• 검색 결과가 없습니다.

유변학

N/A
N/A
Protected

Academic year: 2022

Share "유변학"

Copied!
56
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

유변학

점탄성

(2)

점도

(3)

- 점도 계수 (viscosity coefficient)

- 제 1수직응력차 계수 (first normal stress difference coefficient)

- 제 2수직응력차 계수 (second normal stress difference coefficient)

물질함수

(4)

물질함수

(5)

“lack of slipperiness”.

synonymous with internal friction.

resistance to flow.

점도

❏ The units are . . .

SI unit is Pa.s

cgs unit is Poise

10 Poise =1 Pa

.

s

1 cP (centipoise) = 1 m Pa.s

(6)

단순전단유동

Shear Stress:  = F/A Strain:  = dx/y

o

Shear Rate:  = d/dt = V/y

Viscosity: 

= /

y x

x

o

dx

F = Force V = speed

y

o

A = area

(7)

그림 2. 뉴튼성유체의 전단응력과 전단율과의 관계(Denn, 1980).

점도

(8)

1000

1.000E-6 1.000E-4 0.01000 1.000 10.00 100.0

shear rate (1/s)

10000

1.000E-3 0.01000 0.1000 1.000 10.00 100.0 1000

viscosity (Pa.s)

Xanthan/Gellan Fructose Soln.

N450,000

S3

점도

TA Instruments

(9)

그림 3. LDPE의 서로 다른 온도에서의 점도(Bird et al., 1987).

전단박화

(10)

Unsheared Sheared

Aggregates break up

Random coil

Polymers elongate

Anisotropic Particles align with the Flow Streamlines

~ 1 s

전단박화

TA Instruments

(11)

(7)

(8)

(9) Cross equation:

Carreau model:

Power-law model:

점도모델

(12)

전단후화

(13)

1000

0.0100 0.100 1.00 10.0 100.0

shear rate (1/s)

0.3500

0 0.05000

0.1000 0.1500 0.2000 0.2500 0.3000

viscosity (Pa.s)

Flip Chip Underfill Resin + Filler [var. %]

@ 80°C

0%

35%

65%

70%

전단후화

TA Instruments

(14)

항복응력

(15)

마스터곡선

(16)

전단속도(1/s)

Sedimentation 10

-4

Molecular Structure

Leveling/Sagging 10

-3

to 10

0

Compression Molding

Pouring 10

0

to 10

1

Extrusion

Pumping 10

1

to 10

3

Blow Molding

Rubbing 10

3

to 10

4

Injection Molding

Spraying 10

5

Bearing lubrication 10

6

(17)

점도 (Pa.s)

Asphalt Binder ---

Polymer Melt ---

Molasses ---

Liquid Honey ---

Glycerol ---

Olive Oil ---

Water ---

Air ---

100,000 1,000 100 10 1

0.01

0.001

0.00001

(18)
(19)

점도

• Relative viscosity

• Specific viscosity

• Reduced viscosity

• Inherent viscosity

• Intrinsic viscosity

s

rel

  

s s

sp

c

sp red

  

c

rel inh

  ln

  c c

rel c

sp c

 

 lim lim ln

0

0

(20)

rel

/ c ln 

sp

/ c

  KM

a

고유점도

(21)

브룩필드 점도기

(22)

선형점탄성(linear viscoelasticity)

(23)

변형

0 시간

응력

0 시간

응력

0 시간 응력

0 시간

물질의 완화특성

( , ) ( , )

t

G t   

G t( )

( )t

/

( ) 0 t

G t

G e

G t ( ) G e

k t/k

(24)

1. coordinate invariant 2. material objectivity (frame indifference)

(25)

GNF model

I=0 for incompressible fluid III=0 for simple shear flow

(26)

power-law model

(27)

Carreau-Yasuda model

(28)

Bingham model

(29)
(30)

Pressure-driven flow

(31)
(32)

constitutive equations

(33)
(34)

Maxwell model

(35)
(36)
(37)

Generalized Maxwell Model

/ 1

( ) k

N k t

k k

G te

(38)
(39)

GLVE model

1 2

0 G s ds( ) , 0

 

  

(40)

선형점탄성 모델

e v

    

     

E

 

1 2 1 2 1

E E E E

  E

 

(41)

SAOS

(42)

SAOS

(43)

d dt

 



0G'sin t 0G"cos t

       0 cos t 0 cost

2

0 0

2 2

( )

' , "

1 ( ) 1 ( )

G G

G  G 

 

(44)
(45)

2

2 2

( )

' , "

1 ( ) 1 ( )

k k

k k

k k

G G   G G  

   

 

/ 0

( ) H( ) s

G s e d

(46)
(47)
(48)

2 0 2

0

( )

( ) 1 ( )

4

L z

P P R r

v r LR

  

   

(49)

limitations of GLVE model

(50)

material objectivity (frame indifference)

0 G s( ) cos(2 s ds)

 

valid only for slow flow

(51)

물질함수

(52)

steady shear

( )

t

0 constant

21 0

1 11 22

1 2 2

0 0

22 33

2

2 2 2

0 0

( )

( )

( )

( )

( )

N

N

  

 

  

 

  

 

  

  

 

   

(53)

stress growth

0

0 0

( ) 0

t t

t

 

  

21 0

11 22

1 2

0

22 33

2 2

0

( , )

( )

( , )

( )

( , ) t

t

t

  

 

 

 

 

 

 

 

 

 

(54)

stress relaxation

0 0

( ) 0 0

t t

t

 

 

21 0

11 22

1 2

0

22 33

2 2

0

( , )

( )

( , )

( )

( , ) t

t

t

  

 

 

 

 

 

 

 

 

 

(55)

creep

21

0

0 0

( ) 0

t t

t

 

  

21 0

0

(0, )

( , )

t

J t  

0

0

( ) s

t

J t J

 

(56)

step strain

0 0

0 0

( ) lim 0

0

t

t t

t

 

 

   

 

1

2

21 0

0

0

11 22

0 2

0

22 33

0 2

0

( , ) ( , )

( )

( , )

( )

( , ) G t t

G t

G t

 

 

 

 

 

 

 

 

 

참조

관련 문서

• Defenders need visibility into process and file telemetry, command line parameters, and Windows Event logs. • Subscribe to ETW logs to collect PowerShell cmdlets and

상기 신입생 장학금 외에도 본교는 신입생장학금-재학생장학금-해외연수장학금-대학원진학장학금에 이르는 전주기 장학제도를 운영하고 있으며, 다양한 교외장학금

Consider a cross section of large flow through which all streamlines are precisely straight and parallel. i) Forces, normal to the streamlines, on the element of fluid

2 0 0 3 년도에 추진이 시작된 교육행정정보시스템인 나이스( NEI S,Na t i ona lEducat i on I nf or mat i onSyst e m) 에 포함된 I T환경 하에서의 학교재정운용과

Development of Simulation Technique Based on Gridless Method for Incompressible Thermal Flow around a Moving Body..

2. The finite element is calculating using tension test of uni-direction 0° and 90°, compression test of uni-direction 0° and 90° and shear test results and, the results

Surge Tank for prevention of

For irrotational flow of ideal incompressible fluid, the Bernoulli’s equation applies over the whole flow field with a single energy line. Exact velocity field