• 검색 결과가 없습니다.

Characteristics of Glucose Purification & Concentration Process Using a Ceramic Membrane

N/A
N/A
Protected

Academic year: 2022

Share "Characteristics of Glucose Purification & Concentration Process Using a Ceramic Membrane"

Copied!
5
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

      



   (2000 7 10 , 2000 12 4 )

Characteristics of Glucose Purification & Concentration Process Using a Ceramic Membrane

Yong-Taek Lee and Soo-Eun Lee

College of Environment & Applied Chemistry, KyungHee University (Received 10 July 2000; accepted 4 December 2000)

 

() *+,- $% ./ 012. *+,3 45-  , !"#   6 7689 76 , :;(retentate) 16-18<=) >?@ *+,- AB C  DE2. F diafiltration- GHI JK  DE !- "#L 1 bar=) 2 barM=) N @ *+, OP8  DE2. - Q&=3 cross flow- RS02 cross flow dead end flow T

 @ U V WL *+, XY 02.

Abstract−The optimal conditions of glucose syrup purification & concentration(retentate) using a ceramic membrane were investigated. The effects of operating parameters on flux were investigated by changing cross flow velocity, the transmem- brane pressure(TMP) and volumetric concentration factor(VCF). The permeate flux increased with the increase of feed tem- perature, cross flow velocity and transmembrane pressure. The permeate flux abruptly decreased at 16 to 18 of VCF and it needs to be diafiltered. TMP was maintained between 1-2 bar to keep the moderate flux. Cleaning by the combination of cross flow with dead-end flow was better in the flux recovery than that by cross flow only.

Key words: Ceramic Membrane, Glucose, Transmembrane Pressure, Volumetric Concentration Factor, Diafiltration

E-mail: yongtlee@khu.ac.kr

1.  

     !"# $%&, $' 

&( () , *    +! ,-. /01#

$2 3 45, 6%$', 78-9   :; $', <= >?@

AB -C , DE# F G HI . J KL MN OP( Q RS$', -# TO, :;U G # TO V WXL  YZ, [\ 45, ]^_ +! $', :; U

AB /01 3 -`# , K a & G HI [1-3].

bc dP` ef K 3 K`  g h i

 =CjF9 (kl mn 9 op  $q  rsh 

<F  t . uvw /xy z{e | $qzp} p

~ S <F €  h Le  ‚ ƒ  „…

# †‡ ˆ‰y ŠI .

‹y dP`#   ŒŽ m # $`(dP` $)

`F-$(rotary vacuum filter)-T(carbon filter)-ion exchange 

‘qk .   $ ’“” • t –—

 <F( ˜() . J T  r  ™'š ›œ

žŸtB9 Hs  ¡ $ ¢ 1 Q • £¤ •

C w¥¦ a= & P n$( [4-8]. §¨w ©ª$

?–« ¤8 ¬6=# ­  r  Œ%  t  m n ®&( ’“” ’Iw ¯° ,-. ±²C ®& # s ³´ =µ ¶ · e ”{e 3 ¸±e9 t [9].

 ’s    dP` $ h ¹P9 º ()

»P9 Q¼q L½ º   mn  c° ®¾¿

À ]ÁC  ÃÄÅ # tC Š.. ÃÄÅ F Æ} ÇC 8  ÈÉÃÊ () ¡ eˆË# D9 Ì

Š'( jÏ Jh ³ÐI Ñ mn qÒ P « L½ 

D½ -”Ó  h S» [9, 10].

Ÿ Ȋh v $ 3 T ÃÄÅ    /5”Ô

@Õ a= Ö6 × <F Øg ÈɸK@ ƒ  ƒ Ùe ËE 3 6C ږ (kl . 8‡ pilot scale# ÃÄ

(2)

 39 1 2001 2

Å    dP` $” transmembrane pressure(TMP)Û ‡É P 3 ¯?# ¹P Øg ÜÝZ# jF9 ŒÞ, 4P9 jF”ß

~ ÜÝZ À ±Ú ŒÞà. J áâムÃÊäN Ø g flux åæ r äN eç èš é.

2.  

2-1.  

‰ê Vƒ dP` 95DE(dextro equivalance)¦ ƒëEc SH

AB $ ìà. Dextrose equivalance(DE)h starch ( basic glucose  K£ h P9 #¬. dP` ¯? í 70oC¦

60”R– `F. î Hï@¦ Brixh 32-34%, suspended solids h 3.75 g/kgð.

$ H Al2O39 ñ òÏ ÃÄÅ @ u óô Fig. 1 wõöð. Pore sizeh 0.1µm, ÷~} 2.16 m2, ò Ï # ö¤ 6 mm, 7 channel# òÏ  øø Sù”Ó  h pilot- scalS:[ORELIS 2KBX-07](France)9   ‰ê é.

2-2.   

Ÿ ‰ê H S: óP9 Fig. 2 wõöð. dP` ¯?#

¹Ph steam² 65-75oC 'ˆ é@¦ () 70oC9 - é.

Feed tank h AÎ  úâ( tank -ûIh ¯?# ²

<}@ $q  ü« Àe  ¯? ýv þ: ÑPÿ é. ó ÍÎ Û - h 9   ä@

 Iq øø# ‰ê Bh control boxÛ È. B û

Î <” t ØÄ ‚Î ()  é. u by-pass valve 9   áâム-ûIh feed# - $q é@¦ dP`

¯?# ¹Ph chilled water9 s 'ˆ é. J feed * circulation 9   ¯?# «A9 x£ é@¦ crossflow velocityh 5 m/s, TMPh 1.0 2.0 bar9 -  45e(VCF)9 1

 ØÄ « ÜÝZ# -9 rs !}@ (”.

2-3. TMP  

*N 3 N G#  q  Š<Î ÍÎ

(transmembrane pressure; TMP). v ÍÎh ‡ÉPÛ L flux9  h q ¹PÛ ,  E # w.

 óô ‡ÉP # º K/½ ÷~ } h = 1 $2  mn flux# ږw fouling# $q  W

. Q ‡ÉP h ÷~ }.  ¦  #

cake load# ( flux] ( [ .. ØÄ º ‡ÉPh 4

P # fouling ׫  h D}ƒ äN[10].

Ÿ Ȋ h  h « ÍÎ ‡ÉP 'ˆ rs outlet

valveÛ input valve9  é@¦ ‡ÉPh óô Ìq(h -û-

 -û øƒ óô# ~}@ wq  @ z é.

2-4.     2-4-1. }

# ÃÊ system ¸K ~ ÃÄÅ !C ÷~ Aù. ¤z

 # ÃÊ rs ”"Ið. dP`# $” ÷~ A ù. ¤z# ŠCC ` /01, ä"# -= 9 $ 2  r  NaOH# -= (s’## FÆ} $[%& 

 é. J NaOH# OH ¹ -= s)Î# ÀFÛ ¬6=

lOä }@ NaOCl '(  H é.  w $

 d,Iq h (="h  )ù  h 9 $ 2  r  (=# sÎ «’  (S * ^+, 1

 H é. - }@ ÃÊ h î # )Î

ÀF ”ß åæ. º S}@ Ç  H  r,.

2-4-2. Clean-in-place(CIP)

# ÃÊäN  / x ”" é@¦ Ãʔ # WL

( dead zone Ö6”߁ Ñ  rs ÃÊ ” cross flow Û dead end flow9 0"  ”" é. Table 1 ÃÊäN# x 9 wõ1 î¦ Table 2h ÃÊäN Øg ÜÝZ åæ. wõ1 î.

3. 

3-1. TMP  

Fig. 3 cross filtration ϗ# ä  é m ‡ÉP

Fig. 2. Schematic diagram of concentration system using ceramic mem- brane.

1. Feed 4. Circulation pump

2. By-pass valve 5. Chilled water

3. Feed pump 6. Ceramic membrane

Fig. 1. Monolithic membrane module.

Table 1. Method of clean-in-place(CIP)

Process Flushing agent Operating time

Syrup recovery Desweetening Precleaning Washing Basic cleaning Washing Acid cleaning Washing

- - NaOH

- NaOH+NaOCl

- HNO3

-

5 min 15 min 10-15 min 15-20 min 25 min 25 min 15 min 20 min

(3)

Øg ÜÝZ# jF9 wõ1 2‡. ‡ÉP9 2, 3, 4 3 5 m/s ‡ 3  ¸K  TMP 3 ‡ÉP( (, ØÄ ÜÝZ( (

h ¤Ú wõöð TMP 200 kpa – h 2# « ϗ9 Þ

 . ÍÎ # « -É b– ¤z ÏCIh 4 P  3 cake # Æ} ]Á# ( ƒ h î@ ^ +k [11, 12]. Cross filtration ϗ# ä Ih -ñ#

4"P ØÄ u D½C 58I¡ D½ rs () § 6g -ñ#  7 .. J 4"# ÏC -ñ# -É ò ö# ¤ # ã8“D G æ9}@ • h î@ ^ +k [9]. Ÿ ‰ê q D½}ƒ ÜÝZ9 : r ‡ÉPh

5 m/sƒ î@ wõ;@¦ 5 m/s – h ÜÝZ# (( 2# <

 = ž%Ä º <Îe9 (k¹. v º ‡ÉPh óô # º K/½ (kl v º K/½ ÷~ }

Ih =1 $2  fouling ׫   mnƒ î@ >/..

3-2.   

«’}@ ÜÝZ À ¹P# ±Ú ž! ? #¬9 % 

 ^+k [13]. Fig. 4h ‡ÉPÛ TMP9 «   ¹P Øg dP`# fluxjF9 wõ1 2‡. u  ¹P( (, ØÄ flux( ( h ¤Ú Þ @¦ v b– ¹P(  (, ØÄ ¯?# »P Jh ?É d,Iq h A-=1#  sP( ( h î ƒ[14, 15]. dP` $ ¯?#

¹P( 70oC –ƒ ¤8 ¯?# C– jF(dP`# @j)  $

# 1 ] . ^+k . Û/ dP`# $

« ¹P9 ‡3, ØÄ () } ~}@ flux9 (”Ó

 @¦ Kñ  ¤e9 ˆË  .

3-3. (retentate)  flux !

7 channel# ÃÄÅ óô   dP`# fluxjF 3 TMP#

jF9 p  u Øg 45e(retentate) jF9 Fig. 5 wõöð

. u  45. Øg flux# jFh TMP( (, ØÄ (

h ¤Ú ^  ð. Fig. 5 ^  A K’}@ fluxh dP`# 45 ½# (Û ¸K”R ØÄ ËE h ¤Ú Þ !

 . J 45 ½ (, ØÄ flux( ËE m TMP9

0.1 bar /r (”Ô@ ƒ  fluxP ( h ¤Ú wõö

. uvw 45e(VCF)( í 18 (¸K”R 9”R s`)9 K¢

 s flux# Ú2‡ uB # C( D¿y [¦ TMP(  ( §ÄP fluxh § – (  Ñà. v b– -ñ ]Á óE# @ ÷bF  @¦ 45 ½# –G ¯?# »P 3 A -=1(suspended solids) (”Ó = ž%Ä û –H 9 3

÷~# –H •@ # ]Á(resistence of membrane) 3 e(W } lO(resistence due to irreversible fouling) mn 6h ]Á – G”I flux9 ËE”ßh î@ ÞIq [16-21].

(1)

 J: flux

µ: viscosity resistance of membrane Rm: resistance of membrane

Rp: resistance due to concentration of polarization

Fig. 5 P feed?# A-=1 4P( ØÄ flux# D¿ jF ( JƒIð@¦ 45?# A-=1 63 g/kg A€ wõw ”•

 í 160 g/kg fouling «q;[22, 23]. Fig. 6 45e#  ( Øg A-=1(suspended solids)# ( 2‡ wõ1 î  î F ~  /.

Suspended solids(g/kg) = 4.5678(X)−1.0334 (2)

 Xh VCF

v  ƒ  feed# 4P( (ÿ fouling 6K « qw mn feed# 4P9 ‡3  ¸K h î ¤$}ƒ p~

    .

Fig. 7 45e Øg fluxjF 3 TMPjF9 wõ1 Fig. 5Ûh i

J ∆P

µ(Rm+Rp) ---

= Table 2. Flux recovery depending on clean-in-place(CIP) process

Cross flow Dead-end-flow & cross flow Standard water flux 6,900 l/m2/hr(at 4 bar, 25oC, 6 mm channel)

Water flux after CIP 4,560 5,527

% 66 80

Fig. 3. Flux as a function cross-flow velocity.

Fig. 4. The effect of temperature on flux.

Fig. 5. Flux change at different concentration ratios.

(4)

 39 1 2001 2

 « 45e(5 ) q# fluxjFÛ TMP9 wõöq eç é. u  ¸K”R ¤, ØÄ flux( ËE h ¤Ú Þ

! . J 15”R ¢ TMP( ( §ÄP flux( 'LM Ë E  @w flux# ËE Ph Fig. 5 es u N Ñ@¡

45e 5 ¸K §ÄP flux( O8 Ç}ƒ î ^  .

î 45e( ‹ Pr9 þ Ñ –— ¸K ¤8 4P ( Q ¯? !û# tC(diafiltration) ¸K”R É 3 ÃÊ(cleaning)

# ”Û Q9  h     .

3-4. Diafiltration

Fig. 8 Fig. 5Û / 45e Øg dP`# fluxjFÛ TMP# j F9 ^žÞ ¸K”R 15”R ¢ flux( D¿y RqS m diafiltration  . «’}@ ] =1 45?@AB

$2 2w L?p@AB å ¤8 diafiltration Pû.

u  Fig. 8 wõ4 TÛ / diafiltration  ¢ flux( 45e 5 # @ åæ î@ ޞ « -@ S¸K  rsh U t @ >/.. Û / ‰ê°9 TV@

pilot scale ¸K” 45. ØKh flux# ² TMP jF À –ò òz9 WX@Õ diafiltration  H ”Û flux ] < ¯

? Ç}@ SR 45  h ©}#  {z  .

4.  

'Ù@ TMP, ‡ÉP, ¯?# 4PÛ ¹P9 i ~ ÜÝZ À ±Ú ‹C µ 3 ‰ê Ys ŒÞà. TMPh 1 bar 2 bar »}@ (” D½}ƒ flux9 : r ‡ÉP h 5 m/s. ¯?# ¹P À ±Ú 70oC # ÜÝZ( 60oC Þ í 13% P § ¶ ÜÝZ9 wõöð. ÃÊ ¢ water fluxh cross flowÞ dead endÛ cross flow9 0s h î § w î

@ JƒIð.

Ÿ Zn ¤[ÀÆçÛ ¤P# $6 Æ \E”] «£@ 

". ¦ ¯s !^ (!)_ ËH “`%.



1. Brown, H. R.: Macromolecules, 22, 2859(1989).

2. Lee, Y. and Char, K.: Macromolecules, 27, 2603(1994), ibid, 31, 7901 (1994).

3. Sundararaj, U. and Macosko, C. W.: Macromolecules, 28, 2647(1995).

4. Orr, C. A. et al.: Macromolecules, 30, 1243(1997).

5. Lyu, S., Cernohous, J. J., Bates, F. S. and Macosko, C. W.: Preprint (1998).

6. Helfand, E. and Tagami, Y.: J. Chem. Phys., 56, 3592(1972), ibid., 57, 1812(1972).

7. Wilemski, G. and Fixman M.: J. Chem. Phys., 58, 4009(1973), ibid, 60, 866(1974).

8. Doi, M.: Chem. Phys., 9, 455(1975), ibid., 11, 107 and 115(1975).

9. de Gennes, P. G.: J. Chem. Phys., 76, 3316(1982), ibid., 76, 3322(1982).

10. O’Shaughnessy, B. and Sawhney, U.: Phys. Rev. Lett., 76, 3444(1996), Macromolecules, 29, 7230(1996).

11. Fredrickson, G. H.: Phys. Rev. Lett., 76, 3444(1996).

12. Fredrickson, G. H. and Milner, S.: Macromolecules, 29, 7386(1996).

13. Carmesin, I. and Kremer, K.: Macromolecules, 21, 2819(1988), Deut- sch, H. P. and Binder, K.: J. Chem. Phys., 94, 2294(1991).

14. Mueller, M., Binder, K. and Oed, W.: J. Chem. Soc. Faraday Trans., 91, 2369(1995).

15. Schmid, F. and Mueller, M.: Macromolecules, 28, 8639(1995).

16. Mueller, M.: Macromolecules, 30, 6353(1997).

17. Werner, A., Schmid, F., Mueller, M. and Binder, K.: J. Chem. Phys., 107, 8175(1997).

Fig. 6. Suspended solids of concentrates and clarified syrup for all vol- ume concentration ratios.

Fig. 7. Flux change at constant concentration(VCF5).

Fig. 8. Flux change with different diafiltration.

(5)

18. Guegan, P., Macosko, C. W., Ishizone, T. and Nakahama, S.: Macro- molecules, 27, 4993(1994).

19. Werner, A., Schmid, F., Binder K. and Mueller, M.: Macromolecules, 29, 8241(1996).

20. Metropolis, M., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H.

and Teller, E.: J. Chem. Phys., 21, 1087(1953).

21. Mueller, M. and Binder, K.: Macromolecules, 28, 1825(1995).

22. Broseta, D., Fredrickson, G. H., Leibler, L. and Helfand, E.: Macromol- ecules, 23, 132(1990).

23. Semenov, A. N.: Macromolecules, 27, 2732(1994).

24. Paul, W., Binder, K., Heermann, D. W. and Kremer, K.: J. Phys. II (Paris), 1, 37(1991)., Deutsch, H.-P. and Binder, K.: Macromolecules, 25, 6214(1992), J. Phys. II(Paris), 3, 1049(1993).

참조

관련 문서

The influence of several operating parameters including cycle period, concentration of the VOC and mass of inert material(cordierite honeycomb) on the removal efficiency has

C inPFC =PFC’s volumetric concentration entering the scrubber C outPFC =PFC’s volumetric concentration leaving the scrubber Q in = gas volumetric flow rate entering

There are four major drivers to the cosmetic appearance of your part: the part’s geometry, the choice of material, the design of the mold (or tool), and processing

1 John Owen, Justification by Faith Alone, in The Works of John Owen, ed. John Bolt, trans. Scott Clark, &#34;Do This and Live: Christ's Active Obedience as the

From the results of the linear cutting tests, the effects of the process parameters on the kerfwidth and characteristics of the cut section, including

Based on removal efficiency and permeate flux, the initial permeate flux of 1.05m 3 /m 2 /day, copper to SDS molar ratio of 1:30 (9.44mM of SDS concentration), and

The operating conditions which have been applied to develop a support vector machine model were trans- membrane pressure (TMP), operating temperature, cross flow velocity

l) The separation of water and permeate flux were main- ly dependent on the concentration of nitric acid in the feed solution. The flux and selectivity of water decreased