• 검색 결과가 없습니다.

A Study on the Analysis of Measurement Errors of Specific Gravity Meter

N/A
N/A
Protected

Academic year: 2021

Share "A Study on the Analysis of Measurement Errors of Specific Gravity Meter"

Copied!
5
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)HWAHAK KONGHAK Vol. 40, No. 6, December, 2002, pp. 676-680.   

(2)   † 

(3)     

(4)   7 2 , 2002 8 5 ). (2001. A Study on the Analysis of Measurement Errors of Specific Gravity Meter Kang-Jin Lee†, Jae-Young Her, Young-Cheol Ha, Seung-Hee An, Seung-Jun Lee and Cheol-Gu Lee Fluid Measurement Research Division, R & D Training Center, KOGAS, Ansan 425-790, Korea (Received 2 July 2001; accepted 5 August 2002).  .     

(5)    ,         !. " #   $ % &' ( )*+,- ./ 0    1

(6) 23/456 78 9 :- ;< =!. 9: >?, @ AB? CD E AB? F @G 9:>? HI JK

(7) LM 5, 1G  - NO  %P @Q R;%QS, TG   UN  VW  XY 0, UN Z [\] JK ^  _ 1P`a!. Abstract − The specific gravity meter is the instrument used to measure the density of fluids under the reference conditions and it can be widely used in industrial areas, especially in massive flow rate natural gas industry. This study has been carried out in an attempt to improve measurement accuracy of natural gas flow rate calculation, providing the adequate installation and proper operation conditions of specific gravity meter. The test results are 1) the density measurement errors in case of using methane and standard gas as calibration gases are smaller than using methane and nitrogen gas, 2) the periodical calibration to maintain accurate density measurements is essential, and 3) the specific gravity meter is sensitive to changes of environmental conditions, especially environmental temperature surrounding the specific gravity meter. Key words: Natural Gas, Base Density, Specific Gravity Meter, Gas Chromatograph, Calibration. 1..  . d 9 $G Œ%P   +ŽQ š ›œ`€ˆ 9  ž VWG  Q5 @ |K Ÿ O )*/ ž U$

(8) ¡0kˆ ¢  1

(9) £- ; c d¤¥Q c![6, 7]. ¦‡ §K%\   cd 9¨!  $G  > +—- % ¤5 e Ug Q "%\  $G  >/ ‘©` JK ªd«a5[8, 9], 9$ € ‘¬  ž d­ f®Q!. " #  ”•  &'`d )*~P KOGAS(G¯l )$ G lm‘¬D  

(10) ° &' 0,  p  ”• $G  ±- 78 9:- ²O ³@ ”• S, ) *3 LM ; c ®.§ ( @ +,- ´µ 0 % )*‰

(11) 1} 56 G!.. 5b $   cd 1G  - NO C - U Q e Qf RgG _Q h Qi  . $ $ Q!.  >I jG 1 0k S ,   lmn$ moG ^p qr $ nQs cd   >$ t1G JK uv wx yG *2- z'{  ;'

(12)   #  |K

(13) 1}  _Q ~g !.    cd  >   2€ ! /‚Q  ![1-3]. ƒ „  9(†X%\ ‡ €ˆ 0   . ‰$ 

(14)    p #Š  NO 9  ‹  G!)

(15)  0 Œ h

(16)   +ŽQ5[4, 5],  „   ‰$ P-V-T ‘

(17) Q  _Q!. ’ b“? Z  ‡P b“p Z `5,  $ 

(18)  ”• T  

(19) Q 0 #G –  —Q 0 ˜%\ h

(20) #G!. Np ™I 2€ /‚ c. 2..   .  $ ¶ ( @ +,- ´µ 56 #¶ 9:8'$ ·¸ Fig. 1? ™!. 9:    KOGAS  ` ¹º(Solartron NT 3096)? h†G _\ 1 »5 ¼0.1% of readingQ![10].. † To. whom correspondence should be addressed. E-mail: kjlee@kogas.re.kr 676.

(21)   

(22). 78$ 9.  lm`    )* +Ž ( ¶- ½¾  NO KOGAS$ G lm‘¬D 9:- ;< =5   ³@ 3\ ¿I  ”•(HP 5890 series II)$ &'N'

(23) 5¤ 0 lm‡P –À c  ”•9 ,. &' =\S,   Á` ÂÃ ÄÅt  &'`d )*`5 c  ”•$ ÂÃ ÄÅtp jG h† tN. °Å =!. " 9:  Æ )* &³ *2- , z'Ç +Å\  ` ȑ-   Á` ÂÇP? >`Ç =5, b“ |

(24)  0 Áb“- †  € =!. b“| p > ÂÇP- ²O lmȑ °Å ÂÃ  ” •9 , &'   Á !. TG   PÁ É.  ÊK b“ |- NO b“| &'`d c\S, ¶%\  ‰ ËÌ ( - 1P  NO ÃÍ ÎÁ 

(25) &' = !.  $  Ï tN

(26) €i] %  Eœ

(27) œG – Âà PŇP- ²O  ”•9 €Ð\ > + ŇP? > !.   É –À$  ‡PI 316L ÑÒ  Ó ÔÕ-  =\S Ö×

(28) ØqG ÙÚÛ Üt Ý&Q Þ  .ß-  =!. Fig. 2  8³$ ²Q!.  tà œ` Eœ  RS-232 áQâ- Q 0, 78 9:9 &' Eœ ãä(signal converter) >`S eQà  586 åæà Á“ !. 78  I †X 9:9¨! Z ( Üt Q ç¾G 3èQ{ ¨! , %\ 9:- ;<  NO †X PC éê ,%P  åæ à

(29) ëì =!. Eœ ãä ŒÛ É¢ lmtà É¢- lm í5 RS-232 áQâ- Q 0 controllerP  586 åæà . d í!. TG  $ UNZ ãî $G ¶ ½¾- N O 2·$ ïðZ(RTD) &' =!.  tà œ` $ 1

(30) ´^  NO ³ @ 3\ ¿I _I lm‘¬D uv\ `  ” •QS, 1/˜ U  ¶”- ”• 5 ñ ”•±- œG!. Q  ¶”\tà    ”• tò` PóñÒQ à(ôI õö ‡5 q) `d€S ÷t  GPA(Gas Processors Association) 2172   õñøQ ÷8`d c![11, 12]. Fig. 3I " 9:- ;</ eQà$ ï8? 9:$ ùú¶- [Q NO H¶ õñø- 9</û î]Q!. 24/˜ 9/˜\ † eQà

(31) ï8  NO  1” ˜o\ üý ï8`Ç =5 Eœ ãä œ  , ³~? U ±I ¹þ à  h/ F/`Ç =!. TG ³@ 3\ ¿I 78$   ”•tà œ  ( ³~ iÎ÷a\S, Q ±?  $ ±?$ JK h/ iÎiÇ 0 9:- ;<. Fig. 1. Schematic diagram of test equipment.. 677. Fig. 2. Schematic diagram of measurement equipment system.. Fig. 3. Example of density calculation program..  h,  JK ãî

(32) 1P ; cÇ =!. ñ¬5    UNZ \ &' ïð Z$ Z €/`Ç =!. 3.. 

(33) .   

(34)   @ AB? F

(35)  f  $ XY  $ 1 U  ÿ(reference chamber) b“$ ›ì,   N, @ 6‰$ 1 ž !.  @  1  *2- z'e QG @ 1 %|G @ 

(36) ›ì 5 O |K @- Okˆ ¢  1

(37) £- ; c!. 0 %|G @  56  ÂÃ$ ¶FOk G!. 78 9:/    5  AB? F

(38) Q 0 @- 9/ =!. F G¯F? #¢ .G † KF , 9:Q ;< f 78 lm` $ ¶” ( p G Q!. Fig. 4 AB? F @/ 20” h, œ` U ±- ¬G _Q!. Q U ±I  $  ÿ, 9. lm

(39) 0.6 MPa ë) 3è , 

(40) Q

(41) 5 c AB ( F

(42) Q 0 0.64 MPa$ b“\    ¤ ¨/ œ` ±- $ G!. d  U ± 3-1. 3-1-1.. HWAHAK KONGHAK Vol. 40, No. 6, December, 2002.

(43) 678.   . Fig. 4. Periodic time of calibration gases.. Q , – 20”˜$ œ U±- ¬G _\ XI /˜(”) Q5 YI  tà œ` U ±(µs)Q!. @Q  – ‘© — $O @ 3;

(44) #G – Q ;'

(45) Eœãä(signal converter) Á“G!. Q @Q  –  ÿ, †G lm ë 3 è , lmtà ” ÂÃ

(46) ¤ ¨/  $ ¶- ´µO ¨ =!. QG 9:$ %I ;/ ñ ¶Q ã  lm$ 

(47) ,   i 1   €, TG @ Û ¦‡  $ ¶ (  1

(48)

(49) é¨56 qQ!. Q. lmȑ$ Âà ÄÅt &' b“| b“- 0.68 MPa 5/û –,   ÉÀ$ b“|

(50) Q 0  ÿ,$  b“¨!  [I 0.64 MPa ÂÃ$ lmb“€ Ç |G!. Fig. 5(a)  tà œ` p, ³@ 3\ ¿I 78$ uv  ”•tà œ  

(51) ³@ G _Q!. XI 9:/˜\  12/˜ h, œ` eQà

(52) 1” ˜o \ ¬G _Q!. Q  $ JK

(53) iÎ _Q Fig. 5(b)Q !. YI  JK

(54) iÎ _\(  /   −1)100\  _Q!. ñ  ¨Q 9:/˜ h, ¼0.1 %÷ JK ã  _-  ; c!. TG ñ   ”•$ ¶ ¦ JK

(55) ; ce, ³@ 3\ ¿I 78$  ”• "%\ 1/˜ ˜o\  ¶”- ”•  f® , ~˜  ¶” ãî/ W€ €  À§Q c!. ’ 22:22tà 23:22”!€, 4:22tà 5:22”!€ eQà

(56) ¨]   lm$ ãî

(57) " W€ €ˆ,  ”• tà œ   #$ / ¶”\tà  ; 'Q5 Q ;' h†  1/˜ h, $ %Q ` f® ÉX %\ ! /˜¨! KQ š i _-

(58) ; c!. QG J K  ”•$ ”•U

(59) jG % ] ªd« ; c ® .Q!.  40 6 2002 12. Fig. 5. Density errors due to changes of calibration gases.. 3-1-2. @ AB? CD

(60)  f  $ XY !&  @ 5  AB? CD

(61) '- (žQ!. AB? CD

(62) ›ìG Q .H )3 */ _+, l P ; AB? F% -.

(63) @  ] Q3%Q€ ˆ, 9. lP -.

(64) £ d­5 // -.  ,. 0Q 10€{ E2 ; Þ  ¶CQ `{ ñ ,\  ; AB? ; CD - ° 5 c f®Q!. 3. $ +, †G lm

(65)  ÿ, 0.6 MPa ë) 3 è 

(66) Q

(67) 5 c AB ( CD

(68) Q 0   ¤ ¨/ œ` U ±- ¬G!. d  U ±Q , – 20”˜$ œ U±- ¬G – ‘© — $ O @ 3;

(69) #G – Q ;'

(70) Eœãä(signal converter) Á “G!. Q @Q  –  ÿ, †G lm ë 3 è lmtà ” ÂÃ

(71) ¤ ¨/  $ ¶- ´µO ¨4!. Fig. 6I Q AB? CD @  É5–$ JK

(72) ”•G _\ @ É  −2%$ JK

(73) ¨Q! @–$ JK

(74) ¨] 0.6%  ªdü _-  ; c!. @É$ JK −2%!€ ^G Q Ê@ †6 6 @ †tà 4·7Q € – Q8d _Q ¢PQ‡5 M# !. ’ %\ @- OUdk    % @U

(75) € i JK ^G _\ M# !. Fig. 7I AB? CD @- 9/G – lm

(76) ¤¨ /  $ JK

(77) ”•G _\  18/˜ 9: eQà Q!. ÉX%\ 0.6%  JK ÆÊ  _-  ; c\S †t /˜ JK mo WD ui ^G _I 3  &*'Q  ”•$ ”• U f®Q!. ñ ¨Q AB? F  @ 0 9:G >?p ³@/ ÉX%\ JK ^  _

(78) ; ca!. QG 9:>? QÉ$  JKp ³@/ 7o G KQ

(79) ¨Qe @$ Û

(80) AB? F AB? C.

(81)   

(82). 679. Fig. 6. Density errors due to recalibration. Fig. 8. Density errors due to environmental temperature variations.. &' ZQS ë? 2   UN$ Z, ’  ”• 9$ Z

(83) G ZQ!. 9:/˜ h, ë? 1$ Z 23.2123.28 C!€, ë? 2$ Z 21.13-21.92 C!€ ã 0 ZK 1.4-2.1 CQ=\S QG ZK Fig. 8(b) ¨Q A2%\ ^ ui WD € B5 † U ^p WD

(84) XŸ  _ ; c!. QG Z ãî O JK CD  XY- ¨Q€ B _-

(85) ; c\S À€ 13:22” 14:22”!€ JK −0.7% !€ †/%\ ^G _-  ; ce, Q_I  ”•$   ³3P ;'P _\ ° !. 9€ 9: E† F  ”•$  † GHQ 0.8059 kg/m Pe XO, 13:22” eQà ˆQ 0.8118 kg/m  GH- IJ 6?  ;'=!.  ”• K / VWG   Üt D& ( *2 $O ¶” ”•/ 

(86) LM ; c\S Q L ”•  ¶”\ `d   PO  JK

(87) LMG _\ ¨P!. Fig. 9 K/ UN Z ¦   ¶- iÎ _\ QÉ$ 9:>?p M¬ UNZ   *2- z' _ -  ; c!. ’ ë? 1? ë? 2$ Z ## 27-29 C, 27-36 C !€ ã S ZK 0.1-7 C!€ ãî Q  _-

(88) ; c!. Q É$ 9:>?p M¬,   UN Z [é Q,  ”•9 ,$ Z [éN f®Q!. ¢v  ”•9 ,.  O+ 8' P°dQ cd †Z €`Ç =e 9 : ɖ† h, O+8'$ h- ~À 0  ”•9 ,$ Z  ^G _Q!. TG QÉ$ 9:>?p M¬ UNZ   $ ¨Z @,$ Z¨! [I _-

(89) ; c\S QG [I UNZ P 0 JK ^G _\ ¨P!. o. o. o. Fig. 7. Density errors due to changes of calibration gases.. D @‰G _ Ü  ! ¹; Q h†G _\ ¨4- f @  Û ¦  $ ¶ãî‡ M# !. Np ™I 9:>?

(90) .O  f  $ @ AB ? CD¨!, AB? lmp G F %|G _\ ¨QS, @

(91)  56  hp jG h† 

(92) Q Ç <5  .H$ ./? †'G!. 3-2.    

(93)     h=G Z ( b“  ÿ, c  p  !Qéõø(diaphragm)- Q 5 3œH $ O  T ³~- Å  Q!. ¦‡ UN. VW  XY e, Fig. 8I QG UN,  UNZ ãî.   d> XY  

(94) 9:G >?Q!. Fig. 8(a) ë ? 1, ë? 2   UN &' ïð Z(RTD)

(95) iÎ ÷S, ë? 1I  $ ¨Z@(thermal insulating cover),. 3. 3. o. o. o. HWAHAK KONGHAK Vol. 40, No. 6, December, 2002.

(96)   . 680.   _-  ; ca!. TG   † @U

(97) €i] JK % N Q3 \ ^ 0 %\ @Q RgG _ 1P =\S,    UN  VW  XY 0, UNZ [\] JK ^   _

(98) ; cd, 2– 9. &³ )* (ž, 9÷ &'

(99) ¢U\ 5, UNZ † Z €`Ç Ok G!.. . Fig. 9. Density errors due to environmental temperature variations.. 4..

(100) . " # KOGAS$ G lm‘¬D  

(101) &' 0  ±?  ”• $G  ±- 78 9:- ²O ³@ ” •G _\ 9:>? G >RI !&? ™!.   @ AB? CD E AB? F @ G 9:>? HI JK

(102) LM  _-

(103) ; ca\S QG 9:>?, @

(104)  56  p jG h† 

(105) Q Ç <5  .H$ ./? †'G!. TG     ÿ, c p  h†G ¶”$  ‡], ñ S”úQ ™ui !D !Tš‡ 1  ñ 

(106) .  40 6 2002 12. 1. Alan T., Hayward J.: “Flowmeters, A Basic Guide and SourceBook for Users,” 111(1979). 2. Wilson. C. W.: “Gas Density and Specific Gravity,” 47(1987). 3. The Basic Principles and Practice of Flow Measurements, National Engineering Laboratory, 23(1988). 4. Jaeschke. M., Hinze. H. M.: “Using Densitometers in Gas Metering,” Hydrocarbon Processing, June, 37(1987). 5. John, H. Day.: “Application of Densitometer to Orifice Meters,” A.G.A Operating Section Transmission Conference, 67(1968). 6. IGU Sub-Committee C2 Report, International Gas Union(1993). 7. Lee, K. J. and Her, J. Y.: “A Study and Analyzing Error Sources and Establishing Normal Operational Schemes of Gas Densitometer,” KOGAS Report(1996). 8. ISO 6976: “Natural Gas-Calculation of Calorific Values, Density, Relative Density and Wobbe index from Composition,” International Organization for Standardization(1995). 9. AGA Report No. 8, “Compressibility Factors of Natural Gas and Other Related Hydrocarbon Gases,” American Gas Association(1992). 10. 3096 Specific Gravity Transducer-Technical Manual, Schlumberger(1992). 11. GPA Standards 2145, “Table of Physical Constants of Paraffin Hydrocarbon and Other Components of Natural Gas,” Gas Processors Association(1993). 12. GPA Standards 2172, “Calculation of Gross Heating Value, Relative Density and Compressibility Factor for Natural Gas Mixtures from Compositional Analysis,” Gas Processors Association(1986)..

(107)

참조

관련 문서

1 John Owen, Justification by Faith Alone, in The Works of John Owen, ed. John Bolt, trans. Scott Clark, &#34;Do This and Live: Christ's Active Obedience as the

In the simple frequency analysis, TF-IDF analysis, and Topic analysis results, the meaning and social impact of future transport technology are explored, and

In this study, therefore, the method for measuring residual stresses using ESPI technique that is one of the laser applied measurement technique excellent in the view

2. The finite element is calculating using tension test of uni-direction 0° and 90°, compression test of uni-direction 0° and 90° and shear test results and, the results

 Bent posture, and as a fast check of the measurement major pectoral muscle case, the patient lying immediately behind the head comes along,

Dependence of the chemical potentials of solid, liquid and gas phases on temperature at constant pressure.. The dashed lines are for

The effectiveness of the micro-jitter attenuation capability of the SMA mesh washer gear was demonstrated by the miro-jitter measurement tests by using a 2-axis

In this study, therefore, the method for measuring residual stresses using ESPI technique that is one of the laser applied measurement technique excellent in the view