• 검색 결과가 없습니다.

저작자표시

N/A
N/A
Protected

Academic year: 2022

Share "저작자표시"

Copied!
89
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

저작자표시 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다. l 이차적 저작물을 작성할 수 있습니다.

l 이 저작물을 영리 목적으로 이용할 수 있습니다. 다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건 을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다. 이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

(2)

工學碩士 學位論文

수로 특성을 갖는 감조하천의 퇴적환경 수치시뮬레이션

Numerical Analysis of Sedimentation Environment in a Tidal River with Waterway

指導敎授 李 重 雨

2020 年 月 2

韓國海洋大學校 大學院

土木環境工學科

李 容 勳

(3)

을 의 으로 함.

本 論文 宋炫雨 工學碩士 學位論文 認准

김 태 형 ( )

委員長 工學博士 印

오 재 홍 ( )

委 員 工學博士 印

이 중 우 ( )

委 員 工學博士 印

2019 年 12 月

韓國海洋大學校 大學院

(4)
(5)
(6)
(7)

D   

(8)
(9)
(10)
(11)
(12)

Fig. 1.1 General introduction of Aqua-velvet project

(13)
(14)
(15)

(1 ) 연구의 배경 및 목적 설정

(2 ) 기존자료수집 및 대상해역 현황분석

(3 ) 모델 구축 및 실험제원 설정

(4 ) 자료 입력 및 모델 실험

해수유동 해석 ▶ ◀ 퇴적물 이동 해석

수치시뮬레이션 및 결과의 분석

(5 ) 결론 및 제언

Fig. 1.2 Schematic flow of research

(16)
(17)
(18)

Fig. 2.1 Location of study site

(19)

Fig. 2.2 View of Asan lake and water gates

(20)

Fig. 2.3 Tide observation station map

(21)

분 삽교호 동부두 서부두

조 위 표

Fig. 2.4 Tidal levels of target area

(22)

Table 2.1 Performance of tidal bench mark of the target area

구 분

삽교호 동부두 서부두

반조차

(cm) 지각 반조차

(cm) 지각 반조차

(cm) 지각 조

화 상 수

M2 S2 K1 O1

주태음반일주조 주태양반일주조 일월합성일주조 주태음일주조

294.2 118.9 39.4 28.5

120.3 168.7 293.2 264.9

285.9 115.0 38.8 28.1

118.4 166.4 292.9 264.2

286.6 111.1 39.1 28.6

126.5 175.4 294.4 266.1

비 조 화 상 수

평균고조간격 (M.H.W.T.) 4h 08m 4h 04m 4h 21m

약최고고조위 대조평균고조위

평균고조위 소조평균고조위

평균해면 소조평균저조위

평균저조위 대조평균저조위

약최저저조위

(Approx. H.H.W.) (H.W.O.S.T.) (H.W.O.M.T.) (H.W.O.N.T.) (M. S. L.) (L.W.O.N.T.) (L.W.O.M.T.) (L.W.O.S.T.) (Approx. L.L.W.)

DL.(+) 962.0 DL.(+) 894.1 DL.(+) 775.2 DL.(+) 656.3 DL.(+) 481.0 DL.(+) 305.7 DL.(+) 186.8 DL.(+) 67.9 DL.(±) 0.0

DL.(+) 935.6 DL.(+) 868.7 DL.(+) 753.7 DL.(+) 638.7 DL.(+) 467.8 DL.(+) 296.9 DL.(+) 181.9 DL.(+) 66.9 DL.(±) 0.0

DL.(+) 930.8 DL.(+) 863.1 DL.(+) 752.0 DL.(+) 640.9 DL.(+) 465.4 DL.(+) 289.9 DL.(+) 178.8 DL.(+) 67.7 DL.(±) 0.0 대 조 차

평균조차 소 조 차

(Spring Range) (Mean Range) (Neap Range)

826.2 588.4 350.6

801.8 571.8 341.8

795.4 573.2 351.0

(23)

Table 2.2 Overview of continuous tidal current

(24)
(25)

Table 2.3 Overview of wave observation

˚

˚

(26)

Table 2.4 wave coefficients

˚

(27)

Table 2.5

Waves-specific significant exposure, rate of appearance

Table 2.6 Wave period (Tp), prevalence (W1, Winter)

(28)
(29)

Fig. 2.5 Geological map for the study area

(30)

Fig. 2.6 River basin

(31)

Table 2.7 Geometric characteristics of target catchment basin map

Table 2.8 River status

(32)

자료 : 한국하천일람 시도별( , 2014, 하천관리정보시스템 www.river.go.kr) Fig. 2.7 River condition near study site

(33)

    

  

 

  

(34)

  

   

Fig. 3.1 Definition of water level (), depth () and total depth ( )

Fig. 3.2 Definition sketch of grid system to North-East orientation

  

(35)



  







  



 







  



   





cos



 

  





   





  



  





    





  









 











      









  





  





    





  











 









      







 

 

(36)

     



 







 



 







 



 



   

    





 







 



 







 









 





 







 



 







 



 

 

 

 

  

(37)





 







 







  





 











 





․



    



 

  











 







 







  





 











 





․



    



 

  









             

 

     

   

     

   

(38)





   

  



   

 

bb  



 





(39)

±



±



 

 

  ≈ 

  

  

 ≪ 

   

 



(40)

   

 ±

 

  

±



  

  

±



  

(41)

   

ㆍㆍcos

ㆍ 

 



 

i

 

(42)

­

­

­

 ∙

­

­

­

(43)

Fig. 3.3 Staggered grid system of model

(44)

𝜙

 

 for



    cos

 

(45)

 

   

cr  D 

  

cr  D 

cr  D

cr  

  ≤ 

  ≤ 

  ≤ 

  ≤ 

 

D

   

  

  





   

     

(46)

    log

     

    ≥ 

     

 

 

 

cos



 max        

   ≥ 

 

  

  ≤ 

 

 

 

  

  

 

   ≤ 

      

(47)





 

 

  



′ ′

′  

′ ′

  ′ 

 ′ 

(48)

    ln

ln

 ≥ 

 ln

ln

  





m    ln

ln

 lnln   

    lnln    

       ≤   



 ln   ln

    lnln

(49)



  maxkscr kswr 



   

 



   max max

  

max

(50)

 



 



  

 



 



  

  for  for 

 for

  



(51)

a

 

  coscos cos

 sinsin sin

  

 x y



 ′

′  ′  ′

 

 

ln

   ln 



(52)

′  ′

  

   ′

 

 

′

 

  





 

 

 

 tan



 

 



sin

  

(53)
(54)

Table 4.1 Overview of hydrodynamic simulation

(55)

Table 4.2 Freshwater inflow condition (㎥/s)

주 홍수량) : 80년 재현빈도 평수량, : 하천정비기본계획 참조, ASH6 – 방림천

(56)

Fig. 4.1 Simulation area and bathymetric chart

Fig. 4.2 Simulation grid system

(57)

Fig. 4.3 Bathymertic chart of study area

Fig. 4.4 Grid system of study area

(58)

Table 4.3 Information of river boundary on the Huff quartile method

Fig. 4.5 River basin composition

(59)

Table 4.4 Observational data used to verify hydrodynamic model

Fig. 4.6 Observation data location

(60)

Fig. 4.7 Tide curve (T4)

Fig. 4.8 Tidal current curve(PC2)

(61)
(62)
(63)

Fig. 4.9 Max. flood and ebb current in ordinary times

(64)

Fig. 4.10 Max. flood and ebb current of the study area in ordinary times

(65)

Fig. 4.11 Max. flood and ebb current of the study area after development of aqua-velvet in ordinary times

(66)

Fig. 4.12 Change of max. flood and ebb current of the study area after development of aqua-velvet in ordinary times

(67)

Fig. 4.13 Max. flood and ebb current in flood times

(68)

Fig. 4.14 Max. flood and ebb current of the study area in flood times

(69)

Fig. 4.15 Max. flood and ebb current of the study area after development of aqua-velvet in flood times

(70)

Fig. 4.16 Change of max. flood and ebb current of the study area after development of aqua-velvet in flood times

(71)
(72)

Table 4.5 Overview of sediment transport simulation

(73)

Table 4.6 River boundary condition

(74)

ks

(75)

Fig. 4.17 Initial concentration of suspended solid

(76)

Table 4.7 Suspended solid condition (㎎/L)

 

(77)

Table 4.8 Summary of sediment characteristics

ks

d

ws

dt dme

ce

AO R ˚

(78)

Table 4.9 Sedimentation rate verification (cm/yr)

(79)
(80)

Fig. 4.18 Annual sediment rate

(81)

Fig. 4.19 Sediment rate after 4 years of construction

(82)

Fig. 4.20 Sediment rate after 1 year of development

(83)

Fig. 4.21 Sediment rate after 5 years of development

(84)

Fig. 4.22 Sediment rate after 10 years of development

(85)
(86)
(87)
(88)
(89)

참조

관련 문서

This paper takes Tmall study platform as the case study to examine the current situations, methods, problems, and development strategies of brand marketing activities associated

It considers the energy use of the different components that are involved in the distribution and viewing of video content: data centres and content delivery networks

After first field tests, we expect electric passenger drones or eVTOL aircraft (short for electric vertical take-off and landing) to start providing commercial mobility

1 John Owen, Justification by Faith Alone, in The Works of John Owen, ed. John Bolt, trans. Scott Clark, "Do This and Live: Christ's Active Obedience as the

The purpose of this study was to investigate the appropriateness of the learning sequence of Science(area of matters) and Chemistry contents and

For the study of inhibitory synapse development, we analyzed the intensity, area, and density of Gephyrin or VGAT clusters in primary hippocamapal

Thus, this study has researched the literature study of the current statistic data and study article and field survey in some farm households, analysis

A Study on the Development of Ship’s Ballast Water A Study on the Development of Ship’s Ballast Water A Study on the Development of Ship’s Ballast Water A Study on the