and Aerospace Engineering

(8)

Newton’s Laws Newton’s Laws

1)First law : conservation of momentum no external force

 no momentum change

linear momentum : mv angular momentum : 2) S d l

J

F ma m dv 2) Second law :  F ma m

dt T JJ d

 

T J J

dt

 

(9)

Three Basic Elements in Modeling Mechanical Systems Three Basic Elements in Modeling Mechanical Systems

i Inertial elements ) ( kinetic energy ):

masses M : moments of inertial : J ii Spring elements ) ( Potential energy )

X

) (10

k k

T

X

Torsional spring

T

 xb

F

iii Damper elements ) ( Energy dissipation )

b

x b

x

x T

b

T

System Analysis Spring 2011

9 Seoul National University

Mechanical and Aerospace Engineering

(10)

Spring Elements Spring Elements

4

64 3

k Gd nR

d wire diameter

4

T 64 k Ed

nD nnumber of coils

k EA

L

4 4

( )

G D d L

3 3

k 4Ewh

L

4 4

( )

T 32

G D d

k L

L

3

4 3

k Ewh

L 4

T 32 k GD

L

3 3

16Ewh k L

T 32 L

2Ewh3

k

(11)

Equivalent masses of common elements

4Ewh3

0 38

e

3

k 4Ewh

L me

 0.38

md

md

m

I

d

I

e

  I I

d

/ 3

3

4 3

k Ewh

L

GD4

e

0.23

d

m

m

md e d

3 3

16Ewh k L

4

T 32 k GD

L

e

0.5

d

m

m

md

System Analysis Spring 2011

11 Seoul National University

Mechanical and Aerospace Engineering

(12)
(13)

Damping Elements Damping Elements

Piston damper p

Pneumatic door closer

Oleo strut

Rotary damper

Damper with spring loaded valves

System Analysis Spring 2011

13 Seoul National University

Mechanical and Aerospace Engineering

(14)

Examples of Modeling Mechanical Systems Examples of Modeling Mechanical Systems

bw b

ex 1) t  0,  (0)  

0

J

d

w

J    b

equation of motion :

0 0

J b

dt

d d b

J b

dt dt J

   

    

, ( )

t t

b

t

0

let t ce e e

J b

 

     ( ) t

( ) , 0, (0)

0 bt

J

J

t ce t C

 

 

   

1

0e 0.368 0

( )

bt J

t

o

e

 

 

T Time constant time to reach = : 63.2%

(15)

Examples of Modeling Mechanical Systems Examples of Modeling Mechanical Systems

Spring

Spring--Mass Mass

ex 2)

x(t) k

0 ) 0 ( )

0 ( ,

0 0

x x x t

m

) ( )

(

, 0,

( ) cos k cos

x tx txt

2 2

0 0

md x F kx dt

mx kx x k x

  

    

 

0 0

( ) cos cos

n

x t x t x t

m

 

2 [sec]

/ T

k m

 

Period

( ) cos sin

(0)

m

k k

x t A t B t

m m

x A x

 

 

1 1

[ ] 2

f k Hz

Tm

Frequency

Natural frequency

(0)

(0) sin cos 0

x A xo

k k k k k

x A t B t B

m m m m m

 

    

2 [ / sec]

n

f k rad

    m

Natural frequency

System Analysis Spring 2011

15 Seoul National University

Mechanical and Aerospace Engineering

(16)

Examples of Modeling Mechanical Systems Examples of Modeling Mechanical Systems

Spring

Spring--mass mass--damper damper

0 0

(0) (0)

x x

x x

 

2 2

m d x kx bx dt    

b k 0

x x x

m m

  

 

k b b Exponential decay freq

2

2

0, ( )

t

x   x x x t   c e

    

2

2

2

x 0

,

2

, 2 ,

n n

2

k b b

let m   m   mk   Damping ratio

=

p y q Natural frequency

2

n n

0, ( )

x   x x x t c e    2

n

n

x 0

 

2 2 2

1

n n n n n

      

        

(17)

Examples of Modeling Mechanical Systems Examples of Modeling Mechanical Systems

b k 0 xxx

 

0

0

(0)

(0) 0

x x

x x

 

 

m m

,

2

, 2 ,

n n

2

k b b

let m   m   mk  

( )

0

2

n n2

0

x   x   x

 

m m 2 mk

2 2

( s X s ( )    s x x  )  2  ( sX s ( )  x )   X s ( )  0 Laplace Transform

0 0 0

2 2

0 0

2 2

( ( ) ) 2 ( ( ) ) ( ) 0

( 2 ) ( ) 2 0

( 2 ) ( ) 2

n n

n n n

s X s s x x sX s x X s

s s X s s x x

s s X s s x x

 

  

  

      

     

    

0 0

0 0

2 2

( 2 ) ( ) 2

( ) 2

2

n n n

n

n n

s s X s s x x

s x x

X s s s

  



 

    

  

 

System Analysis Spring 2011

17 Seoul National University

Mechanical and Aerospace Engineering

n n

(18)

Examples of Modeling Mechanical Systems Examples of Modeling Mechanical Systems

0 0 0 0

2 2 2 2 2 2

2 2

( ) s x

n

x s x

n

x

X s

2

  

2

2

2

2



2

2 2

2 2

( ) 2 2 2

2 : charateristic polynomial

2 0 h i i i

n n n n n n

n n

s s s s s s

s s

     

 

     

 

 

2 2

2 2 2

2 0 : characteistic equation

1 : charateristic roots

n n

n n n n n

s s

s

 

     

  

       

2 2

1) 1 underdamped

1 1

n n n n

s j

     

       

0 0

2 2 2 2 2 2

( )

( ) ( ) (1 ) ( ) (1 )

n n n n

n n

n n n n

j

s x x

X s s s

   

 

     

 

 

     

2 2

0 2 0

( )

nt

cos 1

n

sin

n

x t e



x   tx   t

 

 

   

  

  

 

(19)

Examples of Modeling Mechanical Systems Examples of Modeling Mechanical Systems

2

2) 1 overdamped 1 s

  

   

2 2



0 2 2

1

( 2 )

( )

1 1

n n

n

s

s x

X s

s s

  



     

   

 

         

2 1

 

2 1

1 2

1 1

( )

n n n n

n n n n

t t

s s

x t k e



k e



     

  

 

3)   1 critically damped

 

2 0

( 2 )

( )

n

n

s

s x

X s





 

 

   

   

1 2

( )

n n

n

t t

s

x t k e



k te





 

System Analysis Spring 2011

19 Seoul National University

Mechanical and Aerospace Engineering

(20)

Examples of Modeling Mechanical Systems Examples of Modeling Mechanical Systems

Underdamped

1)

  1

2 2

0 0

( ) cos 1

2

sin

1

nt

n n

x t e



x   tx   t

 

 

        

: :

n

 

1

2

d n

     natural frequency

damping ratio

Overdamped ( )

2)

  1

2 1

 

2 1

1 2

( )

n n t n n t

x tk e



k e



( ) x t

2

1

n n

       

1 2

( )

1

 1

1

n

     

3)

( )

nt nt

x tk e



k te



1

t

(21)

Dry Friction (no lubricant) Dry Friction (no lubricant)

Fs =

Static Friction Force

Fk =

Kinetic Friction Force

Fk =

Kinetic Friction Force

Fs = sN s :

Static Friction Coefficient

F k k N k

Kinetic Friction Coefficient

Fk = kN k :

Kinetic Friction Coefficient

0

x   x   0

if sgn( ) if

s

s s

F F F

F F F F F

 

   

sgn( ) F

F

k

x

System Analysis Spring 2011

21 Seoul National University

Mechanical and Aerospace Engineering

(22)

Friction (with lubricant) Friction (with lubricant)

sgn( )

if and F ( )

bx G N x x

F F x F G N

    

      

  

if  and F ( )

( )sgn( ) i.e., if and F ( )

s

s s

F F x F G N

F G N F otherwise x F G N

    

      

 

b: viscous friction coefficient G: load-dependent factor N: normal force

Fs: the maximum static friction Fs: the maximum static friction

: a small bound for zero velocity detection

참조

관련 문서

Figure 11.8 Crack length versus cycles data for four different levels of cyclic load applied to compact specimens of an alloy steel.. Figure 11.9 Data and

Three small identical spheres A, B, and C, which can slide on a horizontal, frictionless surface, are attached to three 200-mm-long strings, which are tied to a ring G. Which

작업하중에 의한 Front 용접부의 피로 균열 및 이로 인한 Front Panel  파손 예방 및 유지보수 전략 수립 SG Data와 Parameter 관계식으로 하중 스펙트럼

8WD/4WS Vehicle Equipped with 8 In-wheel Motor 8WD/4WS Vehicle Equipped with 8 In wheel

Linear Systems Analysis i th Ti D i III in the Time Domain III.. Transient Response -

 Linear systems, linear control systems, system applications (com- munication, energy, mechanical, electrical power, signal, ...). 

• Accumulated microscopic damage develops into a crack or other  macroscopic damage

For each of several tests, elastic, plastic, and total strain data points are plotted versus life, and fitted lines are also